Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 823
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
EFSA J ; 22(9): e8961, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39351446

RESUMEN

The European Commission requested EFSA to update the scientific guidance for the preparation of applications for authorisation of novel foods, previously developed following the adoption of Regulation (EU) 2015/2283 on novel foods. This guidance document provides advice on the scientific information needed to be submitted by the applicant towards demonstrating the safety of the novel food. Requirements pertain to the description of the novel food, production process, compositional data, specifications, proposed uses and use levels and anticipated intake of the novel food. Furthermore, information needed in sections on the history of use of the novel food and/or its source, absorption, distribution, metabolism, excretion, toxicological information, nutritional information and allergenicity is also described. The applicant should integrate and interpret the data presented in the different sections to provide their overall considerations on how the information supports the safety of the novel food under the proposed conditions of use. Where potential health hazards have been identified, they are to be discussed in relation to the anticipated intake of the novel food and the proposed target populations. On the basis of the information provided, EFSA will assess the safety of the novel food under the proposed conditions of use.

2.
EFSA J ; 22(9): e8966, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39351445

RESUMEN

The European Commission requested EFSA to update the scientific guidance for the preparation of notifications for authorisation of traditional foods, previously developed following the adoption of Regulation (EU) 2015/2283 on novel foods. This guidance document provides advice on the scientific information needed to be submitted by applicants when submitting traditional food notifications pursuant to Article 14 and traditional food applications pursuant to Article 16 of Regulation (EU) 2015/2283. The safety of a traditional food should be substantiated by data on its composition, its experience of continued use and its proposed conditions of use. Its normal consumption should not be nutritionally disadvantageous. The applicant should integrate the information on the composition and the experience of continued use and provide a concise overall consideration on how this substantiates the history of safe use of the traditional food and how this relates to the proposed conditions of use for the EU. Potential health hazards identified on the basis of compositional data and/or data from the experience of continued use should be discussed. On the basis of the information provided, EFSA will assess the safety related to the consumption of the traditional food under the proposed conditions of use.

3.
EFSA J ; 22(10): e9040, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39376691

RESUMEN

The food enzyme ß-glucosidase (ß-d-glucoside glucohydrolase, EC 3.2.1.21) is produced with the non-genetically modified Penicillium guanacastense strain AE-GLY by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in four food manufacturing processes. Subsequently, the applicant has requested to extend its use to include three additional processes and to revise the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of seven food manufacturing processes. The dietary exposure was calculated to be up to 0.206 mg total organic solids (TOS)/kg body weight (bw) per day in European populations. Using the no observed adverse effect level reported in the previous opinion (943 mg TOS/kg bw per day), the Panel derived a margin of exposure of at least 4578. Based on the previous evaluation, the assessment of the new data and the revised margin of exposure, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

4.
EFSA J ; 22(10): e9035, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39391757

RESUMEN

The food enzyme triacylglycerol lipase (triacylglycerol acylhydrolase; EC 3.1.1.3) is produced with the non-genetically modified Aspergillus tubingensis strain NL151 by Shin Nihon Chemical Co., Ltd. The food enzyme was free from viable cells of the production organism. It is intended to be used in six food manufacturing processes. Dietary exposure was estimated to be up to 0.278 mg total organic solids (TOS)/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1669 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 6004. A search for homology of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that, the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

5.
EFSA J ; 22(10): e9032, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39391758

RESUMEN

The food enzyme endonuclease (Aspergillus nuclease S1; EC 3.1.30.1) is produced with the non-genetically modified Penicillium citrinum strain NP 11-15 by Shin Nihon Chemical Co., Ltd. The food enzyme is free from viable cells of the production organism. It is intended to be used in the processing of yeast and yeast products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.006 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1010 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 168,333. A search for homology of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, especially for individuals allergic to Penicillium. However, the likelihood of such reactions will not exceed the likelihood of allergic reactions to Penicillium. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

6.
EFSA J ; 22(10): e9033, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39385970

RESUMEN

The food enzyme endo-1,3(4)-ß-glucanase (3-(1-3;1-4)-ß-d-glucan 3(4)-glucanohydrolase; EC 3.2.1.6) is produced with the non-genetically modified Talaromyces versatilis strain PF8 by Erbslöh Geisenheim AG. The food enzyme was free from viable cells of the production organism. It is intended to be used in four food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was calculated to be up to 0.110 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 2229 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure resulted in a margin of exposure of at least 20,264. A search for homology of the amino acid sequence of the food enzyme to known allergens was made and four matches with respiratory or contact allergens were found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

7.
EFSA J ; 22(8): e8949, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39114322

RESUMEN

The food enzyme ß-galactosidase (ß-d-galactoside galactohydrolase; EC 3.2.1.23) is produced with the genetically modified Bacillus licheniformis strain DSM 34099 by Kerry Group Services International, Ltd. (KGSI). The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. The production strain met the requirements for the qualified presumption of safety (QPS) approach. The food enzyme is intended to be used in two food manufacturing processes. Dietary exposure was estimated to be up to 7.263 mg total organic solids/kg body weight per day in European populations. Given the QPS status of the production strain and the absence of concerns resulting from the food enzyme manufacturing process, toxicity tests, other than an assessment of allergenicity, were considered unnecessary by the Panel. A search for the identity of the amino acid sequence of the food enzyme to known allergens was made and one match with a food allergen from kiwi fruit was found. The Panel considered that a risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to kiwi fruit, cannot be excluded. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

8.
EFSA J ; 22(8): e8935, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39104807

RESUMEN

The food enzyme glucan 1,4-α-maltohydrolase (4-α-d-glucan α-maltohydrolase; EC 3.2.1.133) is produced with the genetically modified Saccharomyces cerevisiae strain LALL-MA+ by Danstar Ferment AG. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in the processing of cereals and other grains for production of baked products. Dietary exposure was estimated to be up to 0.014 mg TOS/kg body weight per day in European populations. Given the QPS status of the production strain and the absence of concerns resulting from the food enzyme manufacturing process, toxicity tests were considered unnecessary by the Panel. A search for the identity of the amino acid sequence of the food enzyme to known allergens was made and four matches were found, three with respiratory allergens and one with an allergen from mosquito (injected). The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

9.
EFSA J ; 22(8): e8914, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39099616

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Lietpak (EU register number RECYC327), which uses the EREMA MPR technology. The input material is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a ■■■■■ reactor under vacuum. Having examined the challenge test provided, the Panel concluded that the ■■■■■ decontamination (step 2), for which a challenge test was provided, is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of this step are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure a level of migration of potential unknown contaminants into food below the conservatively modelled migration of 0.1 µg/kg food, derived from the exposure scenario for infants, when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.

10.
EFSA J ; 22(7): e8948, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39086456

RESUMEN

The food enzyme α-amylase (4-α-d-glucan glucanohydrolase i.e. EC 3.2.1.1) is produced with the non-genetically modified Cellulosimicrobium funkei strain AE-AMT by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that the food enzyme did not give rise to safety concerns when used in seven food manufacturing processes. Subsequently, the applicant has requested to extend its use to include three additional processes. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of ten food manufacturing processes. As the food enzyme-total organic solids (TOS) are removed from the final foods in one food manufacturing process, the dietary exposure to the food enzyme-TOS was estimated only for the remaining nine processes. The dietary exposure was calculated to be up to 0.049 mg TOS/kg body weight (bw) per day in European populations. When combined with the no observed adverse effect level previously reported (230 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 4694. Based on the data provided for the previous evaluation and the revised margin of exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

11.
EFSA J ; 22(7): e8947, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39086457

RESUMEN

The food enzyme pullulanase (pullulan 6-α-glucanohydrolase; EC 3.2.1.41) is produced with the non-genetically modified Pullulanibacillus naganoensis strain AE-PL by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in one food manufacturing process. Subsequently, the applicant has requested to extend its use to include seven additional processes and to revise the previous use level. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of eight food manufacturing processes. As the food enzyme-total organic solids (TOS) are not carried into the final foods in two food manufacturing processes, the dietary exposure was estimated only for the remaining six processes. The dietary exposure was calculated to be up to 0.004 mg TOS/kg body weight (bw) per day in European populations. The Panel evaluated the repeated dose 90-day oral toxicity study in rats submitted in the previous application and identified a no observed adverse effect level of 643 mg TOS/kg bw per day, the highest dose tested. When compared with the calculated dietary exposure, this resulted in a margin of exposure of at least 160,750. Based on the data provided for the previous evaluation and the revised margin of exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

12.
EFSA J ; 22(7): e8945, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39086455

RESUMEN

The food enzyme triacylglycerol lipase (triacylglycerol acylhydrolase; EC 3.1.1.3) is produced with the non-genetically modified Aspergillus luchuensis strain AE-L by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in one food manufacturing process. Subsequently, the applicant has requested to extend its use to include four additional processes and to revise the previous use level. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of five food manufacturing processes. The dietary exposure to the food enzyme-total organic solids (TOS) was calculated to be up to 0.458 mg TOS/kg body weight (bw) per day in European populations. When combined with the no observed adverse effect level previously reported (1726 mg TOS/kg bw per day, the highest dose tested), the Panel derived a revised margin of exposure of at least 3769. Based on the data provided for the previous evaluation and the revised margin of exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

13.
EFSA J ; 22(8): e8911, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39119058

RESUMEN

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on glucosyl hesperidin (GH) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF, which is produced from hesperidin and dextrin by enzymatic reactions, is a powder consisting mainly of monoglucosyl hesperidin (MGH) and unreacted hesperidin (flavonoid), which account in total for up to 92.8% (on dry basis) of the product. The applicant proposed to use the NF in specific drinks and food supplements leading to a maximum intake of up to 364 mg per day for adults. The target population is the general population, except for food supplements for which the proposed target population is children from 1 year onwards and adults. Taking into consideration the composition of the NF and the proposed uses, the consumption of the NF is not nutritionally disadvantageous. There are no concerns regarding genotoxicity of the NF. Based on a 90-day oral toxicity study conducted with the NF, the Panel considers the NOAEL at the mid-dose group, i.e. ~ 1000 mg/kg body weight (bw) per day. By applying an uncertainty factor of 200, the resulting intake providing sufficient margin of exposure for humans would be 5 mg/kg bw per day. The available human intervention studies did not report clinically relevant changes in haematological or clinical chemistry parameters following the administration of GH/MGH at supplemental doses of up to 3 g/day for 12 weeks. Overall, the Panel considers that the margin of exposure (~ 200) between the intake of the NF at the proposed uses and use levels and the NOAEL from the 90-day study is sufficient. The Panel concludes that the NF, glucosyl hesperidin, is safe for the target population at the proposed uses and use levels.

14.
EFSA J ; 22(7): e8874, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39010862

RESUMEN

The food enzyme asparaginase (l-asparagine amidohydrolase; EC 3.5.1.1) is produced with the genetically modified Aspergillus niger strain ASP by DSM Food Specialties B.V. The genetic modifications do not give rise to safety concerns. The food enzyme was considered free from viable cells of the production organism and its DNA. The food enzyme is intended to be used in the prevention of acrylamide formation in foods and in the processing of yeast and yeast products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.792 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level at the highest dose tested of 1038 mg TOS/kg bw per day, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 1311. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

15.
EFSA J ; 22(7): e8869, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38993590

RESUMEN

The food enzyme laccase (benzenediol:oxygen oxidoreductase, i.e. EC 1.10.3.2) is produced with the non-genetically modified Trametes hirsuta strain AE-OR by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in six food manufacturing processes. Subsequently, the applicant has requested to extend its use to include three additional processes and to revise the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of nine food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was calculated to be up to 0.030 mg TOS/kg body weight (bw) per day in European populations. Using the no observed adverse effect level previously reported (862 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 28,733. Based on the data provided for the previous evaluation and the revised margin of exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

16.
EFSA J ; 22(7): e8918, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39071238

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Guolong (EU register number RECYC323), which uses the EREMA Basic technology. The input material is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a ■■■■■ reactor under vacuum before being extruded. Having examined the challenge test provided, the Panel concluded that the ■■■■■ decontamination (step 2), for which a challenge test was provided, is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of this step are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure a level of migration of potential unknown contaminants into food below the conservatively modelled migrations of 0.1 and 0.15 µg/kg food, derived from the exposure scenarios for infants and toddlers, when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.

17.
EFSA J ; 22(7): e8936, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39040571

RESUMEN

The food enzyme lysophospholipase (2-lysophosphatidylcholine acylhydrolase, EC 3.1.1.5) is produced with the genetically modified Trichoderma reesei strain DP-Nyc81 by Genencor International B.V. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in the processing of cereals and other grains for the production of glucose syrups and other starch hydrolysates. Since residual amounts of food enzyme-total organic solids are removed during these food manufacturing processes, dietary exposure was not calculated and toxicological studies were considered unnecessary. A search for the identity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

18.
EFSA J ; 22(7): e8915, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39050022

RESUMEN

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process KGL (EU register number RECYC326), which uses the EREMA Basic technology. The input material is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a ■■■■■ reactor under vacuum before being extruded. Having examined the challenge test provided, the Panel concluded that the ■■■■■ decontamination (step 2), for which a challenge test was provided, is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of this step are temperature, pressure and residence time. It was demonstrated that this recycling process is able to ensure a level of migration of potential unknown contaminants into food below the conservatively modelled migrations of 0.1 and 0.15 µg/kg food, derived from the exposure scenarios for infants and toddlers, when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. Articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.

19.
EFSA J ; 22(7): e8939, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39050025

RESUMEN

The food enzyme thermolysin (EC. 3.4.24.27) is produced with the non-genetically modified Anoxybacillus caldiproteolyticus strain AE-TP by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in eight food manufacturing processes. Subsequently, the applicant has requested to extend its use to one additional process, to withdraw two processes and to revise the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme for use in a total of seven food manufacturing processes. The dietary exposure to the food enzyme-total organic solids (TOS) was calculated to be up to 0.989 mg TOS/kg body weight (bw) per day in European populations. When combined with the no observed adverse effect level reported in the previous opinion (700 mg TOS/kg bw per day, the mid-dose tested), the Panel derived a revised margin of exposure of at least 708. Based on the data provided for the previous evaluation and the revised margin of exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

20.
EFSA J ; 22(7): e8940, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39050021

RESUMEN

The food enzyme oryzin (EC 3.4.21.63) is produced with the non-genetically modified Aspergillus ochraceus strain AE-P by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in nine food manufacturing processes. Subsequently, the applicant has requested to extend its use to one additional process, to withdraw two food processes and to revise the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of eight food manufacturing processes. The dietary exposure to the food enzyme-total organic solids (TOS) was calculated to be up to 0.354 mg TOS/kg body weight (bw) per day in European populations. When combined with the no observed adverse effect level reported in the previous opinion (1862 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 5260. Based on the data provided for the previous evaluation and the revised margin of exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA