Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Oncol (Dordr) ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162992

RESUMEN

PURPOSE: Docetaxel resistance is a significant obstacle in the treatment of prostate cancer (PCa), resulting in unfavorable patient prognoses. Intratumoral heterogeneity, often associated with epithelial-to-mesenchymal transition (EMT), has previously emerged as a phenomenon that facilitates adaptation to various stimuli, thus promoting cancer cell diversity and eventually resistance to chemotherapy, including docetaxel. Hence, understanding intratumoral heterogeneity is essential for better patient prognosis and the development of personalized treatment strategies. METHODS: To address this, we employed a high-throughput single-cell flow cytometry approach to identify a specific surface fingerprint associated with docetaxel-resistance in PCa cells and complemented it with proteomic analysis of extracellular vesicles. We further validated selected antigens using docetaxel-resistant patient-derived xenografts in vivo and probed primary PCa specimens to interrogate of their surface fingerprint. RESULTS: Our approaches revealed a 6-molecule surface fingerprint linked to docetaxel resistance in primary PCa specimens. We observed consistent overexpression of CD95 (FAS/APO-1), and SSEA-4 surface antigens in both in vitro and in vivo docetaxel-resistant models, which was also observed in a cell subpopulation of primary PCa tumors exhibiting EMT features. Furthermore, CD95, along with the essential enzymes involved in SSEA-4 synthesis, ST3GAL1, and ST3GAL2, displayed a significant increase in patients with PCa undergoing docetaxel-based therapy, correlating with poor survival outcomes. CONCLUSION: In summary, we demonstrate that the identified 6-molecule surface fingerprint associated with docetaxel resistance pre-exists in a subpopulation of primary PCa tumors before docetaxel treatment. Thus, this fingerprint warrants further validation as a promising predictive tool for docetaxel resistance in PCa patients prior to therapy initiation.

2.
Prostate ; 84(7): 623-635, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38450798

RESUMEN

BACKGROUND: There are relatively few widely used models of prostate cancer compared to other common malignancies. This impedes translational prostate cancer research because the range of models does not reflect the diversity of disease seen in clinical practice. In response to this challenge, research laboratories around the world have been developing new patient-derived models of prostate cancer, including xenografts, organoids, and tumor explants. METHODS: In May 2023, we held a workshop at the Monash University Prato Campus for researchers with expertise in establishing and using a variety of patient-derived models of prostate cancer. This review summarizes our collective ideas on how patient-derived models are currently being used, the common challenges, and future opportunities for maximizing their usefulness in prostate cancer research. RESULTS: An increasing number of patient-derived models for prostate cancer are being developed. Despite their individual limitations and varying success rates, these models are valuable resources for exploring new concepts in prostate cancer biology and for preclinical testing of potential treatments. Here we focus on the need for larger collections of models that represent the changing treatment landscape of prostate cancer, robust readouts for preclinical testing, improved in vitro culture conditions, and integration of the tumor microenvironment. Additional priorities include ensuring model reproducibility, standardization, and replication, and streamlining the exchange of models and data sets among research groups. CONCLUSIONS: There are several opportunities to maximize the impact of patient-derived models on prostate cancer research. We must develop large, diverse and accessible cohorts of models and more sophisticated methods for emulating the intricacy of patient tumors. In this way, we can use the samples that are generously donated by patients to advance the outcomes of patients in the future.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Reproducibilidad de los Resultados , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/patología , Próstata/patología , Organoides/patología , Xenoinjertos , Microambiente Tumoral
3.
Int J Cancer ; 155(2): 314-323, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491867

RESUMEN

The addition of darolutamide, an androgen receptor signalling inhibitor, to therapy with docetaxel has recently been approved as a strategy to treat metastatic prostate cancer. OATP1B3 is an SLC transporter that is highly expressed in prostate cancer and is responsible for the accumulation of substrates, including docetaxel, into tumours. Given that darolutamide inhibits OATP1B3 in vitro, we sought to characterise the impact of darolutamide on docetaxel pharmacokinetics. We investigated the influence of darolutamide on OATP1B3 transport using in vitro and in vivo models. We assessed the impact of darolutamide on the tumour accumulation of docetaxel in a patient-derived xenograft (PDX) model and on an OATP1B biomarker in patients. Darolutamide inhibited OATP1B3 in vitro at concentrations higher than the reported Cmax. Consistent with these findings, in vivo studies revealed that darolutamide does not influence the pharmacokinetics of Oatp1b substrates, including docetaxel. Docetaxel accumulation in PDX tumours was not decreased in the presence of darolutamide. Metastatic prostate cancer patients had similar levels of OATP1B biomarkers, regardless of treatment with darolutamide. Consistent with a low potential to inhibit OATP1B3-mediated transport in vitro, darolutamide does not significantly impede the transport of Oatp1b substrates in vivo or in patients. Our findings support combined treatment with docetaxel and darolutamide, as no OATP1B3 transporter based drug-drug interaction was identified.


Asunto(s)
Docetaxel , Neoplasias de la Próstata , Pirazoles , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Masculino , Docetaxel/farmacología , Docetaxel/farmacocinética , Animales , Ratones , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Pirazoles/farmacología , Pirazoles/farmacocinética , Interacciones Farmacológicas , Línea Celular Tumoral , Células HEK293
4.
Br J Cancer ; 130(8): 1377-1387, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38396173

RESUMEN

BACKGROUND/OBJECTIVE: To explore the anti-tumour activity of combining AKT inhibition and docetaxel in PTEN protein null and WT prostate tumours. METHODS: Mechanisms associated with docetaxel capivasertib treatment activity in prostate cancer were examined using a panel of in vivo tumour models and cell lines. RESULTS: Combining docetaxel and capivasertib had increased activity in PTEN null and WT prostate tumour models in vivo. In vitro short-term docetaxel treatment caused cell cycle arrest in the majority of cells. However, a sub-population of docetaxel-persister cells did not undergo G2/M arrest but upregulated phosphorylation of PI3K/AKT pathway effectors GSK3ß, p70S6K, 4E-BP1, but to a lesser extent AKT. In vivo acute docetaxel treatment induced p70S6K and 4E-BP1 phosphorylation. Treating PTEN null and WT docetaxel-persister cells with capivasertib reduced PI3K/AKT pathway activation and cell cycle progression. In vitro and in vivo it reduced proliferation and increased apoptosis or DNA damage though effects were more marked in PTEN null cells. Docetaxel-persister cells were partly reliant on GSK3ß as a GSK3ß inhibitor AZD2858 reversed capivasertib-induced apoptosis and DNA damage. CONCLUSION: Capivasertib can enhance anti-tumour effects of docetaxel by targeting residual docetaxel-persister cells, independent of PTEN status, to induce apoptosis and DNA damage in part through GSK3ß.


Asunto(s)
Neoplasias de la Próstata , Proteínas Proto-Oncogénicas c-akt , Pirimidinas , Pirroles , Masculino , Humanos , Docetaxel/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/farmacología , Transducción de Señal , Apoptosis , Fosfatidilinositol 3-Quinasas/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Fosfohidrolasa PTEN/metabolismo
5.
J Steroid Biochem Mol Biol ; 236: 106446, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38104728

RESUMEN

Prostate cancer (PC) is dependent on androgen receptor (AR) activation by testosterone and 5α-dihydrotestosterone (DHT). Intratumoral androgen accumulation and activation despite systemic androgen deprivation therapy underlies the development of castration-resistant PC (CRPC), but the precise pathways involved remain controversial. Here we investigated the differential contributions of de novo androgen biosynthesis and androgen precursor conversion to androgen accumulation. Steroid flux analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed on (CR)PC cell lines and fresh patient PC tissue slices after incubation with classic and alternative biosynthesis intermediates, alongside quantitative PCR analysis for steroidogenic enzyme expression. Activity of CYP17A1 was undetectable in all PC cell lines and patient PC tissue slices. Instead, steroid flux analysis confirmed the generation of testosterone and DHT from adrenal precursors and reactivation of androgen metabolites. Precursor steroids upstream of DHEA were converted down the first steps of the alternative DHT biosynthesis pathway, but did not proceed through to active androgen generation. Comprehensive steroid flux analysis of (CR)PC cells provides strong evidence against intratumoral de novo androgen biosynthesis and demonstrates that androgen precursor steroids downstream of CYP17A1 activities constitute the major source of intracrine androgen generation.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Andrógenos/metabolismo , Antagonistas de Andrógenos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Testosterona/metabolismo , Dihidrotestosterona/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Esteroides/metabolismo , Línea Celular Tumoral , Esteroide 17-alfa-Hidroxilasa/genética , Esteroide 17-alfa-Hidroxilasa/metabolismo
6.
Mol Cancer Ther ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38030379

RESUMEN

Resistance to taxane chemotherapy is frequently observed in metastatic prostate cancer. The androgen receptor (AR) is a major driver of prostate cancer and a key regulator of the G1-S cell cycle checkpoint, promoting cancer cell proliferation by irreversible passage to the S-phase. We hypothesized that AR signaling inhibitor (ARSi) darolutamide in combination with docetaxel could augment antitumor effect by impeding the proliferation of taxane-resistant cancer cells. We monitored cell viability in organoids, tumor volume and PSA secretion in patient-derived xenografts (PDXs) and analyzed cell cycle and signaling pathway alterations. Combination treatment increased anti-tumor effect in androgen-sensitive, AR-positive prostate cancer organoids and PDXs. Equally beneficial effects of darolutamide added to docetaxel were observed in a castration-resistant model, progressive on docetaxel, enzalutamide and cabazitaxel. In vitro studies showed that docetaxel treatment with simultaneous darolutamide resulted in a reduction of cells entering the S-phase in contrast to only docetaxel. Molecular analysis in the prostate cancer cell line LNCaP revealed an upregulation of Cyclin Dependent Kinase inhibitor p21, supporting blockade of S-phase entry and cell proliferation. Our results provide a preclinical support for combining taxanes and darolutamide as a multimodal treatment strategy in metastatic prostate cancer patients progressive on ARSi and taxane chemotherapy.

7.
Res Involv Engagem ; 9(1): 85, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752584

RESUMEN

BACKGROUND: Metastatic cancer is often experienced by patients as a death sentence. At the same time, translational scientists approach metastasis also as an interesting phenomenon that they try to understand and prevent. These two sides of the same coin do not mask the considerable gap that exists between the laboratory world of scientists and the life world of patients. Funding agencies nowadays increasingly demand researchers to be responsive to the values and priorities of patients and public. One approach to bridge this gap and to increase the impact of science is patient and public involvement (PPI). A concise literature review of PPI research and practice in this paper revealed that although PPI is often deployed in translational health care research, its methodology is not settled, it is not sufficiently emancipatory, and its implementation in basic and translational science is lagging behind. Here, we illustrate the practical implementation of PPI in basic and translational science, namely in the context of HOUDINI, a multidisciplinary network with the ultimate goal to improve the management of metastatic disease. METHODS: This paper reports on a societal workshop that was organized to launch the holistic PPI approach of HOUDINI. During this workshop, societal partners, patients, and physicians discussed societal issues regarding cancer metastasis, and contributed to prioritization of research objectives for HOUDINI. In a later stage, the workshop results were discussed with scientists from the network to critically review its research strategy and objectives. RESULTS: Workshop participants chose the development of metastasis prediction tools, effective therapies which preserve good quality of life, and non-invasive tissue sampling methods as most important research objectives for HOUDINI. Importantly, during the discussions, mutual understanding about issues like economic feasibility of novel therapies, patient anxiety for metastases, and clear communication between stakeholders was further increased. CONCLUSIONS: In conclusion, the PPI workshop delivered valuable early-stage input and connections for HOUDINI, and may serve as example for similar basic and translational research projects.


Metastatic cancer is an aggravated form of cancer, that patients are afraid of. At the same time, cancer researchers are fascinated by this disease. Therefore, there is an apparent gap between how patients and researchers feel about cancer. If researchers wish to be most helpful to cancer patients, it is important to consult the patients and ask what they need and find important. This is also stimulated by agencies that financially support research projects. A possible way to do this is Patient and Public Involvement (PPI), in which not only scientists, but also patients and lay people are asked to provide input. It appears, however, that PPI is scarcely applied in basic science. In this article, we describe how a collaborative network of basic and translational cancer researchers, HOUDINI, intends to include the patients' voice throughout the research progress and actively asked for input from patients, societal partners and physicians at the start of their project. These people discussed what themes they found most important to be researched by HOUDINI. Later, the HOUDINI researchers reflected on this. This example shows how PPI can be applied and how HOUDINI received valuable input for their research goals.

8.
Front Oncol ; 13: 1199432, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719014

RESUMEN

Introduction: Central to targeted radionuclide imaging and therapy of prostate cancer (PCa) are prostate-specific membrane antigen (PSMA)-targeting radiopharmaceuticals. Gastrin-releasing peptide receptor (GRPR) targeting has been proposed as a potential additional approach for PCa theranostics. The aim of this study was to investigate to what extent and at what stage of the disease GRPR-targeting applications can complement PSMA-targeting theranostics in the management of PCa. Methods: Binding of the GRPR- and PSMA-targeting radiopharmaceuticals [177Lu]Lu-NeoB and [177Lu]Lu-PSMA-617, respectively, was evaluated and compared on tissue sections of 20 benign prostatic hyperplasia (BPH), 16 primary PCa and 17 progressive castration-resistant PCa (CRPC) fresh frozen tissue specimens. Hematoxylin-eosin and alpha-methylacyl-CoA racemase stains were performed to identify regions of prostatic adenocarcinoma and potentially high-grade prostatic intraepithelial neoplasia. For a subset of primary PCa samples, RNA in situ hybridization (ISH) was used to identify target mRNA expression in defined tumor regions. Results: The highest median [177Lu]Lu-NeoB binding was observed in primary PCa samples, while median and overall [177Lu]Lu-PSMA-617 binding was highest in CRPC samples. The highest [177Lu]Lu-NeoB binding was observed in 3/17 CRPC samples of which one sample showed no [177Lu]Lu-PSMA-617 binding. RNA ISH analyses showed a trend between mRNA expression and radiopharmaceutical binding, and confirmed the distinct GRPR and PSMA expression patterns in primary PCa observed with radiopharmaceutical binding. Conclusion: Our study emphasizes that GRPR-targeting approaches can contribute to improved PCa management and complement currently applied PSMA-targeting strategies in both early and late stage PCa.

9.
Cells ; 12(10)2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37408211

RESUMEN

Tumor organoids have been pushed forward as advanced model systems for in vitro oncology drug testing, with the eventual goal to direct personalized cancer treatments. However, drug testing efforts suffer from a large variation in experimental conditions for organoid culturing and organoid treatment. Moreover, most drug tests are restricted to whole-well viability as the sole read-out, thereby losing important information about key biological aspects that might be impacted due to the use of administered drugs. These bulk read-outs also discard potential inter-organoid heterogeneity in drug responses. To tackle these issues, we developed a systematic approach for processing organoids from prostate cancer (PCa) patient-derived xenografts (PDXs) for viability-based drug testing and identified essential conditions and quality checks for consistent results. In addition, we generated an imaging-based drug testing procedure using high-content fluorescence microscopy in living PCa organoids to detect various modalities of cell death. Individual organoids and cell nuclei in organoids were segmented and quantified using a dye combination of Hoechst 33342, propidium iodide and Caspase 3/7 Green, allowing the identification of cytostatic and cytotoxic treatment effects. Our procedures provide important insights into the mechanistic actions of tested drugs. Moreover, these methods can be adapted for tumor organoids originating from other cancer types to increase organoid-based drug test validity, and ultimately, accelerate clinical implementation.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata , Masculino , Animales , Humanos , Xenoinjertos , Neoplasias de la Próstata/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/metabolismo , Modelos Animales de Enfermedad , Organoides/metabolismo
10.
Nat Rev Urol ; 20(6): 371-384, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36650259

RESUMEN

Patient-derived xenografts (PDXs) are generated by engrafting human tumours into mice. Serially transplantable PDXs are used to study tumour biology and test therapeutics, linking the laboratory to the clinic. Although few prostate cancer PDXs are available in large repositories, over 330 prostate cancer PDXs have been established, spanning broad clinical stages, genotypes and phenotypes. Nevertheless, more PDXs are needed to reflect patient diversity, and to study new treatments and emerging mechanisms of resistance. We can maximize the use of PDXs by exchanging models and datasets, and by depositing PDXs into biorepositories, but we must address the impediments to accessing PDXs, such as institutional, ethical and legal agreements. Through collaboration, researchers will gain greater access to PDXs representing diverse features of prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Ratones , Animales , Xenoinjertos , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/patología , Próstata/patología , Genotipo , Modelos Animales de Enfermedad
11.
Prostate Cancer Prostatic Dis ; 26(2): 293-301, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35046557

RESUMEN

BACKGROUND: Androgen receptor (AR) ligand-binding domain (LBD) mutations occur in ~20% of all castration-resistant prostate cancer (CRPC) patients. These mutations confer ligand promiscuity, but the affinity for many steroid hormone pathway intermediates is unknown. In this study, we investigated the stimulation of clinically relevant AR-LBD mutants by endogenous and exogenous steroid hormones present in CRPC patients to unravel their potential contribution to AR pathway reactivation. METHODS: A meta-analysis of studies reporting untargeted analysis of AR mutants was performed to identify clinically relevant AR-LBD mutations. Using luciferase reporter and quantitative fluorescent microscopy, these AR mutants were screened for sensitivity for various endogenous steroids and synthetic glucocorticoids used in the treatment of CRPC. RESULTS: The meta-analysis revealed that ARL702H (3.4%), ARH875Y (4.9%), and ART878A (4.4%) were the most prevalent AR-LBD mutations across 1614 CRPC patients from 21 unique studies. Testosterone (EC50: 0.22 nmol/L) and 11-ketotestosterone (11KT, EC50: 0.74 nmol/L) displayed subnanomolar affinity for ARWT. The p.H875Y mutation selectively increased sensitivity of the AR for 11KT (EC50: 0.15 nmol/L, p < 0.05 vs ARWT), whereas p.L702H decreased sensitivity for 11KT by almost 50-fold. While cortisol and prednisolone both stimulate ARL702H, dexamethasone importantly does not. CONCLUSION: Both testosterone and 11KT effectively contribute to ARWT activation, while selective sensitization positions 11KT as a more prominent activator of ARH875Y. Dexamethasone may be a suitable alternative to prednisolone and should be explored in patients bearing the ARL702H.


Asunto(s)
Andrógenos , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Andrógenos/genética , Andrógenos/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Glucocorticoides/farmacología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Ligandos , Testosterona/metabolismo , Esteroides/metabolismo , Mutación , Prednisolona/farmacología , Dexametasona/farmacología
12.
Cells ; 11(22)2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36429059

RESUMEN

Castration-resistant prostate cancer (CRPC) remains an incurable and lethal malignancy. The development of new CRPC treatment strategies is strongly impeded by the scarcity of representative, scalable and transferable preclinical models of advanced, androgen receptor (AR)-driven CRPC. Here, we present contemporary patient-derived xenografts (PDXs) and matching PDX-derived organoids (PDXOs) from CRPC patients who had undergone multiple lines of treatment. These models were comprehensively profiled at the morphologic, genomic (n = 8) and transcriptomic levels (n = 81). All are high-grade adenocarcinomas that exhibit copy number alterations and transcriptomic features representative of CRPC patient cohorts. We identified losses of PTEN and RB1, MYC amplifications, as well as genomic alterations in TP53 and in members of clinically actionable pathways such as AR, PI3K and DNA repair pathways. Importantly, the clinically observed continued reliance of CRPC tumors on AR signaling is preserved across the entire set of models, with AR amplification identified in four PDXs. We demonstrate that PDXs and PDXOs faithfully reflect donor tumors and mimic matching patient drug responses. In particular, our models predicted patient responses to subsequent treatments and captured sensitivities to previously received therapies. Collectively, these PDX-PDXO pairs constitute a reliable new resource for in-depth studies of treatment-induced, AR-driven resistance mechanisms. Moreover, PDXOs can be leveraged for large-scale tumor-specific drug response profiling critical for accelerating therapeutic advances in CRPC.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Animales , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Organoides/metabolismo , Xenoinjertos , Regulación Neoplásica de la Expresión Génica , Modelos Animales de Enfermedad
13.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35887398

RESUMEN

Prostate specific membrane antigen targeted radionuclide therapy (PSMA-TRT) is a promising novel treatment for prostate cancer (PCa) patients. However, PSMA-TRT cannot be used for curative intent yet, thus additional research on how to improve the therapeutic efficacy is warranted. A potential way of achieving this, is combining TRT with poly ADP-ribosylation inhibitors (PARPi), which has shown promising results for TRT of neuroendocrine tumor cells. Currently, several clinical trials have been initiated for this combination for PCa, however so far, no evidence of synergism is available for PCa. Therefore, we evaluated the combination of PSMA-TRT with three classes of PARPi in preclinical PCa models. In vitro viability and survival assays were performed using PSMA-expressing PCa cell lines PC3-PIP and LNCaP to assess the effect of increasing concentrations of PARPi veliparib, olaparib or talazoparib in combination with PSMA-TRT compared to single PARPi treatment. Next, DNA damage analyses were performed by quantifying the number of DNA breaks by immunofluorescent stainings. Lastly, the potential of the combination treatments was studied in vivo in mice bearing PC3-PIP xenografts. Our results show that combining PSMA-TRT with PARPi did not synergistically affect the in vitro clonogenic survival or cell viability. DNA-damage analysis revealed only a significant increase in DNA breaks when combining PSMA-TRT with veliparib and not in the other combination treatments. Moreover, PSMA-TRT with PARPi treatment did not improve tumor control compared to PSMA-TRT monotherapy. Overall, the data presented do not support the assumption that combining PSMA-TRT with PARPi leads to a synergistic antitumor effect in PCa. These results underline that extensive preclinical research using various PCa models is imperative to validate the applicability of the combination strategy for PCa, as it is for other cancer types.


Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas , Neoplasias de la Próstata , Animales , Línea Celular Tumoral , Humanos , Masculino , Ratones , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/radioterapia , Radioisótopos/uso terapéutico
14.
Am J Pathol ; 192(9): 1321-1335, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35750257

RESUMEN

Toll-like receptor 3 (TLR3) is an endosomal receptor expressed in several immune and epithelial cells. Recent studies have highlighted its expression also in solid tumors, including prostate cancer (PCa), and have described its role primarily in the proinflammatory response and induction of apoptosis. It is up-regulated in some castration-resistant prostate cancers. However, the role of TLR3 in prostate cancer progression remains largely unknown. The current study experimentally demonstrated that exogenous TLR3 activation in PCa cell lines leads to a significant induction of secretion of the cytokines IL-6, IL-8, and interferon-ß, depending on the model and chemoresistance status. Transcriptomic analysis of TLR3-overexpressing cells revealed a functional program that is enriched for genes involved in the regulation of cell motility, migration, and tumor invasiveness. Increased motility, migration, and invasion in TLR3-overexpressing cell line were confirmed by several in vitro assays and using an orthotopic prostate xenograft model in vivo. Furthermore, TLR3-ligand induced apoptosis via cleavage of caspase-3/7 and poly (ADP-ribose) polymerase, predominantly in TLR3-overexpressing cells. These results indicate that TLR3 may be involved in prostate cancer progression and metastasis; however, it might also represent an Achilles heel of PCa, which can be exploited for targeted therapy.


Asunto(s)
Neoplasias de la Próstata , Receptor Toll-Like 3 , Animales , Apoptosis , Línea Celular Tumoral , Humanos , Masculino , Poli I-C/farmacología , Próstata/patología , Neoplasias de la Próstata/patología , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/metabolismo
15.
Front Oncol ; 12: 877613, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35769712

RESUMEN

Treatment of prostate cancer (PCa) has changed considerably in the last decade due to the introduction of novel androgen receptor (AR)-targeted agents (ARTAs) for patients progressing on androgen deprivation therapy (ADT). Preclinical research however still relies heavily on AR-negative cell line models. In order to investigate potential differences in castration-resistant PCa (CRPC) growth, we set out to create a comprehensive panel of ARTA-progressive models from 4 androgen-responsive AR wild-type PCa cell lines and analyzed its androgen response as opposed to its ADT-progressive counterparts. Parallel cultures of VCaP, DuCaP, PC346C, and LAPC4 were established in their respective culture media with steroid-stripped fetal calf serum (FCS) [dextran-coated charcoal-stripped FCS (DCC)] without androgen (ADT) or in DCC plus 1 µM of the ARTAs bicalutamide, OH-flutamide, or RD162 (an enzalutamide/apalutamide analog). Cell growth was monitored and compared to those of parental cell lines. Short-term androgen response was measured using cell proliferation 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. qRT-PCR was performed to assess the mRNA expression of markers for AR signaling, steroidogenesis, glucocorticoid receptor (GR) signaling, epithelial-mesenchymal transition (EMT), and WNT signaling. Out of 35 parallel cultures per cell line, a total of 24, 15, 34, and 16 CRPC sublines emerged for VCaP, DuCaP, PC346C, and LAPC4, respectively. The addition of bicalutamide or OH-flutamide significantly increased CRPC growth compared to ADT or RD162. VCaP, DuCaP, and PC346C CRPC clones retained an AR-responsive phenotype. The expression of AR and subsequent androgen response were completely lost in all LAPC4 CRPC lines. Markers for EMT and WNT signaling were found to be elevated in the resilient PC346C model and CRPC derivatives of VCaP, DuCaP, and LAPC4. Although the resistant phenotype is pluriform between models, it seems consistent within models, regardless of type of ARTA. These data suggest that the progression to and the phenotype of the CRPC state might already be determined early in carcinogenesis.

17.
Eur J Nucl Med Mol Imaging ; 49(11): 3627-3638, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35556158

RESUMEN

PURPOSE: Targeting the prostate-specific membrane antigen (PSMA) using lutetium-177-labeled PSMA-specific tracers has become a very promising novel therapy option for prostate cancer (PCa). The efficacy of this therapy might be further improved by replacing the ß-emitting lutetium-177 with the α-emitting actinium-225. Actinium-225 is thought to have a higher therapeutic efficacy due to the high linear energy transfer (LET) of the emitted α-particles, which can increase the amount and complexity of the therapy induced DNA double strand breaks (DSBs). Here we evaluated the relative biological effectiveness of [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T by assessing in vitro binding characteristics, dosimetry, and therapeutic efficacy. METHODS AND RESULTS: The PSMA-expressing PCa cell line PC3-PIP was used for all in vitro assays. First, binding and displacement assays were performed, which revealed similar binding characteristics between [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T. Next, the assessment of the number of 53BP1 foci, a marker for the number of DNA double strand breaks (DSBs), showed that cells treated with [225Ac]Ac-PSMA-I&T had slower DSB repair kinetics compared to cells treated with [177Lu]Lu-PSMA-I&T. Additionally, clonogenic survival assays showed that specific targeting with [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T caused a dose-dependent decrease in survival. Lastly, after dosimetric assessment, the relative biological effectiveness (RBE) of [225Ac]Ac-PSMA-I&T was found to be 4.2 times higher compared to [177Lu]Lu-PSMA-I&T. CONCLUSION: We found that labeling of PSMA-I&T with lutetium-177 or actinium-225 resulted in similar in vitro binding characteristics, indicating that the distinct biological effects observed in this study are not caused by a difference in uptake of the two tracers. The slower repair kinetics of [225Ac]Ac-PSMA-I&T compared to [177Lu]Lu-PSMA-I&T correlates to the assumption that irradiation with actinium-225 causes more complex, more difficult to repair DSBs compared to lutetium-177 irradiation. Furthermore, the higher RBE of [225Ac]Ac-PSMA-I&T compared to [177Lu]Lu-PSMA-I&T underlines the therapeutic potential for the treatment of PCa.


Asunto(s)
Lutecio , Neoplasias de la Próstata Resistentes a la Castración , Actinio , Línea Celular Tumoral , ADN , Dipéptidos , Compuestos Heterocíclicos con 1 Anillo , Humanos , Lutecio/uso terapéutico , Masculino , Antígeno Prostático Específico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Radioisótopos
18.
Prostate ; 82(5): 505-516, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35037287

RESUMEN

INTRODUCTION: Castration-resistant prostate cancer (CRPC) remains dependent on androgen receptor (AR) signalling, which is largely driven by conversion of adrenal androgen precursors lasting after castration. Abiraterone, an inhibitor of the steroidogenic enzyme CYP17A1, has been demonstrated to reduce adrenal androgen synthesis and prolong CRPC patient survival. To study mechanisms of resistance to castration and abiraterone, we created coculture models using human prostate and adrenal tumours. MATERIALS AND METHODS: Castration-naïve and CRPC clones of VCaP were incubated with steroid substrates or cocultured with human adrenal cells (H295R) and treated with abiraterone or the antiandrogen enzalutamide. Male mice bearing VCaP xenografts with and without concurrent H295R xenografts were castrated and treated with placebo or abiraterone. Response was assessed by tumour growth and PSA release. Plasma and tumour steroid levels were assessed by LC/MS-MS. Quantitative polymerase chain reaction determined steroidogenic enzyme, nuclear receptor and AR target gene expression. RESULTS: In vitro, adrenal androgens induced castration-naïve and CRPC cell growth, while precursors steroids for de novo synthesis did not. In a coculture system, abiraterone blocked H295R-induced growth of VCaP cells. In vivo, H295R promoted castration-resistant VCaP growth. Abiraterone only inhibited VCaP growth or PSA production in the presence of H295R. Plasma steroid levels demonstrated CYP17A1 inhibition by abiraterone, whilst CRPC tumour tissue steroid levels showed no evidence of de novo intratumoural androgen production. Castration-resistant and abiraterone-resistant VCaP tumours had increased levels of AR, AR variants and glucocorticoid receptor (GR) resulting in equal AR target gene expression levels compared to noncastrate tumours. CONCLUSIONS: In our model, ligand-dependent AR-regulated regrowth of CRPC was predominantly supported via adrenal androgen precursor production while there was no evidence for intratumoural androgen synthesis. Abiraterone-resistant tumours relied on AR overexpression, expression of ligand-independent AR variants and GR signalling.


Asunto(s)
Andrógenos , Neoplasias de la Próstata Resistentes a la Castración , Andrógenos/metabolismo , Androstenos/farmacología , Androstenos/uso terapéutico , Animales , Línea Celular Tumoral , Humanos , Ligandos , Masculino , Ratones , Nitrilos/uso terapéutico , Orquiectomía , Antígeno Prostático Específico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Receptores de Glucocorticoides
19.
Cancer Res ; 82(3): 510-520, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34872965

RESUMEN

Optimal treatment of cancer requires diagnostic methods to facilitate therapy choice and prevent ineffective treatments. Direct assessment of therapy response in viable tumor specimens could fill this diagnostic gap. Therefore, we designed a microfluidic platform for assessment of patient treatment response using tumor tissue slices under precisely controlled growth conditions. The optimized Cancer-on-Chip (CoC) platform maintained viability and sustained proliferation of breast and prostate tumor slices for 7 days. No major changes in tissue morphology or gene expression patterns were observed within this time frame, suggesting that the CoC system provides a reliable and effective way to probe intrinsic chemotherapeutic sensitivity of tumors. The customized CoC platform accurately predicted cisplatin and apalutamide treatment response in breast and prostate tumor xenograft models, respectively. The culture period for breast cancer could be extended up to 14 days without major changes in tissue morphology and viability. These culture characteristics enable assessment of treatment outcomes and open possibilities for detailed mechanistic studies. SIGNIFICANCE: The Cancer-on-Chip platform with a 6-well plate design incorporating silicon-based microfluidics can enable optimal patient-specific treatment strategies through parallel culture of multiple tumor slices and diagnostic assays using primary tumor material.


Asunto(s)
Biomarcadores Farmacológicos/química , Expresión Génica/genética , Microfluídica/métodos , Técnicas de Cultivo de Órganos/métodos , Humanos
20.
Cancer Gene Ther ; 29(6): 793-802, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34135475

RESUMEN

Treatment of castration-resistant prostate cancer remains a challenging clinical problem. Despite the promising effects of immunotherapy in other solid cancers, prostate cancer has remained largely unresponsive. Oncolytic viruses represent a promising therapeutic avenue, as oncolytic virus treatment combines tumour cell lysis with activation of the immune system and mounting of effective anti-tumour responses. Mammalian Orthoreoviruses are non-pathogenic human viruses with a preference of lytic replication in human tumour cells. In this study, we evaluated the oncolytic efficacy of the bioselected oncolytic reovirus mutant jin-3 in multiple human prostate cancer models. The jin-3 reovirus displayed efficient infection, replication, and anti-cancer responses in 2D and 3D prostate cancer models, as well as in ex vivo cultured human tumour slices. In addition, the jin-3 reovirus markedly reduced the viability and growth of human cancer cell lines and patient-derived xenografts. The infection induced the expression of mediators of immunogenic cell death, interferon-stimulated genes, and inflammatory cytokines. Taken together, our data demonstrate that the reovirus mutant jin-3 displays tumour tropism, and induces potent oncolytic and immunomodulatory responses in human prostate cancer models. Therefore, jin-3 reovirus represents an attractive candidate for further development as oncolytic agent for treatment of patients with aggressive localised or advanced prostate cancer.


Asunto(s)
Orthoreovirus Mamífero 3 , Viroterapia Oncolítica , Virus Oncolíticos , Neoplasias de la Próstata , Reoviridae , Animales , Línea Celular Tumoral , Humanos , Masculino , Mamíferos , Virus Oncolíticos/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/terapia , Reoviridae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA