Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Spectrosc ; 78(9): 912-921, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39090839

RESUMEN

Growing demand for pesticides has created an environment prone to deceptive activities, where counterfeit or adulterated pesticide products infiltrate the market, often escaping rapid detection. This situation presents a significant challenge for sensor technology, crucial in identifying authentic pesticides and ensuring agricultural safety practices. Raman spectroscopy emerges as a powerful technique for detecting adulterants. Coupling the electrochemical techniques allows a more specific and selective detection and compound identification. In this study, we evaluate the efficacy of spectroelectrochemical measurements by coupling a potentiostat and Raman spectrograph to identify paraquat, a nonselective herbicide banned in several countries. Our findings demonstrate that applying -0.70 V during measurements yields highly selective Raman spectra, highlighting the primary vibrational bands of paraquat. Moreover, the selective Raman signal of paraquat was discernible in complex samples, including tap water, apple, and green cabbage, even in the presence of other pesticides such as diquat, acephate, and glyphosate. These results underscore the potential of this technique for reliable pesticide detection in diverse and complex matrices.


Asunto(s)
Malus , Paraquat , Espectrometría Raman , Espectrometría Raman/métodos , Paraquat/análisis , Malus/química , Herbicidas/análisis , Brassica/química , Técnicas Electroquímicas/métodos , Contaminación de Alimentos/análisis , Plaguicidas/análisis
2.
Front Neurosci ; 18: 1404009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050668

RESUMEN

Background: Acephate is a widely used organophosphate insecticide. Exposure to endocrine-disrupting chemicals, such as acephate, can interfere with neurodevelopment in childhood, increasing the risk of higher brain dysfunction later in life. Furthermore, brain dysfunction may be related to chemical exposure-related disturbances in the gut microbiota. However, the effects of early acephate exposure on the brains of adult males and females as well as on the adult gut environment remain poorly understood. Methods: This study investigated the effects of perinatal acephate exposure on the central nervous system and gut microbiota of mice, including sex differences and environmentally relevant concentrations. C57BL/6 N pups were exposed to acephate (0, 0.3, 10, and 300 ppm) via the dam in their drinking water from embryonic day (E) 11.5 to postnatal day 14. We examined its effects on the central nervous system of adult males and females. Results: In the male treatment group, impairments in learning and memory were detected. Immunohistochemical analysis revealed a decrease in SOX2-, NeuN-, DCX-, and GFAP-positive cells in the hippocampal dentate gyrus in males compared to the control group, whereas GFAP-positive cells were fewer in females. In addition, gut microbiota diversity was reduced in both sexes in the experimental group. Conclusion: Our study demonstrates that the effects of early-life exposure to acephate are more pronounced in males than in females and can lead to a lasting impact on adult behavior, even at low doses, and that the gut microbiota may reflect the brain environment.

3.
Pestic Biochem Physiol ; 203: 106023, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084782

RESUMEN

Acephate and chlorantraniliprole are two insecticides widely used in agricultural applications. Several studies were focused on the mode of action and related biological and cellular level expressions. However, the sub-lethal dose and related molecular expression level of acephate and chlorantraniliprole have not been evaluated or studied to the same degree. In this study, we investigated the sub-lethal toxicity of acephate and chlorantraniliprole in Drosophila melanogaster. The EC50 value was recorded with high difference, and is found to be 1.9 µg/ml and 0.029 µg/ml respectively for acephate and chlorantraniliprole, the difference is simply because of the different modes of action. The 1/5th EC50 concentration was selected for studying the pesticide induced transcriptomics in D. melanogaster. Both pesticides significantly altered the expression profile of several transcripts which are involved in proteolysis, detoxification, chromosome associated proteins and immune response genes and so on. The effect of both pesticides on D. melanogaster was further explored by screening the genes involved in toxicity, which were analyzed using, GO and KEGG pathways. The results revealed that the sub-lethal exposure of both pesticides caused significant changes in the global gene transcription profiles and each pesticide had their unique mode of alteration in the D. melanogaster.


Asunto(s)
Drosophila melanogaster , Perfilación de la Expresión Génica , Insecticidas , Fosforamidas , ortoaminobenzoatos , Animales , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , ortoaminobenzoatos/toxicidad , ortoaminobenzoatos/farmacología , Insecticidas/toxicidad , Fosforamidas/toxicidad , Transcriptoma/efectos de los fármacos , Plaguicidas/toxicidad , Compuestos Organotiofosforados
4.
Sci Total Environ ; 934: 173282, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759926

RESUMEN

Acetylcholinesterase (AChE) has emerged as a significant biological recognition element in the biosensor field, particularly for the detection of insecticides. Nevertheless, the weak thermostability of AChE restricts its utilization due to the complexities associated with production, storage, and application environments. By evaluating the binding affinity between representative AChE and insecticides, an AChE from Culex pipiens was screened out, which displayed a broad-spectrum and high sensitivity to insecticides. The C. pipiens AChE (CpA) was subsequently expressed in Escherichia coli (E. coli) as a soluble active protein. Furthermore, a three-point mutant, M4 (A340P/D390E/S581P), was obtained using a semi-rational design strategy that combined molecular dynamics (MD) simulation and computer-aided design, which exhibited a four-fold increase in half-life at 40 °C compared to the wild-type (WT) enzyme. The mutant M4 also demonstrated an optimal temperature of 50 °C and a melting temperature (Tm) of 51.2 °C. Additionally, the sensitivity of WT and M4 to acephate was examined, revealing a 50-fold decrease in the IC50 value of M4. The mechanism underlying the improvement in thermal performance was elucidated through secondary structure analysis and MD simulations, indicating an increase in the proportion of protein helices and local structural rigidity. MD analysis of the protein-ligand complexes suggested that the enhanced sensitivity of M4 could be attributed to frequent specific contacts between the organophosphorus (OP) group of acephate and the key active site residue Ser327. These findings have expanded the possibilities for the development of more reliable and effective industrial enzyme preparations and biosensors.


Asunto(s)
Acetilcolinesterasa , Culex , Insecticidas , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/genética , Culex/enzimología , Culex/genética , Animales , Fosforamidas , Simulación de Dinámica Molecular , Compuestos Organotiofosforados , Estabilidad de Enzimas
5.
Insects ; 15(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38667395

RESUMEN

In Mississippi, the Pentatomidae complex infesting soybean is primarily composed of Euschistus servus, Nezara viridula, Chinavia hilaris, and Piezodorus guildinii. This study employed spray bioassays to evaluate the susceptibilities of these stink bugs to seven commonly used formulated insecticides: oxamyl, acephate, bifenthrin, λ-cyhalothrin, imidacloprid, thiamethoxam, and sulfoxaflor. Stinks bugs were collected from soybeans in Leland, MS, USA during 2022 and 2023, as well as from wild host plants in Clarksdale, MS. There was no significant difference in the susceptibility of C. hilaris to seven insecticides between two years, whereas P. guildinii showed slightly increased susceptibility to neonicotinoids in 2023. Among all four stink bug species, susceptibility in 2022 was ranked as P. guildinii ≤ C. hilaris ≈ N. viridula, while in 2023, it was ranked as P. guildinii ≤ C. hilaris ≤ E. Servus. Additionally, populations of E. servus and P. guildinii collected from Clarksdale exhibited high tolerance to pyrethroids and neonicotinoids. Moreover, populations of E. servus and P. guildinii from SIMRU-2022 and Clarksdale-2023 showed elevated esterase and cytochrome P450 activity, respectively. These findings from spray bioassays and enzyme activity analyses provide a baseline for monitoring insecticide resistance in Pentatomidae and can guide insecticide resistance management strategies for Mississippi soybean.

6.
Life (Basel) ; 13(12)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38137855

RESUMEN

The aim of the current work was to examine for the first time the nephropreventive capacity of Ephedra alata seed extract (E) against maternal exposure to acephate in rat offspring. The in vivo results revealed that E. alata supplementation for 28 days (40 mg/kg b.w.) significantly attenuated the nephrotoxicity in adult offspring induced by acephate. In fact, it decreased the levels of creatinine and uric acid and increased the albumin content compared to the intoxicated group. The in utero studies showed that E. alata inhibited the renal oxidative stress generated by acephate exposure by reducing lipid peroxidation and enhancing antioxidant biomarker activities (GSH, CAT, and SOD). The inhibition of DNA fragmentation and the improvement of the ultrastructural changes highlighted the prophylactic effect of E. alata in renal tissue. Additionally, the immunofluorescence study showed the upregulation of LC3 gene expression, suggesting the capacity of E. alata extract to stimulate autophagic processes as a protective mechanism. Molecular docking analysis indicated that hexadecasphinganine, the major compound in E. alata, has a higher affinity toward the Na+/K+-ATPase, epithelial sodium channel (ENaC), and sodium hydrogen exchanger 3 (NHE3) genes than acephate. Hexadecasphinganine could be considered a potential inhibitor of the activity of these genes and therefore exerted its preventive capacity. The obtained findings confirmed that E. alata seed extract exerted nephropreventive capacities, which could be related to its bioactive compounds, which possess antioxidant activities.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37943072

RESUMEN

OBJECTIVE: To discuss the clinical presentation and successful treatment of a suspected case of intermediate syndrome due to organophosphate (OP) poisoning in a dog. CASE SUMMARY: Two dogs presented with acute cholinergic signs after ingesting an OP insecticide containing 50% acephate. Clinical signs consistent with acute cholinergic crisis resolved in both dogs within 24 hours postingestion. One dog developed an onset of neurological signs consistent with intermediate syndrome approximately 24 hours postingestion. This patient's clinical signs resolved with the use of pralidoxime chloride. NEW OR UNIQUE INFORMATION PROVIDED: OP poisoning most commonly presents as an acute cholinergic crisis, with rare instances of animals developing intermediate syndrome. Few reports of successful treatment and recovery from intermediate syndrome exist in the veterinary literature, particularly with instances in which 2 dogs within the same exposure setting were treated for acute cholinergic signs and only 1 progressed to an intermediate syndrome. This report also highlights the importance of early intervention with pralidoxime chloride prior to the onset of aging.


Asunto(s)
Enfermedades de los Perros , Insecticidas , Intoxicación por Organofosfatos , Intoxicación , Perros , Animales , Intoxicación por Organofosfatos/tratamiento farmacológico , Intoxicación por Organofosfatos/veterinaria , Compuestos de Pralidoxima/uso terapéutico , Insecticidas/uso terapéutico , Colinérgicos/uso terapéutico , Intoxicación/tratamiento farmacológico , Intoxicación/veterinaria , Enfermedades de los Perros/inducido químicamente , Enfermedades de los Perros/tratamiento farmacológico
8.
Reprod Toxicol ; 121: 108472, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37717670

RESUMEN

Acephate is an organophosphate insecticide that exerts its toxicity by acting on the nervous system of insects. In addition to its action on the mammalian nervous system, acephate can also induce endocrine disruption of the reproductive system in mammals. However, the effects of acephate on sexual maturation and ovary development remain unclear. This study evaluated whether early-life exposure to acephate negatively impacts the male and female sexual maturation process and mature reproductive tissues. C57BL/6N mice were exposed to acephate (0, 0.3, 300 ppm) in drinking water from embryonic day 11.5 to ablactation, when the pups were four weeks old. Both sexes in the high-dose group experienced an early postnatal growth deficit, while females in the low-dose group continued to gain weight until 10 weeks of age. Exposure to acephate altered the anogenital index in females. Furthermore, preputial separation and vaginal opening were delayed in the high-dose group. At maturity, the weight of the seminal vesicles was decreased in the high-dose group. All treated groups exhibited increased vacuolation, accumulation of residual bodies, and degeneration in the testes. Furthermore, follicle regression was observed, and the healthy follicle number at each developmental stage was decreased in all treated groups. These results are probably due to the inhibition of the regulation by the hypothalamic-pituitary-gonadal axis and direct toxicity to reproductive organs. In conclusion, our study demonstrates that early-life exposure to acephate in mice may disrupt normal postnatal development, postpone puberty onset, and adversely affect reproductive functions during the reproductive period in both sexes.

9.
Biomed Chromatogr ; 37(10): e5705, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37525473

RESUMEN

The present study on "acephate persistence on green pea" was conducted in SKUAST-Kashmir. The study aimed to determine the persistence, dissipation kinetics and waiting period of acephate on green pea. Acephate was sprayed at 75% soluble powder (SP) at 560 g a.i.ha-1 at the fruiting stage followed by another application at a 10 day interval. A rapid and accurate method (quick, easy, cheap, effective, rugged and safe, QuEChERS) was used for extraction and the residue was determined by gas chromatography-electron capture detection on a CPSIL-8CB capillary column (0.25um film thickness, 0.25 mm i.d, 30 m length). At the fortification levels of 0.05, 0.1 and 0.5 mg kg-1 , the percentage recovery of acephate on green pea was found in the range of 71-107%. The initial deposit of green pea was estimated to be 0.37 mg kg-1 . At the indicated dose, the residue of acephate on green pea dissipated below the limit of quantification of 0.05 mg kg-1 after 10 days. Acephate degradation was quick in green pea, with a half-life of 4.07 days. For safe eating of green peas, a 10 day waiting period is recommended. The gas chromatography-electron capture detection technique was validated by following the SANTE standards.


Asunto(s)
Residuos de Plaguicidas , Pisum sativum , Cinética , Pisum sativum/química , Residuos de Plaguicidas/análisis , Electrones , Cromatografía de Gases/métodos , Medición de Riesgo
10.
Anal Chim Acta ; 1262: 341264, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37179059

RESUMEN

In this study, surface-enhanced Raman spectroscopy (SERS) charged probes and an inverted superhydrophobic platform were used to develop a detection method for agricultural chemicals residues (ACRs) in rice combined with lightweight deep learning network. First, positively and negatively charged probes were prepared to adsorb ACRs molecules to SERS substrate. An inverted superhydrophobic platform was prepared to alleviate the coffee ring effect and induce tight self-assembly of nanoparticles for high sensitivity. Chlormequat chloride of 15.5-0.05 mg/L and acephate of 100.2-0.2 mg/L in rice were measured with the relative standard deviation of 4.15% and 6.25%. SqueezeNet were used to develop regression models for the analysis of chlormequat chloride and acephate. And the excellent performances were obtained with the coefficients of determination of prediction of 0.9836 and 0.9826 and root-mean-square errors of prediction of 0.49 and 4.08. Therefore, the proposed method can realize sensitive and accurate detection of ACRs in rice.


Asunto(s)
Aprendizaje Profundo , Nanopartículas del Metal , Oryza , Espectrometría Raman/métodos , Agroquímicos , Oryza/química , Clormequat , Nanopartículas del Metal/química , Interacciones Hidrofóbicas e Hidrofílicas
11.
J Agric Food Chem ; 71(13): 5261-5274, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36962004

RESUMEN

The acephate-degrading microbes that are currently available are not optimal. In this study, Burkholderia sp. A11, an efficient degrader of acephate, presented an acephate-removal efficiency of 83.36% within 56 h (100 mg·L-1). The A11 strain has a broad substrate tolerance and presents a good removal effect in the concentration range 10-1600 mg·L-1. Six metabolites from the degradation of acephate were identified, among which the main products were methamidophos, acetamide, acetic acid, methanethiol, and dimethyl disulfide. The main degradation pathways involved include amide bond breaking and phosphate bond hydrolysis. Moreover, strain A11 successfully colonized and substantially accelerated acephate degradation in different soils, degrading over 90% of acephate (50-200 mg·kg-1) within 120 h. 16S rDNA sequencing results further confirmed that the strain A11 gradually occupied a dominant position in the soil microbial communities, causing slight changes in the diversity and composition of the indigenous soil microbial community structure.


Asunto(s)
Burkholderia , Insecticidas , Compuestos Organotiofosforados , Biodegradación Ambiental , Insecticidas/química , Compuestos Organofosforados , Compuestos Organotiofosforados/química , Fosforamidas , Suelo , Burkholderia/metabolismo
12.
Biology (Basel) ; 12(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36829441

RESUMEN

This study examined how maternal exposure to acephate-an organophosphate-based insecticide-affected the renal development in rat offspring during adulthood. Virgin female Wistar rats were randomly allocated to three groups: group 1 (control) received sterile water; groups 2 and 3 were intragastrically exposed to low (14 mg/kg) and high (28 mg/kg) doses of acephate from day 6 of pregnancy until delivery, respectively. Further, the offspring of the adult female rats were euthanized in postnatal week 8. Compared with the controls, the adult rat offspring with exposure to low and high doses of acephate exhibited elevated plasma creatinine and blood urea nitrogen levels. Additionally, immunofluorescence analysis revealed the upregulation of autophagic marker genes (Beclin-1 and LC-3) in the acephate-treated rat offspring, thereby suggesting the induction of an autophagic mechanism. Notably, the increased malondialdehyde level, decreased glutathione level, and decreased superoxide dismutase and catalase activities confirmed the ability of acephate to induce oxidative stress and apoptosis in the kidneys of the rat offspring. This may explain the renal histopathological injury detected using hematoxylin and eosin staining. Furthermore, a reverse transcription polymerase chain reaction revealed that the mRNA expression levels of the Na+/K+-ATPase and the epithelial sodium channel (ENaC) genes were significantly higher in the kidney of female offspring than that of controls owing to acephate toxicity. However, there was no significant effect of acephate on the expression of NHE3 in the treatment group compared with the control group. Overall, the present findings suggest that oxidative stress caused by prenatal exposure to acephate causes nephrotoxicity and histopathological alterations in adult rat offspring, likely by actions on renal ENaC and Na+/K+-ATPase genes as well as the autophagic markers Beclin-1 and LC-3.

13.
Pest Manag Sci ; 79(6): 2029-2039, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36693821

RESUMEN

BACKGROUND: Hormesis is a common phenomenon in toxicology described as low-dose stimulation due to a toxin which causes inhibition at a high dose. Pesticide hormesis in plants has attracted considerable research interest in recent years; however, the specific mechanism has not yet been clarified. Acephate is an organophosphorus insecticide that is used worldwide. Here, hormesis in tomato (Solanum lycopersicum L.) plant growth and photosynthesis after acephate exposure is confirmed, as stimulation occurred at low stress levels, whereas inhibition occurred after exposure to high concentrations. RESULTS: We found that low acephate concentration (5-fold lower than recommended application dosage) could enhance chlorophyll biosynthesis and stimulate photosynthesis effects, and thus improve S. lycopersicum growth. A high level of acephate (5-fold higher than recommended application dosage) stress inhibited chlorophyll accumulation, decreased photosystem II efficiency and blocked antioxidant reactions in leaves, increasing reactive oxygen species levels and damaging plant growth. Transcriptomic analysis and quantitative real-time PCR results revealed that the photosynthesis - antenna proteins pathway played a crucial role in the hormesis effect, and that LHCB7 as well as LHCP from the pathway were the most sensitive to acephate hormesis. CONCLUSION: Our results showed that acephate could induce hormesis in tomato plant growth and photosynthesis, and that photosystem II and the photosynthesis - antenna proteins pathway played important roles in hormesis. These results provide novel insights into the scientific and safe application of chemical pesticides, and new guidance for investigation into utilizing pesticide hormesis in agriculture. © 2023 Society of Chemical Industry.


Asunto(s)
Insecticidas , Solanum lycopersicum , Solanum lycopersicum/genética , Hormesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Insecticidas/farmacología , Transcriptoma , Compuestos Organofosforados/metabolismo , Fotosíntesis , Clorofila , Hojas de la Planta/metabolismo
14.
Talanta ; 252: 123843, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36049338

RESUMEN

A fluorescent graphene oxide based aptasensing platform was developed for the detection of acephate. The aptamers specific to the acephate were screened through GO-SELEX (Graphene Oxide - Systematic Evolution of Ligands by EXponential enrichment) method for six rounds. The screened aptamers were analyzed for their binding affinity and specificity by using fluorescence-based assay. The aptamer AAPT3 that demonstrated highest affinity (Kd = 9 ± 1 nM) and an excellent selectivity, was employed in the development of fluorescent aptasensor. Under optimal conditions, the aptasensor showed low limit of detection (4 ng mL-1) and a wide dynamic linear range (5-80 ng mL-1). The aptasensor was also validated against water samples spiked with acephate, which showed fluorescence recovery from 94 to 107% and coefficient of variation 1-5%. These results indicate that the developed aptasensor can be used for sensitive, selective, and accurate detection of acephate in various samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Grafito , Técnica SELEX de Producción de Aptámeros , Límite de Detección , Técnicas Biosensibles/métodos
15.
Int J Mol Sci ; 23(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36012388

RESUMEN

New insights into the interactions between nanopesticides and edible plants are required in order to elucidate their impacts on human health and agriculture. Nanopesticides include formulations consisting of organic/inorganic nanoparticles. Drosophila melanogaster has become a powerful model in genetic research thanks to its genetic similarity to mammals. This project mainly aimed to generate new evidence for the toxic/genotoxic properties of different nanopesticides (a nanoemulsion (permethrin nanopesticides, 20 ± 5 nm), an inorganic nanoparticle as an active ingredient (copper(II) hydroxide [Cu(OH)2] nanopesticides, 15 ± 6 nm), a polymer-based nanopesticide (acephate nanopesticides, 55 ± 25 nm), and an inorganic nanoparticle associated with an organic active ingredient (validamycin nanopesticides, 1177 ± 220 nm)) and their microparticulate forms (i.e., permethrin, copper(II) sulfate pentahydrate (CuSO4·5H2O), acephate, and validamycin) widely used against agricultural pests, while also showing the merits of using Drosophila-a non-target in vivo eukaryotic model organism-in nanogenotoxicology studies. Significant biological effects were noted at the highest doses of permethrin (0.06 and 0.1 mM), permethrin nanopesticides (1 and 2.5 mM), CuSO4·5H2O (1 and 5 mM), acephate and acephate nanopesticides (1 and 5 mM, respectively), and validamycin and validamycin nanopesticides (1 and 2.5 mM, respectively). The results demonstrating the toxic/genotoxic potential of these nanopesticides through their impact on cellular internalization and gene expression represent significant contributions to future nanogenotoxicology studies.


Asunto(s)
Cobre , Permetrina , Animales , Cobre/toxicidad , Drosophila , Drosophila melanogaster , Humanos , Hidróxidos , Inositol/análogos & derivados , Mamíferos , Compuestos Organotiofosforados , Permetrina/toxicidad , Fosforamidas
16.
J Sep Sci ; 45(10): 1806-1817, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35261148

RESUMEN

Acephate is widely used in crops as racemate. However, the enantioselective dissipation of acephate enantiomers has not been investigated in pakchoi. A sensitive and effective approach was established for determining residues of acephate and its highly toxic metabolite methamidophos enantiomers by supercritical fluid chromatography tandem mass spectrometry. Baseline separations for their enantiomers were achieved by using a Chiralcel OD-H column. The optimal chromatographic conditions were obtained as follows: CO2 /ethanol (95/5) as mobile phase; flow rate, 3.0 mL/min; column temperature, 40°C. The mean recoveries (RSDs) of analytes were in the range of 77-83.1% (6.1-9.9%), 75.4-87.5% (9.3-13.2%), and 81.5-84.2% (7.1-13.4%) at three fortification levels (0.005, 0.05, and 0.5 mg/kg for each enantiomer) for interday assay (n = 18). The method was used to evaluate the enantioselective dissipation of acephate and methamidophos in pakchoi. S-acephate dissipated faster than R-acephate, while the concentration of R-methamidophos was higher than that of S-methamidophos during the entire study period. The results indicated that the R-enantiomer of acephate and methamidophos was preferentially enriched in pakchoi. The established analysis approach and the study data provided useful information for the rational use of acephate in agriculture.


Asunto(s)
Cromatografía con Fluido Supercrítico , Insecticidas , Insecticidas/análisis , Compuestos Organotiofosforados , Fosforamidas , Estereoisomerismo , Espectrometría de Masas en Tándem/métodos
17.
Food Chem ; 381: 132282, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35176684

RESUMEN

An efficient colorimetric detection platform based on multi-enzyme cascade has been developed for detection of organophosphorus. Firstly, the dual-enzyme platform was prepared and applied for sensitive glucose detection (detection limit 0.32 µM). And then three enzymes, including acetylcholinesterase, horseradish peroxidase and choline oxidase were encapsulated in cruciate flower-like zeolitic imidazolate framework-8 (CF-ZIF-8) through one-step co-precipitation to construct detection platform with acetylcholine chloride as substrate. The acephate inhibited the activity of acetylcholinesterase, obstructed the cascade reaction and reduced the production of H2O2, resulting in the changes of color intensity for the colorimetric detection. With suitable size and porous structure, CF-ZIF-8 provided a good microenvironment for guaranteeing the activity and spatial proximity of enzymes. The multi-enzyme platform displayed great performances with the detection limit of 0.23 nM for acephate. It was applied to the detection of acephate in Chinese cabbage and romaine, verifying the practicability of this platform.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Acetilcolinesterasa , Técnicas Biosensibles/métodos , Colorimetría , Glucosa , Peróxido de Hidrógeno/química , Estructuras Metalorgánicas/química
18.
J Hazard Mater ; 426: 127841, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34844804

RESUMEN

The microbial degradation of acephate in pure cultures has been thoroughly explored, but synergistic metabolism at the community level has rarely been investigated. Here, we report a novel microbial consortium, ZQ01, capable of effectively degrading acephate and its toxic product methamidophos, which can use acephate as a source of carbon, phosphorus and nitrogen. The degradation conditions with consortium ZQ01 were optimized using response surface methodology at a temperature of 34.1 °C, a pH of 8.9, and an inoculum size of 2.4 × 108 CFU·mL-1, with 89.5% of 200 mg L-1 acephate degradation observed within 32 h. According to the main products methamidophos, acetamide and acetic acid, a novel degradation pathway for acephate was proposed to include hydrolysis and oxidation as the main pathways of acephate degradation. Moreover, the bioaugmentation of acephate-contaminated soils with consortium ZQ01 significantly enhanced the removal rate of acephate. The results of the present work demonstrate the potential of microbial consortium ZQ01 to degrade acephate in water and soil environments, with a different and complementary acephate degradation pathway.


Asunto(s)
Consorcios Microbianos , Fosforamidas , Biodegradación Ambiental , Compuestos Organotiofosforados , Suelo , Microbiología del Suelo
19.
Environ Sci Pollut Res Int ; 28(40): 57361-57371, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34091843

RESUMEN

Since the invasion of the fall armyworm moth (Spodoptera frugiperda) in China in January 2019, damage to maize crops has gradually intensified, and chemical control has become the main control measure. This study aimed to examine methods of effective pest control while monitoring the environmental impact of pesticide use. The effectiveness of S. frugiperda pest control by foliar spraying and root irrigation of maize plants with acephate was determined, and the absorption, distribution, and dissipation of acephate and methamidophos by maize were studied. Field trials showed that acephate treatment at 6000 g a.i. ha-1 was the most effective for controlling S. frugiperda. Acephate and methamidophos were absorbed from the roots, transported upward, and concentrated in the leaves, particularly new leaves. The terminal residues of acephate and methamidophos in maize grains were below detectable levels at 60 days after treatment. The results demonstrate that acephate treatment via root irrigation can more effectively control the infestation of S. frugiperda in maize than acephate treatment via foliar spraying. The translocation and distribution of acephate and methamidophos by root irrigation were more uniform, and the holding efficiency was higher than those in foliar spraying, suggesting an extended period of control efficacy. This pest control method could be utilized to reduce pesticide residues while safely and efficiently controlling S. frugiperda infestation.


Asunto(s)
Mariposas Nocturnas , Zea mays , Animales , Compuestos Organotiofosforados , Fosforamidas , Spodoptera
20.
J Mol Model ; 27(6): 164, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33970322

RESUMEN

Organophosphorus hydrolase (OPH) is one of the most important enzymes in order to bioremediation of organophosphorus (OP) pesticides. OPH is capable of degrading a wide variety of OPs, but it has poor specificity to OPs with P-S bond, including acephate. Given that the binding site residues of OPH determine its substrate specificity, this study was carried out to find the best OPH mutants containing a single point mutation in the binding site that possess improved specificity to acephate. Hence, we generated all possible mutant models and performed molecular docking of acephate with wild-type OPH (OPH-WT) and its mutants. After that, molecular dynamic (MD) simulations of OPH-WT and the best mutants, according to the docking results, were performed in both apo- and complex with acephate forms. Docking results signified that 51 out of 228 mutants possessed increased binding affinities to acephate, as compared to OPH-WT. Of them, W131N, W131G, and H254Y were the best mutants considering the high binding affinities and proper orientation of the ligand at their active sites. MD simulations confirmed the stability of the three mutants in both apo- and complex with acephate forms and also showed that these formed more stable complexes with acephate, as compared to OPH-WT. MD results also suggested that W131N and W131G, in addition to enhanced specificity, could keep the necessary configuration for acephate hydrolysis during the simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA