Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 823
Filtrar
Más filtros

Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124939, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39137710

RESUMEN

Guanosine nucleosides and nucleotides have the peculiar ability to self-assemble in water to form supramolecular complex architectures from G-quartets to G-quadruplexes. G-quadruplexes exhibit in turn a large liquid crystalline lyotropic polymorphism, but they eventually cross-link or entangle to form a densely connected 3D network (a molecular hydrogel), able to entrap very large amount of water (up to the 99% v/v). This high water content of the hydrogels enables tunable softness, deformability, self-healing, and quasi-liquid properties, making them ideal candidates for different biotechnological and biomedical applications. In order to fully exploit their possible applications, Attenuated Total Reflection-Fourier Transform InfraRed (ATR-FTIR) spectroscopy was used to unravel the vibrational characteristics of supramolecular guanosine structures. First, the characteristic vibrations of the known quadruplex structure of guanosine 5'-monophosphate, potassium salt (GMP/K), were investigated: the identified peaks reflected both the chemical composition of the sample and the formation of quartets, octamers, and quadruplexes. Second, the role of K+ and Na+ cations in promoting the quadruplex formation was assessed: infrared spectra confirmed that both cations induce the formation of G-quadruplexes and that GMP/K is more stable in the G-quadruplex organization. Finally, ATR-FTIR spectroscopy was used to investigate binary mixtures of guanosine (Gua) and GMP/K or GMP/Na, both systems forming G-hydrogels. The same G-quadruplex-based structure was found in both mixtures, but the proportion of Gua and GMP affected some features, like sugar puckering, guanine vibrations, and base stacking, reflecting the known side-to-side aggregation and bundle formation occurring in these binary systems.


Asunto(s)
G-Cuádruplex , Guanosina , Hidrogeles , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Guanosina/química , Hidrogeles/química , Potasio/química , Potasio/análisis , Vibración , Guanosina Monofosfato/química
2.
Environ Sci Pollut Res Int ; 31(43): 55336-55345, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39227534

RESUMEN

Microplastic studies investigating concentrations in water are numerous, but the majority of microplastics settle and are retained in sediment, and higher concentrations are regularly reported in sediments. Thus, MPs accumulation may be more threatening to benthic fish living in sediments than to pelagic fish. The presence, abundance and diversity of microplastics were investigated by collecting samples from two pelagic, European anchovy, and horse mackerel and two benthic fish species, red mullet, and whiting that are popularly consumed in Giresun province of Türkiye, located on the southern coast of the Black Sea. Visual classification and chemical compositions of microplastics was performed using a light microscope and ATR-FTIR spectrophotometry, consecutively. The overall incidence and mean microplastics abundance in sampled fishes were 17 and 1.7 ± 0.18 MP fish-1, respectively. MPs were within the range of 0.026-5 mm in size. In most of the cases, the MP was black in color with 41%. With the rates of 56%, polypropylene was the predominant polymer type. The most dominant MP type was identified as fiber followed by fragments and pellets. The relationship between MP amounts in fish and Fulton condition factor was not strong enough to establish a cause-effect relationship.


Asunto(s)
Monitoreo del Ambiente , Peces , Tracto Gastrointestinal , Microplásticos , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Mar Negro
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125175, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306914

RESUMEN

Accurate postmortem interval estimation is vital in the investigation of homicides, suicides, and accidental deaths. It is key in narrowing suspect lists, improving crime-solving efficiency, and offering solace to bereaved families. The intra-puparial period, comprising about half of a fly's developmental cycle, presents challenges for morphological age estimation. External changes are limited to color shifts and the appearance of respiratory horns on the puparium only within several hours after pupariation, while detailed internal development analysis often requires invasive methods like removing the puparium, which can be damaging. Additionally, these techniques usually depend on a forensic entomologist's expertise, which lead to subjective biases. This study employed attenuated total reflection-fourier transform infrared spectroscopy, a rapid, non-destructive method for analyzing proteins, chitosan, and chitin in puparia. Data showed a consistent reduction in the concentration of the amide I band within the puparium during the intra-puparial development at five constant temperatures (19 °C, 22 °C, 25 °C, 28 °C and 31 °C). This trend in the spectral data effectively distinguishes pupae at various stages of intra-puparial development, facilitating precise age estimation, which is critical for the estimation of the minimum postmortem interval (PMImin). Finally, this work combined the total reflection-fourier transform infrared spectroscopy with chemometric analysis and successfully developed a partial least squares discriminant analysis model and a random forest model, with accuracies of 88 % and 81 %, respectively. These models enable the non-invasive age estimation of P. regina in its intra-puparial period, a stage traditionally difficult to assess morphologically, thus laying the groundwork for PMImin estimation using fly pupae.

4.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273305

RESUMEN

Amyloidosis diagnosis relies on Congo red staining with immunohistochemistry and immunofluorescence for subtyping but lacks sensitivity and specificity. Laser-microdissection mass spectroscopy offers better accuracy but is complex and requires extensive sample preparation. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy offers a promising alternative for amyloidosis characterization. Cardiac tissue sections from nine patients with amyloidosis and 20 heart transplant recipients were analyzed using ATR-FTIR spectroscopy. Partial least squares discriminant analysis (PLS-DA), principal component analysis (PCA), and hierarchical cluster analysis (HCA) models were used to differentiate healthy post-transplant cardiac tissue from amyloidosis samples and identify amyloidosis subtypes [κ light chain (n = 1), λ light chain (n = 3), and transthyretin (n = 5)]. Leave-one-out cross-validation (LOOCV) was employed to assess the performance of the PLS-DA model. Significant spectral differences were found in the 1700-1500 cm-1 and 1300-1200 cm-1 regions, primarily related to proteins. The PLS-DA model explained 85.8% of the variance, showing clear clustering between groups. PCA in the 1712-1711 cm-1, 1666-1646 cm-1, and 1385-1383 cm-1 regions also identified two clear clusters. The PCA and the HCA model in the 1646-1642 cm-1 region distinguished κ light chain, λ light chain, and transthyretin cases. This pilot study suggests ATR-FTIR spectroscopy as a novel, non-destructive, rapid, and inexpensive tool for diagnosing and subtyping amyloidosis. This study was limited by a small dataset and variability in measurements across different instruments and laboratories. The PLS-DA model's performance may suffer from overfitting and class imbalance. Larger, more diverse datasets are needed for validation.


Asunto(s)
Amiloidosis , Análisis de Componente Principal , Humanos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Proyectos Piloto , Amiloidosis/diagnóstico , Femenino , Masculino , Persona de Mediana Edad , Anciano , Análisis de los Mínimos Cuadrados , Trasplante de Corazón , Análisis por Conglomerados
5.
Sci Rep ; 14(1): 21546, 2024 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-39278957

RESUMEN

The current detection method for Chikungunya Virus (CHIKV) involves an invasive and costly molecular biology procedure as the gold standard diagnostic method. Consequently, the search for a non-invasive, more cost-effective, reagent-free, and sustainable method for the detection of CHIKV infection is imperative for public health. The portable Fourier-transform infrared coupled with Attenuated Total Reflection (ATR-FTIR) platform was applied to discriminate systemic diseases using saliva, however, the salivary diagnostic application in viral diseases is less explored. The study aimed to identify unique vibrational modes of salivary infrared profiles to detect CHIKV infection using chemometrics and artificial intelligence algorithms. Thus, we intradermally challenged interferon-gamma gene knockout C57/BL6 mice with CHIKV (20 µl, 1 X 105 PFU/ml, n = 6) or vehicle (20 µl, n = 7). Saliva and serum samples were collected on day 3 (due to the peak of viremia). CHIKV infection was confirmed by Real-time PCR in the serum of CHIKV-infected mice. The best pattern classification showed a sensitivity of 83%, specificity of 86%, and accuracy of 85% using support vector machine (SVM) algorithms. Our results suggest that the salivary ATR-FTIR platform can discriminate CHIKV infection with the potential to be applied as a non-invasive, sustainable, and cost-effective detection tool for this emerging disease.


Asunto(s)
Algoritmos , Inteligencia Artificial , Fiebre Chikungunya , Virus Chikungunya , Saliva , Animales , Saliva/virología , Fiebre Chikungunya/diagnóstico , Fiebre Chikungunya/virología , Virus Chikungunya/aislamiento & purificación , Virus Chikungunya/genética , Ratones , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Ratones Endogámicos C57BL , Ratones Noqueados
6.
J Hazard Mater ; 479: 135563, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39226689

RESUMEN

Given the convenience of using plastics, addressing the growing concerns about their hazardous health effects is imperative. Consequently, a comprehensive risk assessment is necessary to gauge the potential harm microplastics pose. With its urgent call to action, this study aimed to investigate the indoor source and abundance of microplastics in private dental units during routine professional activities. The current analyzed microplastic quantity variations based on morphological characteristics, seasonal fluctuations and polymer-types. The polymer hazard index (PHI) was calculated to evaluate the significant human health risks posed to dental professionals by inhalation of microplastics. Dust samples were collected using a clean brush and steel pan from various flat and horizontal surfaces within each dental unit. The study found that clinical dental units had fewer microplastics (587 ± 184.9 MPs/g/day) than teaching hospitals (1083.80 ± 133.7MPs/g/day), with comparatively more abundance in winter (31 %). ATR-FTIR analysis determined polyethylene terephthalate to be a more abundant polymer (39 %). This study also found an average inhalation microplastic intake risk of 20.23 MP/g/day and 5259.85 MP/g/year for clinical and 29.45 MP/g/day and 765.12 MP/g/year for teaching hospital dental units. Female dental professionals have 1.1 times more microplastic inhalation risks than male dental professionals. According to PHI findings, overall minor to medium polymer risk was determined. In conclusion, this evidence-based research underscores the urgent need for a shift towards more sustainable practices in the dental healthcare sector. Dental professionals should prioritize using non-plastic material protective equipment and a proper ventilation system to reduce exposure to these particles.


Asunto(s)
Microplásticos , Estaciones del Año , Microplásticos/análisis , Humanos , Exposición Profesional/análisis , Polvo/análisis , Medición de Riesgo , Contaminación del Aire Interior/análisis , Exposición por Inhalación/análisis
8.
Appl Spectrosc ; : 37028241279434, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289910

RESUMEN

Cinchonine is a quinoline alkaloid known for its antimalarial properties. Due to the advantages of using compounds of metal ions with alkaloids, a copper(II) compound with cinchonine was synthesized, and, for comparative purposes, a cadmium(II) compound with cinchonine. During the synthesis, the emerging interactions between the metal ion and cinchonine were studied. After crystallization, it was examined how the obtained compounds would interact with the model blood component, hematoporphyrin IX. Ultraviolet-visible (UV-Vis) spectroscopy, Raman spectroscopy, and attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) were used in the study. In the case of monitoring the synthesis, the best method turned out to be UV-Vis spectroscopy, combined with the possibility of two-dimensional correlation spectroscopy (2D-COS), which enabled the identification of peaks characteristic of the interactions of the cinchonine quinoline ring with metal ions. In turn, the obtained Raman spectra showed shifts of individual bands and changes in their intensity, and 2D-COS showed the sequence of formation of individual interactions, which confirmed the formation of cinchonine compounds with metals. ATR FT-IR also allowed us to compare the spectra of the substrates used in the synthesis with the crystallized compounds and thus confirm the formation of the expected compounds. Bands characteristic of π-π-stacking interactions between the quinoline ring and the tetrapyrrole ring of hematoporphyrin IX were also observed. Observed interaction with a model blood component may be important when designing drugs for antimalarial therapy.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125127, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39284240

RESUMEN

Verticillium wilt (VW) is a soil-borne vascular disease that affects upland cotton and is caused by Verticillium dahliae Kleb. A rapid and user-friendly early diagnostic technique is essential for the preventing and controlling VW disease. In this study, Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance (ATR) technology was used to detect VW infection in cotton leaves. About 1800 FTIR spectra were obtained from 348 cotton leaves. The cotton leaves were collected from three categories: VW group, infected group and control group (non-infected). The vibrational peak of chitins at 1558 cm-1 was identified through mean and differential analysis of FTIR spectra as a criterion to differentiate the VW or infected group from the control group. Classification models were constructed using various machine learning algorithms. The support vector machines (SVM) model exhibited the highest predictive accuracy (>96 %) in each group and a total accuracy (>97 %) for the three groups. These results provide a new approach for detecting Verticillium infection in cotton leaves and shows a promising potential for the future applications of the method in plant science.

10.
Environ Monit Assess ; 196(10): 906, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39249122

RESUMEN

Globally, the environmental impacts of microplastics (MPs) as emerging pollutants have drawn a lot of attention. This study aimed to assess the distribution and associated potential ecotoxic risk of MPs in the water and sediment of Nigeria's offshore waters. Water and sediment samples were collected from sixteen (16) stations in October 2023 and analysed using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and stereomicroscopy. For physical characterization, the composition of MPs in sediment and water was 73 particles/kg and 48 particles/L, respectively, while the ATR-FTIR composition at the Eastern Zone (EZ) was 705 particles/L and 1033 particles/kg, the Central Zone (CZ) was 212 particles/L and 338 particles/kg, and the Western Zone (WZ) was 223 particles/L and 218 particles/kg. The identified MPs shapes were filaments, plastic films, fibre, and microbeads. Polychloroprene (CR) (18.10% and 16.86%) at EZ and CZ and polyvinyl alcohol (PVA) (20.64%) at WZ were most abundant in sediment, respectively. In comparison, PVA (22.3%, 22.2%, and 21.08%) was most abundant across EZ, CZ, and WZ in water. The polymer-based plastic contamination factors (ppCf) and pollution load index (pPLI) showed low contamination and pollution load, and the polymer risk index (pRi) showed medium and low risk in water and sediment, respectively. The polymer ecological risks index (pERI) showed a high-risk level (pERI: 1,001-10,000) in water and sediment across the EZ, CZ, and WZ of the Nigerian offshore waters. In marine environments, an extensive environmental monitoring program and trend forecasting for microplastics are crucial. This study will provide theoretical and technical support for developing efficient legislation or policy on the prevention and control of plastic pollution.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Microplásticos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Nigeria , Microplásticos/análisis , Medición de Riesgo , Agua de Mar/química
11.
Carbohydr Polym ; 345: 122591, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227127

RESUMEN

Contrast matching by isotopic exchange in cellulose allows visualizing functional groups, biomolecules, polymers and nanoparticles embedded in cellulosic composites. This isotopic exchange varies the scattering length density of cellulose to match its contrast with the background network. Here, contrast matching of microcrystalline-cellulose (MCC) and the functionalized nanocellulose-fiber (CNF) and cellulose nanocrystals (CNC) are elucidated by small angle neutron scattering (SANS). Results show no isotopic exchange occurs for the CNF surface functionalized with carboxyl nor for the CNC-High with a high sulfate groups concentration. Both CNC-Low, with low sulfate groups, and MCC exchange 1H with 1D in D2O. This is due to the high exchange probability of the labile C6 position primary -OH group. The structure of thermo-responsive poly-N-isopropylacrylamide (PNIPAM) chains grafted onto CNF (PNIPAM-grafted-CNF) was extracted by CNF contrast matching near the lower critical solution temperature. Contrast matching eradicates the CNF scattering to retain only the scattering from the grafted-PNIPAM chains. The coil to globule thermo-transition of PNIPAM was revealed by the power law variation from q-1.3 to q-4 in SANS. Isotopic exchange in functionalized cellulosic materials reveals the nano- and micro-scale structure of its individual components. This improved visualization by contrast matching can be extended to carbohydrate polymers to engineer biopharmaceutical and food applications.

12.
Forensic Sci Int ; 363: 112182, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39116507

RESUMEN

This research highlights the underestimated significance of cigarette paper as evidence at crime scenes. The primary objective is to distinguish cigarette paper from similar-looking alternatives, addressing the first research objective. The second objective involves identifying cigarette paper brands using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and machine learning (ML) algorithms. Accurate differentiation of cigarette paper from normal paper is emphasized. ATR-FTIR spectroscopy, coupled with principal component analysis (PCA) for dimensionality reduction, is employed for brand identification. Among fifteen ML algorithms compared, the CatBoost classifier excels for both objectives. This research presents a non-destructive, effective method for studying cigarette paper, contributing valuable insights to crime scene investigations.

13.
Biomater Adv ; 164: 213982, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39098081

RESUMEN

The efficiency of synthetic bone grafts can be evaluated either in osseous sites, to analyze osteoconduction or ectopically, in intramuscular or subcutaneous sites, to assess osteoinduction. Bone regeneration is usually evaluated in terms of the presence and quantity of newly formed bone, but little information is normally provided on the quality of this bone. Here, we propose a novel approach to evaluate bone quality by the combined use of spectroscopy techniques and nanoindentation. Calcium phosphate scaffolds with different architectures, either foamed or 3D-printed, that were implanted in osseous or intramuscular defects in Beagle dogs for 6 or 12 weeks were analyzed. ATR-FTIR and Raman spectroscopy were performed, and mineral-to-matrix ratio, crystallinity, and mineral and collagen maturity were calculated and mapped for the newly regenerated bone and the mature cortical bone from the same specimen. For all the parameters studied, the newly-formed bone showed lower values than the mature host bone. Hardness and elastic modulus were determined by nanoindentation and, in line with what was observed by spectroscopy, lower values were observed in the regenerated bone than in the cortical bone. While, as expected, all techniques pointed to an increase in the maturity of the newly-formed bone between 6 and 12 weeks, the bone found in the intramuscular samples after 12 weeks presented lower mineralization than the intraosseous counterparts. Moreover, scaffold architecture also played a role in bone maturity, with the foamed scaffolds showing higher mineralization and crystallinity than the 3D-printed scaffolds after 12 weeks.


Asunto(s)
Regeneración Ósea , Andamios del Tejido , Animales , Perros , Regeneración Ósea/fisiología , Andamios del Tejido/química , Espectrometría Raman/métodos , Fosfatos de Calcio/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Huesos/química , Huesos/fisiología , Impresión Tridimensional
14.
Discov Oncol ; 15(1): 350, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143357

RESUMEN

Gastric cancer represents a significant public health challenge, necessitating advancements in early diagnostic methodologies. This investigation employed attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy to conduct a multivariate analysis of human serum. The study encompassed the examination of blood samples from 96 individuals diagnosed with gastric cancer and 96 healthy volunteers. Principal component analysis (PCA) was utilized to interpret the infrared spectral data of the serum samples. Specific spectral bands exhibiting intensity variations between the two groups were identified. The infrared spectral ranges of 3500 ~ 3000 cm⁻1, 1700 ~ 1600 cm⁻1, and 1090 ~ 1070 cm⁻1 demonstrated significant diagnostic value for gastric cancer, likely attributable to differences in protein conformation and nucleic acids. By employing machine learning algorithms to differentiate between gastric cancer patients (n = 96) and healthy controls (n = 96), we achieved a sensitivity of up to 89.7% and a specificity of 87.2%. Receiver operating characteristic (ROC) analysis yielded an area under the curve (AUC) of 0.901. These findings underscore the potential of our serum-based ATR-FTIR spectroscopy examination method as a straightforward, minimally invasive, and reliable diagnostic test for the detection of gastric cancer.

15.
Food Chem X ; 23: 101661, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39113735

RESUMEN

The taste and aroma of edible mushrooms, which is a criterion of judgment for consumer purchases, are influenced by amino acids and their metabolites. Sixty-eight amino acids and their metabolites were identified using liquid chromatography mass spectrometry (LC-MS), and 16 critical marker components were screened. The chemical composition of different species of boletes was characterized by two-dimensional correlation spectroscopy (2DCOS) to determine the sequence of molecular vibrations or group changes. Identification of boletes species based on partial least squares discrimination (PLS-DA) combined with Fourier transform near-infrared spectroscopy (FT-NIR) and Fourier transform infrared spectroscopy (ATR-FTIR), residual convolutional neural network (ResNet) combined with three-dimensional correlation spectroscopy (3DCOS) was performed with 100% accuracy. Partial least squares regression (PLSR) analysis showed that FT-NIR and ATR-FTIR spectra were highly correlated with the amino acids and their metabolites detected by LC-MS. All models had achieved an R2p of 0.911 and an RPD >3.0. The results show that FT-NIR and ATR-FTIR spectroscopy in combination with chemometrics methods can be used for rapid species identification and estimation of amino acids and their metabolites content in boletes. This study provides new techniques and ideas for the authenticity of species information and the quality assessment of boletes.

16.
Heliyon ; 10(15): e35552, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170150

RESUMEN

In this investigation, novel cellulose fibers were acquired from the Bassia Indica plant to serve as a reinforcement source in composite materials. The morphological characteristics were studied using Scanning Electron Microscopy (SEM). The surface chemistry, crystallinity, and functional groups of Bassia Indica fibers were analyzed using X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX) spectroscopy, and Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR), which assess the crystal structure, elemental composition, and surface functional groups, respectively. The thermal behavior of Bassia Indica fibers were assessed through Thermogravimetric Analysis (TGA). Anatomical techniques demonstrated the abundant presence of fibroblasts in the fibers. The presence of lignocellulosic fiber (lignin, cellulose and hemicellulose) was confirmed through ATR-FTIR analysis. The analysis of physical properties unveiled a fiber density of 1.065 ± 0.025 g/cm³ and a diameter of 145.58 ± 7.89 µm. The crystalline size of Bassia Indica fibers reached 2.23 nm, with a crystallinity index of 40.12 %, and an activation energy of 93.78 kJ/mol, TGA research revealed that Bassia Indica fibers are thermally stable up to 260.24 °C. Additionally, the fibers experienced maximum degradation at 321.23 °C. Weibull statistical analysis was performed using parameters 2 and 3 to calculate the observed dispersion in the experimental tensile results after analyzing the mechanical properties of the fibers possessing a tensile strength of 417.50 ± 7.08 MPa, Young's modulus of 17.46 ± 1.55 GPa, stress at failure of 1.17 ± 0.02 % and interfacial shear strength of 6.99 ± 1.10 MPa. The results were additionally compared to how they were stated in the relevant sources. Bassia Indica fibers can be considered a viable choice for reinforcing lightweight bio-composites.

17.
Toxicol Res (Camb) ; 13(4): tfae126, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39132191

RESUMEN

Background: Synthetic food dyes are being exponentially used in food products and scarce studies regarding their toxicities and safety raise concern. Erythrosine is one of the synthetic food dyes being used in jams, fig, pineapple marmalades, dairy products, soft drinks, pickles, relishes, smoked fish, cheese, ketchup, maraschino cherries and a variety of other foods. Methodology: In this study the cyto-genotoxic effect of erythrosine was evaluated, using root meristematic cells of Allium cepa for the cellular and molecular alternations at concentrations 0.1, 0.25, 0.5 and 1 mg/mL. Results: The results revealed a significant decrease of 57.81% in the mitotic index after 96 h at the 0.1 mg/mL concentration. In biochemical analysis, the malondialdehyde content increased significantly (5.47-fold), while proline content, catalase activity and superoxide dismutase activity decreased gradually in a concentration-dependent manner showing a maximum decrease of 78.11%, 64.68% and 61.73% respectively at the highest concentration after 96 h duration. The comet assay revealed increased DNA damage with increasing concentration and attenuated total reflectance- Fourier transform infrared spectroscopy (ATR-FTIR) analysis showed significant alterations in biomolecules as indicated by multivariate analysis, i.e. Principal Component Analysis (PCA). Furthermore, molecular docking demonstrated a strong binding energy (Gbest = -11.46 kcal/mol) and an inhibition constant (Ki) of 3.96 nM between erythrosine and the DNA minor groove. Conclusion: The present study's findings revealed the cytotoxic and genotoxic potential of erythrosine on A. cepa root cells. Further, the study also proposed the usefulness of A. cepa as a model system for studying the toxicity of food additives.

18.
Adv Sci (Weinh) ; : e2405154, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159072

RESUMEN

Electrochemical CO2 reduction reaction (CO2RR) to produce value-added multi-carbon chemicals has been an appealing approach to achieving environmentally friendly carbon neutrality in recent years. Despite extensive research focusing on the use of CO2 to produce high-value chemicals like high-energy-density hydrocarbons, there have been few reports on the production of propane (C3H8), which requires carbon chain elongation and protonation. A rationally designed 0D/2D hybrid Cu2O anchored-Ti3C2Tx MXene catalyst (Cu2O/MXene) is demonstrated with efficient CO2RR activity in an aqueous electrolyte to produce C3H8. As a result, a significantly high Faradaic efficiency (FE) of 3.3% is achieved for the synthesis of C3H8 via the CO2RR with Cu2O/MXene, which is ≈26 times higher than that of Cu/MXene prepared by the same hydrothermal process without NH4OH solution. Based on in-situ attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and density functional theory (DFT) calculations, it is proposed that the significant electrocatalytic conversion originated from the synergistic behavior of the Cu2O nanoparticles, which bound the *C2 intermediates, and the MXene that bound the *CO coupling to the C3 intermediate. The results disclose that the rationally designed MXene-based hybrid catalyst facilitates multi-carbon coupling as well as protonation, thereby manipulating the CO2RR pathway.

19.
Molecules ; 29(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39202842

RESUMEN

Vitamin D3 is a crucial fat-soluble pro-hormone essential for bolstering bone health and fortifying immune responses within the human body. Orodispersible films (ODFs) serve as a noteworthy formulation strategically designed to enhance the rapid dissolution of vitamin D, thereby facilitating efficient absorption in patients. This innovative approach not only streamlines the assimilation process but also plays a pivotal role in optimizing patient compliance and therapeutic outcomes. The judicious utilization of such advancements underscores a paradigm shift in clinical strategies aimed at harnessing the full potential of vitamin D for improved patient well-being. This study aims to examine the vitamin D3 ODF structure using spectroscopic techniques to analyze interactions with excipients like mannitol. Fourier-transform infrared spectroscopy (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy were utilized to assess molecular composition, intermolecular bonding, and vitamin D3 stability. Understanding these interactions is essential for optimizing ODF formulation, ensuring stability, enhancing bioavailability, and facilitating efficient production. Furthermore, this study involves a translational approach to interpreting chemical properties to develop an administration protocol for ODFs, aiming to maximize absorption and minimize waste. In conclusion, understanding the characterized chemical properties is pivotal for translating them into effective self-administration modalities for Vitamin D films.


Asunto(s)
Colecalciferol , Colecalciferol/química , Espectroscopía Infrarroja por Transformada de Fourier , Humanos , Administración Oral , Espectrofotometría Ultravioleta , Excipientes/química , Solubilidad , Disponibilidad Biológica
20.
Syst Biol Reprod Med ; 70(1): 228-239, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39150884

RESUMEN

Recurrent spontaneous miscarriage refers to the repeated loss of two or more clinically detected pregnancies occurring within 24 weeks of gestation. No identifiable cause has been identified for nearly 50% of these cases. This group is referred to as idiopathic recurrent spontaneous miscarriage (IRSM) or miscarriage of unknown origin. Due to lack of robust scientific evidence, guidelines on the diagnosis and management of IRSM are not well defined and often contradictory. This motivates us to explore the vibrational fingerprints of endometrial tissue in these women. Endometrial tissues were collected from women undergoing IRSM (n = 20) and controls (n = 20) corresponding to the window of implantation. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra were obtained within the range of 400-4000 cm-1 using Agilent Cary 630 FTIR spectrometer. Raman spectra were also generated within the spectral window of 400-4000 cm-1 using Thermo Fisher Scientific, DXR Raman spectrophotometer. Based on the limited molecular information provided by a single spectroscopic tool, fusion strategy combining Raman and ATR-FTIR spectroscopic data of IRSM is proposed. The significant features were extracted applying principal component analysis (PCA) and wavelet threshold denoising (WTD) and fused spectral data used as input into support vector machine (SVM), adaptive boosting (AdaBoost) and decision tree (DT) models. Altered molecular vibrations associated with proteins, glutamate, and lipid metabolism were observed in IRSM using Raman spectroscopy. FTIR analysis indicated changes in the molecular vibrations of lipids and proteins, collagen dysregulation and impaired glucose metabolism. Combination of both spectroscopic data using mid-level fusion (MLF: 92% using AdaBoost and DT models) and high-level fusion (HLF: 92% using SVM models) methods showed improved IRSM classification accuracy as compared to individual spectral models. Our results indicate that spectral fusion technology hold promise in enhancing diagnostic accuracy of IRSM in clinical settings. Validation of these findings in a larger patient population is underway.


Asunto(s)
Aborto Habitual , Espectrometría Raman , Humanos , Espectroscopía Infrarroja por Transformada de Fourier , Femenino , Aborto Habitual/diagnóstico , Adulto , Máquina de Vectores de Soporte , Embarazo , Endometrio/metabolismo , Endometrio/patología , Endometrio/química , Análisis de Componente Principal , Estudios de Casos y Controles , Árboles de Decisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA