Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Biosci Rep ; 44(3)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38419509

RESUMEN

Acute alcoholic hepatitis (AAH) from binge drinking is a serious disease. It is associated with a high mortality rate, especially among young adults. Apoptosis is known to be a primary cause of liver damage, and it can be induced by either intrinsic signaling pathways or by reactive oxygen species (ROS). Adenosine A1 receptors (ADORA1) are known to be involved in ethanol metabolism; however, underlying mechanism is not well understood. For investigating how the intrinsic ADORA1 function in ethanol metabolism in normal human hepatocytes without interference by extrinsic molecules, primary hepatocytes pose a challenge, due to unavoidable contamination by other kinds of cells in the liver. Also, they are difficult to culture stably. As a novel alternative, hepatocytes derived from human-induced pluripotent stem cells were employed because they display similar function to primary hepatocytes and they can be stably cultured. The dynamics and integrity of signal transduction mechanisms were investigated by following chronological changes in gene expression. This shed light on how and when the ADORA1 function and on causal relationships between the pathways and clinical symptoms. The findings of the present study shows that ADORA1 are most activated soon after exposure to ethanol, and transfection of small interfering RNA targeting ADORA1-messenger-RNA (ADORA1-siRNA) into the hepatocytes significantly suppresses production of actin protein and ROS. It suggests that ADORA1 in the liver contribute to apoptosis in acute alcoholism through both intrinsic pathway and ROS activity. Also, actin that is abundant in the cells could be an appropriate biomarker evaluating hepatic function status.


Asunto(s)
Alcoholismo , Células Madre Pluripotentes Inducidas , Humanos , Receptor de Adenosina A1/genética , Alcoholismo/genética , Alcoholismo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Actinas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Hepatocitos/metabolismo , Etanol/farmacología
2.
Neuroscience ; 540: 117-127, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38278472

RESUMEN

Ethanol is one of the most commonly used and abused substances in the world. While the behavioral effects of ethanol are well characterized, mechanisms of its action on neurons and synapses remain elusive. Prior research suggested that ethanol could affect neurons by interfering with metabolism of biologically active molecules, such as adenosine. Here, we explored the involvement of adenosine A1 receptors (A1R) in mediating ethanol's effects on synaptic transmission to layer 2/3 pyramidal neurons of visual cortex using wild type (WT) and A1R knock-out (KO) mice. Ethanol differentially affected excitatory and inhibitory transmission in WT and KO mice. In slices from WT mice ethanol had heterogeneous effects on excitatory transmission (facilitation, suppression or no change), with no net change. Ethanol's effects remained heterogeneous during acute blockade of A1Rs with a selective antagonist DPCPX. However, in A1RKO mice ethanol consistently suppressed excitatory transmission, with no cases of enhancement observed. Inhibitory transmission was suppressed by ethanol in both WT and A1RKO mice. At both excitatory and inhibitory synapses, changes of response amplitude correlated with changes of paired-pulse ratio, suggesting involvement of presynaptic mechanisms. We conclude that A1Rs are not involved in mediating effects of ethanol on synaptic transmission in mouse visual cortex. However, A1Rs are necessary for development of mechanisms mediating facilitation at some excitatory synapses. Our results add evidence for the diversity of ethanol's effects and mechanisms of action on synaptic transmission in different brain structures, and even in the same brain area (visual cortex) in different species, rats vs mice.


Asunto(s)
Etanol , Corteza Visual , Ratas , Ratones , Animales , Etanol/farmacología , Adenosina/metabolismo , Ratones Noqueados , Transmisión Sináptica/fisiología , Sinapsis/metabolismo , Receptores Purinérgicos P1/metabolismo , Corteza Visual/fisiología
3.
Curr Issues Mol Biol ; 45(10): 8492-8501, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37886978

RESUMEN

ATP, being a well-known universal high-energy compound, plays an important role as a signaling molecule and together with its metabolite adenosine they both attenuate the release of acetylcholine in the neuro-muscular synapse acting through membrane P2 and P1 receptors, respectively. In this work, using a mechanomyographic method, we analyzed the presynaptic mechanisms by which ATP and adenosine can modulate the transduction in the rat m. soleus and m. extensor digitorum longus. N-ethylmaleimide, a G-protein antagonist, prevents the modulating effects of both ATP and adenosine. The action of ATP is abolished by chelerythrin, a specific phospholipase C inhibitor, while the inhibitory effect of adenosine is slightly increased by Rp-cAMPS, an inhibitor of protein kinase A, and by nitrendipine, a blocker of L-type Ca2+ channels. The addition of DPCPX, an A1 receptor antagonist, fully prevents the inhibitory action of adenosine in both muscles. Our data indicate that the inhibitory action of ATP involves metabotropic P2Y receptors and is mediated by phospholipase C dependent processes in rat motor neuron terminals. We suggest that the presynaptic effect of adenosine consists of negative and positive actions. The negative action occurs by stimulation of adenosine A1 receptors while the positive action is associated with the stimulation of adenosine A2A receptors, activation of protein kinase A and opening of L-type calcium channels. The combined mechanism of the modulating action of ATP and adenosine provides fine tuning of the synapse to fast changing conditions in the skeletal muscles.

4.
Cells ; 12(13)2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37443726

RESUMEN

In the cerebral cortex, glutamate activates NMDA receptors (NMDARs), localized in noradrenergic neurons, inducing noradrenaline release that may have a permissive effect on glutamatergic transmission, and therefore, on the modulation of long-term plasticity. ATP is co-released with noradrenaline, and with its metabolites (ADP and adenosine) is involved in the purinergic modulation of electrically-evoked noradrenaline release. However, it is not known if noradrenaline release evoked by activation of NMDARs is also under purinergic modulation. The present study aimed to investigate and to characterize the purinergic modulation of noradrenaline release evoked by NMDARs. Stimulation of rat cortical slices with 30 µM NMDA increased noradrenaline release, which was inhibited by ATP upon metabolization into ADP and adenosine and by the selective agonists of A1 and A2A receptors, CPA and CGS2680, respectively. It was also inhibited by UTP and UDP, which are mainly released under pathophysiological situations. Characterization of the effects mediated by these compounds indicated the involvement of P2Y1, P2Y6, A1 and A2A receptors. It is concluded that, in the rat brain cortex, NMDA-evoked noradrenaline release is modulated by several purinergic receptors that may represent a relevant mechanism to regulate the permissive effect of noradrenaline on NMDA-induced neuroplasticity.


Asunto(s)
N-Metilaspartato , Norepinefrina , Ratas , Animales , Norepinefrina/farmacología , Norepinefrina/metabolismo , N-Metilaspartato/farmacología , N-Metilaspartato/metabolismo , Ratas Wistar , Adenosina/metabolismo , Corteza Cerebral/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Difosfato/farmacología , Adenosina Difosfato/metabolismo
5.
Pharmacol Res ; 194: 106837, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37379962

RESUMEN

Major depressive disorder (MDD) is a chronic relapsing psychiatric disorder. Conventional antidepressants usually require several weeks of continuous administration to exert clinically significant therapeutic effects, while about two-thirds of the patients are prone to relapse of symptoms or are completely ineffective in antidepressant treatment. The recent success of the N-methyl-D-aspartic acid (NMDA) receptor antagonist ketamine as a rapid-acting antidepressant has propelled extensive research on the action mechanism of antidepressants, especially in relation to its role in synaptic targets. Studies have revealed that the mechanism of antidepressant action of ketamine is not limited to antagonism of postsynaptic NMDA receptors or GABA interneurons. Ketamine produces powerful and rapid antidepressant effects by affecting α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors, adenosine A1 receptors, and the L-type calcium channels, among others in the synapse. More interestingly, the 5-HT2A receptor agonist psilocybin has demonstrated potential for rapid antidepressant effects in depressed mouse models and clinical studies. This article focuses on a review of new pharmacological target studies of emerging rapid-acting antidepressant drugs such as ketamine and hallucinogens (e.g., psilocybin) and briefly discusses the possible strategies for new targets of antidepressants, with a view to shed light on the direction of future antidepressant research.


Asunto(s)
Trastorno Depresivo Mayor , Ketamina , Animales , Ratones , Ketamina/farmacología , Ketamina/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Psilocibina/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Modelos Animales de Enfermedad , Receptores de N-Metil-D-Aspartato
6.
CNS Neurosci Ther ; 29(9): 2597-2607, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37017409

RESUMEN

AIMS: Deep brain stimulation (DBS) of the anterior nucleus of the thalamus, is an effective therapy for patients with drug-resistant epilepsy, yet, its mechanism of action remains elusive. Adenosine kinase (ADK), a key negative regulator of adenosine, is a potential modulator of epileptogenesis. DBS has been shown to increase adenosine levels, which may suppress seizures via A1 receptors (A1 Rs). We investigated whether DBS could halt disease progression and the potential involvement of adenosine mechanisms. METHODS: Control group, SE (status epilepticus) group, SE-DBS group, and SE-sham-DBS group were included in this study. One week after a pilocarpine-induced status epilepticus, rats in the SE-DBS group were treated with DBS for 4 weeks. The rats were monitored by video-EEG. ADK and A1 Rs were tested with histochemistry and western blot, respectively. RESULTS: Compared with the SE group and SE-sham-DBS group, DBS could reduce the frequency of spontaneous recurrent seizures (SRS) and the number of interictal epileptic discharges. The DPCPX, an A1 R antagonist, reversed the effect of DBS on interictal epileptic discharges. In addition, DBS inhibited the overexpression of ADK and the downregulation of A1 Rs. CONCLUSION: The findings indicate that DBS can reduce SRS in epileptic rats via inhibition of ADK and activation of A1 Rs. A1 Rs might be a potential target of DBS for the treatment of epilepsy.


Asunto(s)
Adenosina Quinasa , Epilepsia , Receptor de Adenosina A1 , Convulsiones , Estado Epiléptico , Animales , Ratas , Receptor de Adenosina A1/metabolismo , Adenosina Quinasa/metabolismo , Epilepsia/inducido químicamente , Epilepsia/terapia , Convulsiones/inducido químicamente , Convulsiones/terapia , Estado Epiléptico/inducido químicamente , Estado Epiléptico/terapia , Pilocarpina , Masculino , Ratas Sprague-Dawley , Progresión de la Enfermedad
7.
Neurosci Res ; 193: 1-12, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36796452

RESUMEN

Adenosine A1 receptors (AA1R) have been shown to counteract N-methyl-D-aspartate (NMDA)-mediated glutamatergic excitotoxicity. In the present study, we investigated the role of AA1R in neuroprotection by trans-resveratrol (TR) against NMDA-induced retinal injury. In total, 48 rats were divided into the following four groups: normal rats pretreated with vehicle; rats that received NMDA (NMDA group); rats that received NMDA after pretreatment with TR; and rats that received NMDA after pretreatment with TR and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an AA1R antagonist. Assessment of general and visual behaviour was performed using the open field test and two-chamber mirror test, respectively, on Days 5 and 6 post NMDA injection. Seven days after NMDA injection, animals were euthanized, and eyeballs and optic nerves were harvested for histological parameters, whereas retinae were isolated to determine the redox status and expression of pro- and anti-apoptotic proteins. In the present study, the retinal and optic nerve morphology in the TR group was protected from NMDA-induced excitotoxic damage. These effects were correlated with the lower retinal expression of proapoptotic markers, lipid peroxidation, and markers of nitrosative/oxidative stress. The general and visual behavioural parameters in the TR group showed less anxiety-related behaviour and better visual function than those in the NMDA group. All the findings observed in the TR group were abolished by administration of DPCPX.


Asunto(s)
N-Metilaspartato , Receptor de Adenosina A1 , Ratas , Animales , N-Metilaspartato/toxicidad , Resveratrol , Ratas Sprague-Dawley , Neuroprotección , Receptores de N-Metil-D-Aspartato
8.
Purinergic Signal ; 19(2): 387-399, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36166131

RESUMEN

Guanosine has been considered a promising candidate for antidepressant responses, but if this nucleoside could modulate adenosine A1 (A1R) and A2A (A2AR) receptors to exert antidepressant-like actions remains to be elucidated. This study investigated the role of A1R and A2AR in the antidepressant-like response of guanosine in the mouse tail suspension test and molecular interactions between guanosine and A1R and A2AR by docking analysis. The acute (60 min) administration of guanosine (0.05 mg/kg, p.o.) significantly decreased the immobility time in the tail suspension test, without affecting the locomotor performance in the open-field test, suggesting an antidepressant-like effect. This behavioral response was paralleled with increased A1R and reduced A2AR immunocontent in the hippocampus, but not in the prefrontal cortex, of mice. Guanosine-mediated antidepressant-like effect was not altered by the pretreatment with caffeine (3 mg/kg, i.p., a non-selective adenosine A1R/A2AR antagonist), 8-cyclopentyl-1,3-dipropylxanthine (DPCPX - 2 mg/kg, i.p., a selective adenosine A1R antagonist), or 4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo-{2,3-a}{1,3,5}triazin-5-yl-amino]ethyl)-phenol (ZM241385 - 1 mg/kg, i.p., a selective adenosine A2AR antagonist). However, the antidepressant-like response of guanosine was completely abolished by adenosine (0.5 mg/kg, i.p., a non-selective adenosine A1R/A2AR agonist), N-6-cyclohexyladenosine (CHA - 0.05 mg/kg, i.p., a selective adenosine A1 receptor agonist), and N-6-[2-(3,5-dimethoxyphenyl)-2-(methylphenyl)ethyl]adenosine (DPMA - 0.1 mg/kg, i.p., a selective adenosine A2A receptor agonist). Finally, docking analysis also indicated that guanosine might interact with A1R and A2AR at the adenosine binding site. Overall, this study reinforces the antidepressant-like of guanosine and unveils a previously unexplored modulation of the modulation of A1R and A2AR in its antidepressant-like effect.


Asunto(s)
Adenosina , Guanosina , Ratones , Animales , Guanosina/farmacología , Cafeína , Antidepresivos/farmacología , Agonistas del Receptor de Adenosina A2 , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo
9.
Brain Res ; 1790: 147984, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35709891

RESUMEN

Caffeine has been used as a first-line drug for treatment of apnea neonatorum for decades due to its high safety and effectiveness. Studies report that caffeine mainly acts as a blocker of Adenosine Receptors (ARs). However, the mechanism of caffeine in reducing apnea neonatorum in the central nervous system has not been fully explored. Medial parabrachial nucleus (MPB) is part of the respiratory center of the pons that may be related to the activity of caffeine. Previous studies have not explored the effect and mechanism of caffeine on MPB neurons. To elucidate this, the current study used antagonists of A1 and A2a receptors to mimic the effect of caffeine in MPB of mice in vitro using the patch-clamp technique. The firing rates and spontaneous post-synaptic currents were recorded. The findings of the study showed that caffeine excited MPB neurons. Notably, the adenosine A1R antagonist 8-cyclopentyl-1,3-dimethyl-xanthine (CPT) but not the adenosine A2aR antagonist Istradefylline (KW6002) mimicked the exciting effect of caffeine, implying that caffeine excited MPB neurons in mice by blocking A1Rs. Further, the results indicated that caffeine could increase efficiency of synaptic transmission to excite MPB neurons. These findings suggest that A1Rs in MPB may be potential targets for caffeine in reducing apnea neonatorum.


Asunto(s)
Núcleos Parabraquiales , Receptor de Adenosina A1 , Adenosina/farmacología , Animales , Apnea , Cafeína/farmacología , Ratones , Neuronas/metabolismo , Núcleos Parabraquiales/metabolismo , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A
10.
Clin Rheumatol ; 41(5): 1359-1369, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35028743

RESUMEN

BACKGROUND: An association between ANXA1, FPR1 and FPR2 gene polymorphisms and the patho-physiology of many human diseases was suggested by numerous studies. OBJECTIVE: Our study aimed to evaluate association between common polymorphisms in the 9q21.13 and 19q13.41 and susceptibility to systemic lupus erythematosus (SLE) in the Tunisian population. MATERIALS: We performed a case-control study on 107 Tunisian SLE patients and 122 healthy controls to explore 9 polymorphisms of the three studied genes: rs2811226 and rs3739959 (ANXA1), rs5030880, rs1042229, rs1461765570, rs17849971, rs867228 (FPR1), rs17694990 and rs11666254 (FPR2). RESULTS: Four polymorphisms were found to be linked with SLE susceptibility: rs3739959-ANXA1 > G and GG (p = 0.021, OR = 1.73 and p = 0.014, OR = 2.06 respectively), rs867228-FPR1 > TT (p = 0.014, OR = 4.59), rs11666254-FPR2 > GG (p = 0.019, OR = 8.34) and rs17694990-FPR2 > T (p = 0.05, OR = 1.506). In homogenous groups of SLE patients depending on clinical manifestations and serological results, previous associations were confirmed with a panoply of manifestations of lupus including lupus nephritis, malar rash, mouth ulceration and hypocomplementia. CONCLUSION: Our study showed an association between ANXA1 > rs3739959, FPR1 > rs867228, FPR2 > rs11666254, FPR2 > rs17694990 and SLE susceptibility. Our results also showed a strong association between the two ANXA1 studied SNPs and LN which allowed us to suggest these two SNPs as biomarkers of LN development in SLE. Further research is needed to understand by which mechanism the gene variants affect susceptibility to SLE. Key Points • Lupus erythematosus is an autoimmune disease in which a panoply of factors are implicated • Annexin A1 interaction with its receptors are suggested as a target in therapy of a panoply of human disease in particular cancers • The present results highlighted the implication of Annexin A1 and its receptors gene polymorphisms in the physiopathology of lupus, in particular in the involvement of renal and cutaneous lesions.


Asunto(s)
Anexina A1 , Lupus Eritematoso Sistémico , Anexina A1/genética , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Lupus Eritematoso Sistémico/epidemiología , Lupus Eritematoso Sistémico/genética , Masculino , Polimorfismo de Nucleótido Simple
11.
Biomolecules ; 11(12)2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34944457

RESUMEN

Essential tremor (ET) is one of the most common neurological disorders that often affects people in the prime of their lives, leading to a significant reduction in their quality of life, gradually making them unable to independently perform the simplest activities. Here we show that current ET pharmacotherapy often does not sufficiently alleviate disease symptoms and is completely ineffective in more than 30% of patients. At present, deep brain stimulation of the motor thalamus is the most effective ET treatment. However, like any brain surgery, it can cause many undesirable side effects; thus, it is only performed in patients with an advanced disease who are not responsive to drugs. Therefore, it seems extremely important to look for new strategies for treating ET. The purpose of this review is to summarize the current knowledge on the pathomechanism of ET based on studies in animal models of the disease, as well as to present and discuss the results of research available to date on various substances affecting dopamine (mainly D3) or adenosine A1 receptors, which, due to their ability to modulate harmaline-induced tremor, may provide the basis for the development of new potential therapies for ET in the future.


Asunto(s)
Temblor Esencial , Adenosina , Animales , Modelos Animales de Enfermedad , Humanos , Calidad de Vida , Receptor de Adenosina A1 , Receptores Dopaminérgicos
12.
Cells ; 10(12)2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34944069

RESUMEN

Adenosine A1 receptor (A1R) activation, stimulating lipogenesis and decreasing insulin resistance, could be useful for metabolic syndrome management in obese subjects. Since full A1R agonists induce harmful side-effects, while partial agonists show a better pharmacological profile, we investigated the influence of two derivatives of the full A1R agonist 2-chloro-N6-cyclopentyladenosine (CCPA), C1 and C2 behaving as A1R partial agonists in animal models, on the adipogenic differentiation of stromal/stem cells (ASCs) from human subcutaneous adipose tissue, which mainly contribute to increase fat mass in obesity. The ASCs from normal-weight subjects showed increased proliferation and A1R expression but reduced adipogenic differentiation compared to obese individual-derived ASCs. Cell exposure to CCPA, C1, C2 or DPCPX, an A1R antagonist, did not affect ASC proliferation, while mainly C2 and DPCPX significantly decreased adipogenic differentiation of both ASC types, reducing the activity of glycerol-3-phosphate dehydrogenase and the expression of PPARγ and FABP-4, all adipogenic markers, and phosphorylation of Akt in the phosphatidylinositol-3-kinase pathway, which plays a key-role in adipogenesis. While requiring confirmation in in vivo models, our results suggest that A1R partial agonists or antagonists, by limiting ASC differentiation into adipocytes and, thereby, fat mass expansion, could favor development/worsening of metabolic syndrome in obese subjects without a dietary control.


Asunto(s)
Adipogénesis , Peso Corporal , Células Madre Mesenquimatosas/patología , Obesidad/patología , Receptor de Adenosina A1/metabolismo , Grasa Subcutánea/patología , Agonistas del Receptor de Adenosina A1/farmacología , Adipogénesis/efectos de los fármacos , Adulto , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Ligandos , Células Madre Mesenquimatosas/citología , Necrosis , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
13.
Front Aging Neurosci ; 13: 680706, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34413765

RESUMEN

A previous study has demonstrated that pretreatment with electroacupuncture (EA) induces rapid tolerance to focal cerebral ischemia. In the present study, we investigated whether adenosine receptor 1 (A1 R) is involved in EA pretreatment-induced cognitive impairment after focal cerebral ischemia in rats. Two hours after EA pretreatment, focal cerebral ischemia was induced by middle cerebral artery occlusion for 120 min in male Sprague-Dawley rats. The neurobehavioral score, cognitive function [as determined by the Morris water maze (MWM) test], neuronal number, and the Bax/Bcl-2 ratio was evaluated at 24 h after reperfusion in the presence or absence of CCPA (a selective A1 receptor agonist), DPCPX (a selective A1 receptor antagonist) into left lateral ventricle, or A1 short interfering RNA into the hippocampus area. The expression of the A1 receptor in the hippocampus was also investigated. The result showed that EA pretreatment upregulated the neuronal expression of the A1 receptor in the rat hippocampus at 90 min. And EA pretreatment reversed cognitive impairment, improved neurological outcome, and inhibited apoptosis at 24 h after reperfusion. Pretreatment with CCPA could imitate the beneficial effects of EA pretreatment. But the EA pretreatment effects were abolished by DPCPX. Furthermore, A1 receptor protein was reduced by A1 short interfering RNA which attenuated EA pretreatment-induced cognitive impairment.

14.
Front Neurosci ; 15: 637288, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815043

RESUMEN

The classic ketogenic diet (KD) can be used successfully to treat medically refractory epilepsy. However, the KD reduces seizures in 50-70% of patients with medically refractory epilepsy, and its antiseizure effect is limited. In the current study, we developed a new modified KD containing leucine (Leu)-enriched essential amino acids. Compared with a normal KD, the Leu-enriched essential amino acid-supplemented KD did not change the levels of ketosis and glucose but enhanced the inhibition of bicuculline-induced seizure-like bursting in extracellular recordings of acute hippocampal slices from rats. The enhancement of antiseizure effects induced by the addition of Leu-enriched essential amino acids to the KD was almost completely suppressed by a selective antagonist of adenosine A1 receptors or a selective dose of pannexin channel blocker. The addition of Leu-enriched essential amino acids to a normal diet did not induce any antiseizure effects. These findings indicate that the enhancement of the antiseizure effects of the KD is mediated by the pannexin channel-adenosine A1 receptor pathway. We also analyzed amino acid profiles in the plasma and hippocampus. A normal KD altered the levels of many amino acids in both the plasma and hippocampus. The addition of Leu-enriched essential amino acids to a KD further increased and decreased the levels of several amino acids, such as threonine, histidine, and serine, suggesting that altered metabolism and utilization of amino acids may play a role in its antiseizure effects. A KD supplemented with Leu-enriched essential amino acids may be a new therapeutic option for patients with epilepsy, including medically refractory epilepsy.

15.
Eur J Pharmacol ; 897: 173946, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33607106

RESUMEN

Metaplasticity is referred to adjustment in the requirements for induction of synaptic plasticity based on the prior history of activity. Synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), has been considered to be the neural processes underlying learning and memory. Previous observations that cordycepin (an adenosine derivative) improved learning and memory seemed to be contradictory to the findings that cordycepin inhibited LTP. Therefore, we speculated that the conflicting reports of cordycepin might be related to metaplasticity. In the current study, population spike (PS) in hippocampal CA1 area of rats was recorded by using electrophysiological method in vivo. The results showed that cordycepin reduced PS amplitude in hippocampal CA1 with a concentration-dependent relationship, and high frequency stimulation (HFS) failed to induce LTP when cordycepin was intrahippocampally administrated but improved LTP magnitude when cordycepin was pre-treated. Cordycepin increased LTD induced by activating N-Methyl-D-aspartate (NMDA) receptors and subsequently facilitated LTP induced by HFS. Furthermore, we found that 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptors antagonist, could block the roles of cordycepin on LTD and LTP. Collectively, cordycepin was able to modulate metaplasticity in hippocampal CA1 area of rats through adenosine A1 receptors. These findings would be helpful to reconcile the conflicting reports in the literatures and provided new insights into the mechanisms underlying cognitive function promotions with cordycepin treatment.


Asunto(s)
Agonistas del Receptor de Adenosina A1/farmacología , Región CA1 Hipocampal/efectos de los fármacos , Desoxiadenosinas/farmacología , Plasticidad Neuronal/efectos de los fármacos , Receptor de Adenosina A1/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Región CA1 Hipocampal/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratas Sprague-Dawley , Receptor de Adenosina A1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Factores de Tiempo
16.
Front Cell Neurosci ; 15: 783478, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002628

RESUMEN

Cordycepin exerted significant neuroprotective effects and protected against cerebral ischemic damage. Learning and memory impairments after cerebral ischemia are common. Cordycepin has been proved to improve memory impairments induced by cerebral ischemia, but its underlying mechanism has not been revealed yet. The plasticity of synaptic structure and function is considered to be one of the neural mechanisms of learning and memory. Therefore, we investigated how cordycepin benefits dendritic morphology and synaptic transmission after cerebral ischemia and traced the related molecular mechanisms. The effects of cordycepin on the protection against ischemia were studied by using global cerebral ischemia (GCI) and oxygen-glucose deprivation (OGD) models. Behavioral long-term potentiation (LTP) and synaptic transmission were observed with electrophysiological recordings. The dendritic morphology and histological assessment were assessed by Golgi staining and hematoxylin-eosin (HE) staining, respectively. Adenosine A1 receptors (A1R) and adenosine A2A receptors (A2AR) were evaluated with western blotting. The results showed that cordycepin reduced the GCI-induced dendritic morphology scathing and behavioral LTP impairment in the hippocampal CA1 area, improved the learning and memory abilities, and up-regulated the level of A1R but not A2AR. In the in vitro experiments, cordycepin pre-perfusion could alleviate the hippocampal slices injury and synaptic transmission cripple induced by OGD, accompanied by increased adenosine content. In addition, the protective effect of cordycepin on OGD-induced synaptic transmission damage was eliminated by using an A1R antagonist instead of A2AR. These findings revealed that cordycepin alleviated synaptic dysfunction and dendritic injury in ischemic models by modulating A1R, which provides new insights into the pharmacological mechanisms of cordycepin for ameliorating cognitive impairment induced by cerebral ischemia.

17.
J Caffeine Adenosine Res ; 10(3): 104-109, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32954218

RESUMEN

It is well known that the neuromodulator adenosine, acting through the adenosine A1 receptor subtype, can limit or stop seizures. In 2008, adenosine was proposed as a key component of the anticonvulsant mechanism of the ketogenic diet (KD), a very low carbohydrate diet that can be highly effective in drug-refractory epilepsy. In this study, we review the accumulated data on the intersection among adenosine, ketosis, and anticonvulsant/antiepileptogenic effects. In several rodent models of epilepsy and seizures, antiseizure effects of ketogenic treatments (the KD itself, exogenous ketone bodies, medium-chain triglycerides or fatty acids) are reversed by administration of an adenosine A1 receptor antagonist. In addition, KD treatment elevates extracellular adenosine and tissue adenosine content in brain. Efforts to maintain or mimic a ketogenic milieu in brain slices reveal a state of reduced excitability produced by pre- and postsynaptic adenosine A1 receptor-based effects. Long-lasting seizure reduction may be due to adenosine-based epigenetic effects. In conclusion, there is accumulating evidence for an adenosinergic anticonvulsant action in the ketogenic state. In some cases, the main trigger is mildly but consistently lowered glucose in the brain. More research is needed to investigate the importance of adenosine in the antiepileptogenic and neuroprotective effects of these treatments. Future research may begin to investigate alternative adenosine-promoting strategies to enhance the KD or to find use as treatments themselves.

18.
Basic Clin Neurosci ; 11(3): 333-347, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32963726

RESUMEN

INTRODUCTION: In this study, the role of A1 adenosine receptors in improving the effect of Low-Frequency Electrical Stimulation (LFS) on seizure-induced hyperexcitability of hippocampal CA1 pyramidal neurons was investigated. METHODS: A semi-rapid hippocampal kindling model was used to induce seizures in male Wistar rats. Examination of the electrophysiological properties of CA1 pyramidal neurons of the hippocampus using whole-cell patch-clamp recording 48 h after the last kindling stimulation revealed that the application of LFS as two packages of stimulations at a time interval of 6 h for two consecutive days could significantly restore the excitability CA1 pyramidal neurons evidenced by a decreased in the of the number of evoked action potentials and enhancement of amplitude, maximum rise slope and decay slope of the first evoked action potential, rheobase, utilization time, adaptation index, first-spike latency, and post-AHP amplitude. Selective locked of A1 receptors by the administration of 8-Cyclopentyl-1,3-dimethylxanthine (1 µM, 1 µl, i.c.v.) before applying each LFS package, significantly reduced LFS effectiveness in recovering these parameters. RESULTS: On the other hand, selective activation of A1 receptors by an injection of N6-cyclohexyladenosine (10 µM, 1 µl, i.c.v.), instead of LFS application, could imitate LFS function in improving these parameters. CONCLUSION: It is suggested that LFS exerts its efficacy on reducing the neuronal excitability, partially by activating the adenosine system and activating its A1 receptors.

19.
Elife ; 92020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32869747

RESUMEN

Astrocytes respond to and regulate neuronal activity, yet their role in mammalian behavior remains incompletely understood. Especially unclear is whether, and if so how, astrocyte activity regulates contextual fear memory, the dysregulation of which leads to pathological fear-related disorders. We generated GFAP-ChR2-EYFP rats to allow the specific activation of astrocytes in vivo by optogenetics. We found that after memory acquisition within a temporal window, astrocyte activation disrupted memory consolidation and persistently decreased contextual but not cued fear memory accompanied by reduced fear-related anxiety behavior. In vivo microdialysis experiments showed astrocyte photoactivation increased extracellular ATP and adenosine concentrations. Intracerebral blockade of adenosine A1 receptors (A1Rs) reversed the attenuation of fear memory. Furthermore, intracerebral or intraperitoneal injection of A1R agonist mimicked the effects of astrocyte activation. Therefore, our findings provide a deeper understanding of the astrocyte-mediated regulation of fear memory and suggest a new and important therapeutic strategy against pathological fear-related disorders.


Memory is the record of what we learn over time and is essential to our survival. But not all memories are helpful. Repeatedly recalling a traumatic event ­ such as an assault ­ can be harmful. About 1 in 3 people who experience severe trauma go on to develop post-traumatic stress disorder (PTSD), in which they re-live the traumatic event in the form of flashbacks and nightmares. Others develop panic disorder, phobias or depression. Preventing this chain of events is challenging because fear memories form rapidly and last a long time. Current treatments involve re-exposing individuals to the traumatic event. This could be real-life exposure in the case of a phobia. Or it could involve visualizing the event, in the case of PTSD. Controlled re-exposure can help individuals learn new coping strategies. But it does not erase the initial fear memory. A better approach might be to take advantage of the fact that new memories are unstable. To form a long-lasting memory trace, newly acquired information must go through a process called consolidation to stabilize it. This process takes place in an area of the brain called the hippocampus. If consolidation does not occur, new memory traces can fade away. Li, Li et al. now show that preventing consolidation in the rat brain stops the animals from forming lasting memories of a stressful event, namely a foot shock. In the study, the rats first learned to associate a foot shock with a tone. This training took place inside a specific chamber. After learning the association, the rats began to freeze ­ a sign of fear ­ whenever they entered the chamber. This happened even if the tone was not played. But Li, Li et al. showed that they could reduce this fear response by activating cells in the hippocampus known as astrocytes, shortly after the learning episode. Activating the astrocytes made them release a substance called adenosine. Molecules of adenosine then bound to and activated proteins called adenosine A1 receptors. Administering a drug that activated these receptors directly had the same effect as activating the astrocytes themselves. This suggests that drugs of this type could one day help patients with fear-related disorders such as PTSD and phobias. For this to become a reality, new studies must test different drugs and find the best ways of administering them. After testing in animal models, the next step will be preliminary clinical trials in people.


Asunto(s)
Astrocitos/fisiología , Miedo/fisiología , Hipocampo/fisiología , Memoria/fisiología , Receptor de Adenosina A1 , Animales , Ansiedad , Conducta Animal , Femenino , Hipocampo/citología , Masculino , Optogenética , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Receptor de Adenosina A1/genética , Receptor de Adenosina A1/metabolismo
20.
Purinergic Signal ; 16(3): 297-304, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32577957

RESUMEN

This review summarizes experimental evidence indicating that purinergic mechanisms are causally involved in acupuncture (AP)-induced analgesia. Electroacupuncture (EAP) and manual AP release at pain-relevant acupoints ATP which may activate purinergic P2X receptors (Rs) especially of the P2X3 type situated at local sensory nerve endings (peripheral terminals of dorsal root ganglion [DRG] neurons); the central processes of these neurons are thought to inhibit via collaterals of ascending dorsal horn spinal cord neurons, pain-relevant pathways projecting to higher centers of the brain. In addition, during AP/EAP non-neuronal P2X4 and/or P2X7Rs localized at microglial cells of the CNS become activated at the spinal or supraspinal levels. In consequence, these microglia secrete bioactive compounds such as growth factors, cytokines, chemokines, reactive oxygen, and nitrogen species, which modulate the ascending neuronal pathways conducting painful stimuli. Alternatively, ATP released at acupoints by AP/EAP may be enzymatically degraded to adenosine, stimulating in loco presynaptic A1Rs exerting an inhibitory influence on the primary afferent fibers (the above mentioned pain-sensing peripheral terminals of DRG neurons) which thereby fail to conduct action potentials to the spinal cord dorsal horn. The net effect of the stimulation of P2X3, P2X4, P2X7, and A1Rs by the AP/EAP-induced release of ATP/adenosine at certain acupoints will be analgesia.


Asunto(s)
Analgesia por Acupuntura , Receptores Purinérgicos/metabolismo , Transducción de Señal/fisiología , Animales , Ganglios Espinales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA