RESUMEN
Disulfidptosis is a novel discovered form of programmed cell death (PCD) that diverges from apoptosis, necroptosis, ferroptosis, and cuproptosis, stemming from disulfide stress-induced cytoskeletal collapse. In cancer cells exhibiting heightened expression of the solute carrier family 7 member 11 (SLC7A11), excessive cystine importation and reduction will deplete nicotinamide adenine dinucleotide phosphate (NADPH) under glucose deprivation, followed by an increase in intracellular disulfide stress and aberrant disulfide bond formation within actin networks, ultimately culminating in cytoskeletal collapse and disulfidptosis. Disulfidptosis involves crucial physiological processes in eukaryotic cells, such as cystine and glucose uptake, NADPH metabolism, and actin dynamics. The Rac1-WRC pathway-mediated actin polymerization is also implicated in this cell death due to its contribution to disulfide bond formation. However, the precise mechanisms underlying disulfidptosis and its role in tumors are not well understood. This is probably due to the multifaceted functionalities of SLC7A11 within cells and the complexities of the downstream pathways driving disulfidptosis. This review describes the critical roles of SLC7A11 in cells and summarizes recent research advancements in the potential pathways of disulfidptosis. Moreover, the less-studied aspects of this newly discovered cell death process are highlighted to stimulate further investigations in this field.
Asunto(s)
Citoesqueleto de Actina , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Citoesqueleto de Actina/metabolismo , Muerte Celular , Animales , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genéticaRESUMEN
MAIN CONCLUSION: Our studies reveal the involvement of SPI in cytoskeleton-associated trichome morphogenesis, expanding the roles of SPI in regulating plant epidermal cell development. Acquisition of distinct shapes is crucial for cells to perform their biological functions in multicellular organisms. Trichomes are specialized epidermal cells of plant aerial parts, offering an excellent paradigm for dissecting the underlying regulatory mechanism of plant cell shape development at the single-cell level. SPIRRIG (SPI) that encodes a BEACH domain-containing protein was initially identified to regulate trichome branch extension, but the possible pathway(s) through which SPI regulates trichome morphogenesis remain unclear. Here, we report that SPI facilitates microtubule-associated regulation on trichome branching in Arabidopsis. Functional loss of SPI results in trichome morphogenesis hyper-sensitive to the microtubule-disrupting drug oryzalin, implying SPI may mediate microtubule stability during trichome development. Accordingly, spi mutant has less-branched trichomes. Detailed live-cell imaging showed that the spatio-temporal microtubule organization during trichome morphogenesis is aberrant in spi mutants. Further genetic investigation indicated that SPI may cooperate with ZWICHEL (ZWI) to modulate microtubule dynamics during trichome morphogenesis. ZWI encodes a kinesin-like calmodulin-binding protein (KCBP), whose distribution is necessary for the proper microtubule organization in trichomes, and zwi mutants produce less-branched trichomes as well. Trichome branching is further inhibited in spi-3 zwi-101 double mutants compared to either of the single mutant. Moreover, we found SPI could co-localize with the MYTH4 domain of ZWI. Taken together, our results expand the role of SPI in regulating trichome morphogenesis and also reveal a molecular and genetic pathway in plant cell shape formation control.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Microtúbulos , Morfogénesis , Tricomas , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Tricomas/crecimiento & desarrollo , Tricomas/genética , Tricomas/metabolismo , Microtúbulos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Morfogénesis/genética , Sulfanilamidas/farmacología , Dinitrobencenos/farmacología , Proteínas de Unión a Calmodulina/metabolismo , Proteínas de Unión a Calmodulina/genética , Citoesqueleto/metabolismo , MutaciónRESUMEN
Cell migration requires the constant modification of cellular shape by reorganization of the actin cytoskeleton. Fine-tuning of this process is critical to ensure new actin filaments are formed only at specific times and in defined regions of the cell. The Scar/WAVE complex is the main catalyst of pseudopod and lamellipodium formation during cell migration. It is a pentameric complex highly conserved through eukaryotic evolution and composed of Scar/WAVE, Abi, Nap1/NCKAP1, Pir121/CYFIP, and HSPC300/Brk1. Its function is usually attributed to activation of the Arp2/3 complex through Scar/WAVE's VCA domain, while other parts of the complex are expected to mediate spatial-temporal regulation and have no direct role in actin polymerization. Here, we show in both B16-F1 mouse melanoma and Dictyostelium discoideum cells that Scar/WAVE without its VCA domain still induces the formation of morphologically normal, actin-rich protrusions, extending at comparable speeds despite a drastic reduction of Arp2/3 recruitment. However, the proline-rich regions in Scar/WAVE and Abi subunits are essential, though either is sufficient for the generation of actin protrusions in B16-F1 cells. We further demonstrate that N-WASP can compensate for the absence of Scar/WAVE's VCA domain and induce lamellipodia formation, but it still requires an intact WAVE complex, even if without its VCA domain. We conclude that the Scar/WAVE complex does more than directly activating Arp2/3, with proline-rich domains playing a central role in promoting actin protrusions. This implies a broader function for the Scar/WAVE complex, concentrating and simultaneously activating many actin-regulating proteins as a lamellipodium-producing core.
Asunto(s)
Actinas , Dictyostelium , Animales , Ratones , Dictyostelium/metabolismo , Dictyostelium/fisiología , Actinas/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Movimiento Celular , Seudópodos/metabolismo , Seudópodos/fisiología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Dominios Proteicos , Citoesqueleto de Actina/metabolismo , Proteínas ProtozoariasRESUMEN
Dysfunctional phagocytic clearance of ß-amyloid (Aß) in microglia and peripheral macrophages/monocytes has been implicated in Alzheimer's disease (AD), but the mechanisms underlying this dysfunction are not yet well understood. In this study, we examined the role of glia maturation factor-γ (GMFG), an actin-disassembly protein that is highly expressed in immune cells, in macrophage Aß phagocytosis and in regulating scavenger receptor AI (SR-AI), a cell-surface receptor that has previously been implicated in Aß clearance. GMFG knockdown increased phagocytosis of Aß42 in BMDMs and RAW264.7 murine macrophages, while GMFG overexpression reduced Aß42 uptake in these cells. Blocking with anti-SR-AI antibodies inhibited Aß42 uptake in GMFG-knockdown cells, establishing a role for SR-AI in Aß42 phagocytosis. GMFG knockdown increased SR-AI protein expression under both basal conditions and in response to Aß42 treatment via both the transcriptional and post-transcriptional level in RAW264.7 macrophages. GMFG knockdown modulated Aß42-induced K48-linked and K63-polyubiquitination of SR-AI, the phosphorylation of SR-AI and JNK, suggesting that GMFG plays a role for intracellular signaling in the SR-AI-mediated uptake of Aß. Further, GMFG-knockdown cells displayed increased levels of the transcriptional factor MafB, and silencing of MafB in these cells reduced their SR-AI expression. Finally, GMFG was found to interact with the nuclear pore complex component RanBP2, and silencing of RanBP2 in GMFG-knockdown cells reduced their SR-AI expression. Collectively, these data support the role of GMFG as a novel regulator of SR-AI in macrophage Aß phagocytosis, and may provide insight into therapeutic approaches to potentially slow or prevent the progression of AD.
RESUMEN
Epithelial-immune cell communication is pivotal to control microbial infections. We show that glycosylphosphatidylinositol-linked aspartyl proteases (Yapsins) of the human opportunistic pathogenic yeast Candida glabrata (Cg) thwart epithelial cell (EC)-neutrophil signalling by targeting the EC protein, Arpc1B (actin nucleator Arp2/3 complex subunit), which leads to actin disassembly and impeded IL-8 secretion by ECs. Further, the diminished IL-8 secretion inhibits neutrophil migration, and protects Cg from the neutrophil-mediated killing. CgYapsin-dependent Arpc1B degradation requires Arginine-142 in Arpc1B, and leads to reduced Arpc1B-p38 MAPK interaction and downregulated p38 signalling. Consistently, Arpc1B or p38 deletion promotes survival of the Cg aspartyl protease-deficient mutant in ECs. Importantly, kidneys of the protease-deficient mutant-infected mice display elevated immune cell infiltration and cytokine secretion, implicating CgYapsins in immune response suppression in vivo. Besides delineating Cg-EC interplay, our results uncover a novel target, Arpc1B, that pathogens attack to constrain the host signalling networks, and link Arpc1B mechanistically with p38 activation.
RESUMEN
Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.
Asunto(s)
Actomiosina , Permeabilidad Capilar , Células Endoteliales de la Vena Umbilical Humana , Animales , Humanos , Actomiosina/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ratones , Serpinas/metabolismo , Serpinas/genética , Ratones Noqueados , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Fibras de Estrés/metabolismo , Células Endoteliales/metabolismo , Proteínas PortadorasRESUMEN
The actin cytoskeleton is a key cellular structure subverted by pathogens to infect and survive in or on host cells. Several pathogenic strains of Escherichia coli, such as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC), developed a unique mechanism to remodel the actin cytoskeleton that involves the assembly of actin filament-rich pedestals beneath the bacterial attachment sites. Actin pedestal assembly is driven by bacterial effectors injected into the host cells, and this structure is important for EPEC and EHEC colonization. While the interplay between bacterial effectors and the actin polymerization machinery of host cells is well-understood, how other mechanisms of actin filament remodelling regulate pedestal assembly and bacterial attachment are poorly investigated. This review discusses the gaps in our understanding of the complexity of the actin cytoskeletal remodelling during EPEC and EHEC infection. We describe possible roles of actin depolymerizing, crosslinking and motor proteins in pedestal dynamics, and bacterial interactions with the host cells. We also discuss the biological significance of pedestal assembly for bacterial infection.
Asunto(s)
Citoesqueleto de Actina , Escherichia coli Enterohemorrágica , Escherichia coli Enteropatógena , Interacciones Huésped-Patógeno , Humanos , Escherichia coli Enteropatógena/patogenicidad , Escherichia coli Enteropatógena/metabolismo , Escherichia coli Enterohemorrágica/patogenicidad , Escherichia coli Enterohemorrágica/metabolismo , Citoesqueleto de Actina/metabolismo , Interacciones Huésped-Patógeno/fisiología , Animales , Adhesión Bacteriana/fisiología , Citoesqueleto/metabolismo , Actinas/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismoRESUMEN
BACKGROUND INFORMATION: Arpin, an Arp2/3 inhibitory protein, inhibits lamellipodial protrusions and cell migration. Arpin expression is lost in tumor cells of several cancer types. RESULTS: Here we analyzed expression levels of Arpin and various markers using Reverse Phase Protein Array (RPPA) in human mammary carcinomas. We found that Arpin protein levels were correlated with those of several DNA damage response markers. Arpin-null cells display enhanced clustering of double stand breaks (DSBs) when cells are treated with a DNA damaging agent, in line with a previously described role of the Arp2/3 complex in promoting DSB clustering for homologous DNA repair (HDR) in the nucleus. Using a specific HDR assay, we further showed that Arpin depletion increased HDR efficiency two-fold through its ability to inactivate the Arp2/3 complex. CONCLUSIONS: Arpin regulates both cell migration in the cytosol and HDR in the nucleus. SIGNIFICANCE: Loss of Arpin expression coordinates enhanced cell migration with up-regulated DNA repair, which is required when DNA damage is induced by active cell migration.
Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Movimiento Celular , Humanos , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Línea Celular Tumoral , Reparación del ADN , Roturas del ADN de Doble Cadena , Daño del ADN , Reparación del ADN por Recombinación , Núcleo Celular/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas PortadorasRESUMEN
Intracellular membrane tubules play a crucial role in diverse cellular processes, and their regulation is facilitated by Bin-Amphiphysin-Rvs (BAR) domain-containing proteins. This study investigates the roles of Drosophila ICA69 (dICA69) (an N-BAR protein) and Drosophila CIP4 (dCIP4) (an F-BAR protein), focusing on their impact on in vivo membrane tubule organization. In contrast to the prevailing models of BAR-domain protein function, we observed colocalization of endogenous dICA69 with dCIP4-induced tubules, indicating their potential recruitment for tubule formation and maintenance. Moreover, actin-regulatory proteins such as Wasp, SCAR, and Arp2/3 were recruited at the site of CIP4-induced tubule formation. An earlier study indicated that F-BAR proteins spontaneously segregate from the N-BAR domain proteins during membrane tubule formation. In contrast, our observation supports a model in which different BAR-domain family members can associate with the same tubule and cooperate to fine-tune the tubule width, possibly by recruiting actin modulators during the generation of tubules. Our data suggests that cooperative activities of distinct BAR-domain family proteins may determine the length and width of the membrane tubule in vivo.
RESUMEN
Metastasis is the primary stumbling block to the treatment of bladder cancer (BC). In order to spread, tumor cells must acquire increased migratory and invasive capacity, which is tightly linked with pseudopodia formation. Here, we unravel the effects of sulforaphane (SFN), an isothiocyanate in cruciferous vegetables, on the assembly of pseudopodia and BC metastasis, and its molecular mechanism in the process. Our database analysis revealed that in bladder tumor, pseudopodia-associated genes, CTTN, WASL and ACTR2/ARP2 are upregulated. SFN caused lamellipodia to collapse in BC cells by blocking the CTTN-ARP2 axis. SFN inhibited invadopodia formation and cell invasion by reducing WASL in different invasive BC cell lines. The production of ATP, essential for the assembly of pseudopodia, was significantly increased in bladder tumors and strongly inhibited by SFN. Overexpressing AKT1 reversed the downregulation of ATP in SFN-treated bladder cancer cells and restored filopodia and lamellipodia morphology and function. Bioluminescent imaging showed that SFN suppressed BC metastases to the lung of nude mice while downregulating Cttn and Arp2 expression. Our study thus reveals mechanisms of SFN action in inhibiting pseudopodia formation and highlights potential targeting options for the therapy of metastatic bladder cancer.
Asunto(s)
Movimiento Celular , Isotiocianatos , Ratones Desnudos , Seudópodos , Sulfóxidos , Neoplasias de la Vejiga Urinaria , Isotiocianatos/farmacología , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Seudópodos/efectos de los fármacos , Seudópodos/metabolismo , Humanos , Animales , Sulfóxidos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Actinas/metabolismo , Actinas/genética , Invasividad Neoplásica , Adenosina Trifosfato/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos BALB C , Regulación Neoplásica de la Expresión Génica/efectos de los fármacosRESUMEN
The inhibitors, CK-666 and CK-869, are widely used to probe the function of Arp2/3 complex mediated actin nucleation in vitro and in cells. However, in mammals, the Arp2/3 complex consists of 8 iso-complexes, as three of its subunits (Arp3, ArpC1, ArpC5) are encoded by two different genes. Here, we used recombinant Arp2/3 with defined composition to assess the activity of CK-666 and CK-869 against iso-complexes. We demonstrate that both inhibitors prevent linear actin filament formation when ArpC1A- or ArpC1B-containing complexes are activated by SPIN90. In contrast, inhibition of actin branching depends on iso-complex composition. Both drugs prevent actin branch formation by complexes containing ArpC1A, but only CK-869 can inhibit ArpC1B-containing complexes. Consistent with this, in bone marrow-derived macrophages which express low levels of ArpC1A, CK-869 but not CK-666, impacted phagocytosis and cell migration. CK-869 also only inhibits Arp3- but not Arp3B-containing iso-complexes. Our findings have important implications for the interpretation of results using CK-666 and CK-869, given that the relative expression levels of ArpC1 and Arp3 isoforms in cells and tissues remains largely unknown.
Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Humanos , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Isoformas de Proteínas/metabolismoRESUMEN
Cationic liposome-mediated delivery of drugs, DNA, or RNA plays a pivotal role in small molecule therapy, gene editing, and immunization. However, our current knowledge regarding the cellular structures that facilitate this process remains limited. Here, we used human pluripotent stem cells (hPSCs), which form compact colonies consisting of dynamically active cells at the periphery and epithelial-like cells at the core. We discovered that cells at the colony edges selectively got transfected by cationic liposomes through actin-related protein 2/3 (Arp2/3) dependent dynamic lamellipodia, which is augmented by myosin II inhibition. Conversely, cells at the core establish tight junctions at their apical surfaces, impeding liposomal access to the basal lamellipodia and thereby inhibiting transfection. In contrast, liposomes incorporating mannosylated lipids are internalized throughout the entire colony via receptor-mediated endocytosis. These findings contribute a novel mechanistic insight into enhancing therapeutic delivery via liposomes, particularly in cell types characterized by dynamic lamellipodia, such as immune cells or those comprising the epithelial layer.
Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Liposomas , Seudópodos , Liposomas/metabolismo , Humanos , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Seudópodos/metabolismo , Seudópodos/efectos de los fármacos , ADN/metabolismo , Transfección , Endocitosis/efectos de los fármacosRESUMEN
Breast cancer develops upon sequential acquisition of driver mutations in mammary epithelial cells; however, how these mutations collaborate to transform normal cells remains unclear in most cases. We aimed to reconstitute this process in a particular case. To this end, we combined the activated form of the PI 3-kinase harboring the H1047R mutation with the inactivation of the histone lysine methyl-transferase KMT2D in the non-tumorigenic human mammary epithelial cell line MCF10A. We found that PI 3-kinase activation promoted cell-cycle progression, especially when growth signals were limiting, as well as cell migration, both in a collective monolayer and as single cells. Furthermore, we showed that KMT2D inactivation had relatively little influence on these processes, except for single-cell migration, which KMT2D inactivation promoted in synergy with PI 3-kinase activation. The combination of these two genetic alterations induced expression of the ARPC5L gene that encodes a subunit of the Arp2/3 complex. ARPC5L depletion fully abolished the enhanced migration persistence exhibited by double-mutant cells. Our reconstitution approach in MCF10A has thus revealed both the cell function and the single-cell migration, and the underlying Arp2/3-dependent mechanism, which are synergistically regulated when KMT2D inactivation is combined with the activation of the PI 3-kinase.
Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Movimiento Celular , Células Epiteliales , N-Metiltransferasa de Histona-Lisina , Fosfatidilinositol 3-Quinasas , Humanos , Movimiento Celular/genética , Células Epiteliales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Femenino , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/citología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Mutación/genética , Línea CelularRESUMEN
The patterns of Formin B and of the Arp2/3 complex formed during mitosis were studied in a mutant of Dictyostelium discoideum that produces multinucleate cells, which divide by the ingression of unilateral cleavage furrows. During cytokinesis the cells of this mutant remain spread on a glass surface where they generate a planar pattern based on the sorting-out of actin-binding proteins. During anaphase, Formin B and Arp2/3 became localized to the regions of microtubule asters around the centrosomes; Formin B in particular in the form of round, quite uniformly covered areas. These areas have been shown to be depleted of myosin II and the actin-filament crosslinker cortexillin, and to be avoided by cleavage furrows on their path into the cell.
Asunto(s)
Dictyostelium , Proteínas de Microfilamentos , Microtúbulos , Mitosis , Microtúbulos/metabolismo , Dictyostelium/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Transporte de Proteínas , Citocinesis , Actinas/metabolismoRESUMEN
Breast cancer, particularly triple-negative breast cancer (TNBC), poses a global health challenge. Emerging evidence has established a positive association between elevated levels of stearoyl-CoA desaturase 1 (SCD1) and its product oleate (OA) with cancer development and metastasis. SCD1/OA leads to alterations in migration speed, direction, and cell morphology in TNBC cells, yet the underlying molecular mechanisms remain elusive. To address this gap, we aim to investigate the impact of OA on remodeling the actin structure in TNBC cell lines, and the underlying signaling. Using TNBC cell lines and bioinformatics tools, we show that OA stimulation induces rapid cell membrane ruffling and enhances filopodia formation. OA treatment triggers the subcellular translocation of Arp2/3 complex and Cdc42. Inhibiting Cdc42, not the Arp2/3 complex, effectively abolishes OA-induced filopodia formation and cell migration. Additionally, our findings suggest that phospholipase D is involved in Cdc42-dependent filopodia formation and cell migration. Lastly, the elevated expression of Cdc42 in breast tumor tissues is associated with a lower survival rate in TNBC patients. Our study outlines a new signaling pathway in the OA-induced migration of TNBC cells, via the promotion of Cdc42-dependent filopodia formation, providing a novel insight for therapeutic strategies in TNBC treatment.
Asunto(s)
Ácido Oléico , Neoplasias de la Mama Triple Negativas , Humanos , Seudópodos , Movimiento Celular , Actinas , Complejo 2-3 Proteico Relacionado con la ActinaRESUMEN
The actin cytoskeleton and reactive oxygen species (ROS) both play crucial roles in various cellular processes. Previous research indicated a direct interaction between two key components of these systems: the WAVE1 subunit of the WAVE regulatory complex (WRC), which promotes actin polymerization and the p47phox subunit of the NADPH oxidase 2 complex (NOX2), which produces ROS. Here, using carefully characterized recombinant proteins, we find that activated p47phox uses its dual Src homology 3 domains to bind to multiple regions within the WAVE1 and Abi2 subunits of the WRC, without altering WRC's activity in promoting Arp2/3-mediated actin polymerization. Notably, contrary to previous findings, p47phox uses the same binding pocket to interact with both the WRC and the p22phox subunit of NOX2, albeit in a mutually exclusive manner. This observation suggests that when activated, p47phox may separately participate in two distinct processes: assembling into NOX2 to promote ROS production and engaging with WRC to regulate the actin cytoskeleton.
Asunto(s)
NADPH Oxidasa 2 , Familia de Proteínas del Síndrome de Wiskott-Aldrich , Humanos , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , NADPH Oxidasas/metabolismo , NADPH Oxidasas/genética , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Sitios de UniónRESUMEN
While it is well-established that F-actin networks with specific organizations and dynamics are tightly regulated by distinct sets of associated actin-binding proteins (ABPs), how ABPs self-sort to particular F-actin networks remains largely unclear. We report that actin assembly factors Arp2/3 complex and formin Cdc12 tune the association of ABPs fimbrin Fim1 and tropomyosin Cdc8 to different F-actin networks in fission yeast. Genetic and pharmacological disruption of F-actin networks revealed that Fim1 is preferentially directed to Arp2/3-complex mediated actin patches, whereas Cdc8 is preferentially targeted to formin Cdc12-mediated filaments in the contractile ring. To investigate the role of Arp2/3 complex- and formin Cdc12-mediated actin assembly, we used four-color TIRF microscopy to observe the in vitro reconstitution of ABP sorting with purified proteins. Fim1 or Cdc8 alone bind similarly well to filaments assembled by either assembly factor. However, in 'competition' reactions containing both actin assembly factors and both ABPs, â¼2.0-fold more Fim1 and â¼3.5-fold more Cdc8 accumulates on Arp2/3 complex branch points and formin Cdc12-assembled actin filaments, respectively. These findings indicate that F-actin assembly factors Arp2/3 complex and formin Cdc12 help facilitate the recruitment of specific ABPs, thereby tuning ABP sorting and subsequently establishing the identity of F-actin networks in fission yeast.
Asunto(s)
Citoesqueleto de Actina , Complejo 2-3 Proteico Relacionado con la Actina , Proteínas de Microfilamentos , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Actinas/metabolismo , Transporte de Proteínas , Proteínas del Citoesqueleto , Glicoproteínas de MembranaRESUMEN
Actin cytoskeleton remodeling sustains the ability of cytotoxic T cells to search for target cells and eliminate them. We here investigated the relationship between energetic status, actin remodeling, and functional fitness in human CD8+ effector T cells. Cell spreading during migration or immunological synapse assembly mirrored cytotoxic activity. Morphological and functional fitness were boosted by interleukin-2 (IL-2), which also stimulated the transcription of glycolytic enzymes, actin isoforms, and actin-related protein (ARP)2/3 complex subunits. This molecular program scaled with F-actin content and cell spreading. Inhibiting glycolysis impaired F-actin remodeling at the lamellipodium, chemokine-driven motility, and adhesion, while mitochondrial oxidative phosphorylation blockade impacted cell elongation during confined migration. The severe morphological and functional defects of ARPC1B-deficient T cells were only partially corrected by IL-2, emphasizing ARP2/3-mediated actin polymerization as a crucial energy state integrator. The study therefore underscores the tight coordination between metabolic and actin remodeling programs to sustain the cytotoxic activity of CD8+ T cells.
Asunto(s)
Actinas , Linfocitos T CD8-positivos , Humanos , Actinas/metabolismo , Linfocitos T CD8-positivos/metabolismo , Interleucina-2/metabolismo , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismoRESUMEN
Arp2/3 complex nucleates branched actin filaments that drive membrane invagination during endocytosis and leading-edge protrusion in lamellipodia. Arp2/3 complex is maximally activated in vitro by binding of a WASP family protein to two sites-one on the Arp3 subunit and one spanning Arp2 and ARPC1-but the importance of each site in the regulation of force-producing actin networks is unclear. Here, we identify mutations in budding yeast Arp2/3 complex that decrease or block engagement of Las17, the budding yeast WASP, at each site. As in the mammalian system, both sites are required for maximal activation in vitro. Dimerization of Las17 partially restores activity of mutations at both CA-binding sites. Arp2/3 complexes defective at either site assemble force-producing actin networks in a bead motility assay, but their reduced activity hinders motility by decreasing actin assembly near the bead surface and by failing to suppress actin filament bundling within the networks. While even the most defective Las17-binding site mutants assembled actin filaments at endocytic sites, they showed significant internalization defects, potentially because they lack the proper architecture to drive plasma membrane remodeling. Together, our data indicate that both Las17-binding sites are important to assemble functional endocytic actin networks in budding yeast, but Arp2/3 complex retains some activity in vitro and in vivo even with a severe defect at either Las17-binding site.
Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Actinas , Proteínas de Saccharomyces cerevisiae , Proteína del Síndrome de Wiskott-Aldrich , Animales , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Sitios de Unión , Mamíferos/metabolismo , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismoRESUMEN
During cell movement, cortical actin balances mechanical and osmotic forces to maintain cell function while providing the scaffold for cell shape. Migrating CD4+ T cells have a polarized structure with a leading edge containing dynamic branched and linear F-actin structures that bridge intracellular components to surface adhesion molecules. These actin structures are complemented with a microtubular network beaded with membrane bound organelles in the trailing uropod. Disruption of actin structures leads to dysregulated migration and changes in morphology of affected cells. In HIV-1 infection, CD4+ T cells have dysregulated movement. However, the precise mechanisms by which HIV-1 affects CD4+ T cell movement are unknown. Here, we show that HIV-1 infection of primary CD4+ T cells causes at least four progressive morphological differences as a result of virally induced cortical cytoskeleton disruption, shown by ultrastructural and time lapse imaging. Infection with a ΔNef virus partially abrogated the dysfunctional phenotype in infected cells and partially restored a wild-type shape. The pathological morphologies after HIV-1 infection phenocopy leukocytes which contain genetic determinants of specific T cell Inborn Errors of Immunity (IEI) or Primary Immunodeficiencies (PID) that affect the actin cytoskeleton. To identify potential actin regulatory pathways that may be linked to the morphological deformities, uninfected CD4+ T cell morphology was characterized following addition of small molecule chemical inhibitors. The ARP2/3 inhibitor CK-666 recapitulated three of the four abnormal morphologies we observed in HIV-1 infected cells. Restoring ARP2/3 function and cortical actin integrity in people living with HIV-1 infection is a new avenue of investigation to eradicate HIV-1 infected cells from the body.