Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.334
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Virol ; : e0062224, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953377

RESUMEN

African swine fever virus causes a lethal hemorrhagic disease in domestic swine and wild boar for which currently licensed commercial vaccines are only available in Vietnam. Development of subunit vaccines is complicated by the lack of information on protective antigens as well as suitable delivery systems. Our previous work showed that a pool of eight African swine fever virus genes vectored using an adenovirus prime and modified vaccinia virus boost could prevent fatal disease after challenge with a virulent genotype I isolate of the virus. Here, we identify antigens within this pool of eight that are essential for the observed protection and demonstrate that adenovirus-prime followed by adenovirus-boost can also induce protective immune responses against genotype I African swine fever virus. Immunization with a pool of adenoviruses expressing individual African swine fever virus genes partially tailored to genotype II virus did not protect against challenge with genotype II Georgia 2007/1 strain, suggesting that different antigens may be required to induce cross-protection for genetically distinct viruses. IMPORTANCE: African swine fever virus causes a lethal hemorrhagic disease in domestic pigs and has killed millions of animals across Europe and Asia since 2007. Development of safe and effective subunit vaccines against African swine fever has been problematic due to the complexity of the virus and a poor understanding of protective immunity. In a previous study, we demonstrated that a complex combination of eight different virus genes delivered using two different viral vector vaccine platforms protected domestic pigs from fatal disease. In this study, we show that three of the eight genes are required for protection and that one viral vector is sufficient, significantly reducing the complexity of the vaccine. Unfortunately, this combination did not protect against the current outbreak strain of African swine fever virus, suggesting that more work to identify immunogenic and protective viral proteins is required to develop a truly effective African swine fever vaccine.

2.
J Virol ; : e0023124, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980063

RESUMEN

African swine fever virus (ASFV) is the causative agent of a contagious disease affecting wild and domestic swine. The function of B169L protein, as a potential integral structural membrane protein, remains to be experimentally characterized. Using state-of-the-art bioinformatics tools, we confirm here earlier predictions indicating the presence of an integral membrane helical hairpin, and further suggest anchoring of this protein to the ER membrane, with both terminal ends facing the lumen of the organelle. Our evolutionary analysis confirmed the importance of purifying selection in the preservation of the identified domains during the evolution of B169L in nature. Also, we address the possible function of this hairpin transmembrane domain (HTMD) as a class IIA viroporin. Expression of GFP fusion proteins in the absence of a signal peptide supported B169L insertion into the ER as a Type III membrane protein and the formation of oligomers therein. Overlapping peptides that spanned the B169L HTMD were reconstituted into ER-like membranes and the adopted structures analyzed by infrared spectroscopy. Consistent with the predictions, B169L transmembrane sequences adopted α-helical conformations in lipid bilayers. Moreover, single vesicle permeability assays demonstrated the assembly of lytic pores in ER-like membranes by B169L transmembrane helices, a capacity confirmed by ion-channel activity measurements in planar bilayers. Emphasizing the relevance of these observations, pore-forming activities were not observed in the case of transmembrane helices derived from EP84R, another ASFV protein predicted to anchor to membranes through a α-helical HTMD. Overall, our results support predictions of viroporin-like function for the B169L HTMD.IMPORTANCEAfrican swine fever (ASF), a devastating disease affecting domestic swine, is widely spread in Eurasia, producing significant economic problems in the pork industry. Approaches to prevent/cure the disease are mainly restricted to the limited information concerning the role of most of the genes encoded by the large (160-170 kba) virus genome. In this report, we present the experimental data on the functional characterization of the African swine fever virus (ASFV) gene B169L. Data presented here indicates that the B169L gene encodes for an essential membrane-associated protein with a viroporin function.

3.
Virulence ; 15(1): 2375550, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38973077

RESUMEN

African swine fever (ASF) is a devastating disease with a high impact on the pork industry worldwide. ASF virus (ASFV) is a very complex pathogen, the sole member of the family Asfaviridae, which induces a state of immune suppression in the host through infection of myeloid cells and apoptosis of lymphocytes. Moreover, haemorrhages are the other main pathogenic effect of ASFV infection in pigs, related to the infection of endothelial cells, as well as the activation and structural changes of this cell population by proinflammatory cytokine upregulation within bystander monocytes and macrophages. There are still many gaps in the knowledge of the role of proteins produced by the ASFV, which is related to the difficulty in producing a safe and effective vaccine to combat the disease, although few candidates have been approved for use in Southeast Asia in the past couple of years.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Virus de la Fiebre Porcina Africana/patogenicidad , Virus de la Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/fisiología , Animales , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/inmunología , Porcinos , Virulencia
4.
Emerg Microbes Infect ; : 2377599, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973388

RESUMEN

African swine fever virus (ASFV) is the causative agent of African swine fever (ASF), a highly contagious disease that can kill up to 100% of domestic pigs and wild boars. It has been shown that the pigs inoculated with some ASF vaccine candidates display more severe clinical signs and die earlier than do pigs not immunized. We hypothesize that antibody-dependent enhancement (ADE) of ASFV infection may be caused by the presence of some unidentified antibodies. In this study, we found that the ASFV-encoded structural protein A137R (pA137R) can be recognized by the anti-ASFV positive sera, indicating that the anti-pA137R antibodies are induced in the ASFV-infected pigs. Interestingly, our results demonstrated that the anti-pA137R antibodies produced in rabbits or pigs enhanced viral replication of different ASFV strains in primary porcine alveolar macrophages (PAMs), the target cells of ASFV. Mechanistic investigations revealed that anti-pA137R antibodies were able to promote the attachment of ASFV to PAMs and two types of Fc gamma receptors (FcγRs), FcγRII and FcγRIII, mediated the ADE of ASFV infection. Taken together, anti-pA137R antibodies are able to drive ASFV ADE in PAMs. These findings shed new light on the roles of anti-ASFV antibodies and have implications for the pathophysiology of the disease and the development of ASF vaccines.

5.
Front Vet Sci ; 11: 1419083, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988987

RESUMEN

African swine fever (ASF) is a fatal disease that threatens the health status of the swine population and thus can impact the economic outcome of the global pig industry. Monitoring the ASF virus (ASFV) is of utmost concern to prevent and control its distribution. This study aims to identify a suitable sampling strategy for ASFV detection in living and deceased pigs under field conditions. A range of samples, comprising tissues obtained from deceased pigs, as well as serum and tonsil swab samples from live pigs, were gathered and subjected to detection using the qPCR method. The findings revealed that the mandibular lymph nodes demonstrated the highest viral loads among superficial tissues, thereby indicating their potential suitability for detecting ASFV in deceased pigs. Additionally, the correlations between virus loads in various tissues have demonstrated that tonsil swab samples are a viable specimen for monitoring live pigs, given the strong associations observed with other tissues. These findings indicated two dependable sample types for the detection of ASFV: mandibular lymph nodes for deceased pigs and tonsil swabs for live pigs, which supply some references for the development of efficacious preventive measures against ASFV.

6.
Front Vet Sci ; 11: 1425394, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983769

RESUMEN

African Swine Fever (ASF) is a reportable disease of swine that causes far-reaching losses to affected countries and regions. Early detection is critically important to contain and mitigate the impact of ASF outbreaks, for which timely available data is essential. This research examines the potential use of Google Trends data as an early indicator of ASF outbreaks in Southeast Asia, focusing on the three largest swine producing countries, namely, Vietnam, the Philippines, and Thailand. Cross-correlation and Kullback-Leibler (KL) divergence indicators were used to evaluate the association between Google search trends and the number of ASF outbreaks reported. Our analysis indicate strong and moderate correlations between Google search trends and number of ASF outbreaks reported in Vietnam and the Philippines, respectively. In contrast, Thailand, the country of this group in which outbreaks were reported last, exhibits the weakest correlation (KL = 2.64), highlighting variations in public awareness and disease dynamics. These findings suggest that Google search trends are valuable for early detection of ASF. As the disease becomes endemic, integrating trends with other epidemiological data may support the design and implementation of surveillance strategies for transboundary animal diseases in Southeast Asia.

7.
Prev Vet Med ; 229: 106241, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878496

RESUMEN

Oral vaccination is one of the most effective interventions for disease control in wildlife. As a result of the recent global reemergence of African swine fever and ongoing classical swine fever and animal tuberculosis, oral vaccination of Eurasian wild boar (Sus scrofa) receives increased interest. Several baits for wild boar and feral pigs have been described, but developing more stable and personalized formulations is important. This paper proposes a new bait formulation primarily composed of corn flour, piglet feed, sugar, and honey as a binder to obtain improved elasticity. The bait consists of a matrix with no protective coats, has a hemispherical shape (ø 3.4 ×1.6 cm), and displays an anise aroma and blue color. The color and aroma did not affect bait choice by wild boar, while bait coloring contributed to avoid consumption by non-target species (corvids). Baits with the new formulation were significantly more resistant to humidity and high temperatures than previous versions. Simulations suggest that baits with the new formulation are elastic enough to resist impacts from a maximum altitude of 750 m. Thus, the new bait prototype solves several problems of previous bait formulations while keeping a format that can be selectively consumed by piglets and adult wild boar.


Asunto(s)
Sus scrofa , Animales , Administración Oral , Porcinos , Vacunación/veterinaria , Vacunación/métodos , Alimentación Animal/análisis , Vacunas/administración & dosificación , Miel/análisis , Zea mays , Animales Salvajes , Azúcares
8.
Animals (Basel) ; 14(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38929435

RESUMEN

African swine fever (ASF), a highly contagious disease of swine, has posed a significant global threat to the swine industry. As an archipelago, the Philippines has a geographic advantage when it comes to the risk of ASF transmission. However, since its introduction to the Philippines in 2019, it has proliferated not only in backyard and commercial farms but also in wild pig populations. While certain parts of the country were more affected than others, the epidemiologic features of ASF necessitate that all affected areas must be closely monitored and that confirmed cases be treated with the utmost care. With the very limited data on ASF epidemiology and surveillance in the Philippines, future efforts to combat ASF must place even greater emphasis on improved prevention and control strategies. It is worth mentioning that the government's efforts toward comprehensive ASF surveillance and epidemiological investigation into the possible ASFV sources or transmission pathways are the most important measures in the prevention and control of ASF outbreaks. This review article provides a comprehensive overview of the current swine industry and ASF situation in the Philippines, which includes its epidemiology, surveillance, prevention, and control strategies.

9.
Microorganisms ; 12(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38930438

RESUMEN

The highly conserved C129R protein of AFSV was utilized in the development of an ASFV recombinant adenovirus vaccine, demonstrating strong immunogenicity. In this study, we immunized 6-week-old female C57BL/6J mice via subcutaneous injection with 10 µg of purified C129R protein. Humoral and cellular immune effects were assessed using ELISA, flow cytometry, and ELISpot assays. Additionally, 19 peptides of the C129R protein were synthesized and screened for the use of bioinformatics. Positive T-cell epitopes were screened using ELISpot. The results indicated a higher proportion of CD4+ and CD8+ T lymphocytes in immunized mice compared to control mice. ELISA analysis revealed a serum titer of approximately 1:1, 638, 400 in the experimental group of mice. Additionally, peptides C11(53-61aa), C14(81-89aa), C16(97-105aa), and C18(116-124aa) from the C129R protein were able to activate mice spleen lymphocytes to produce IFN-γ. These findings suggest that the C129R protein significantly enhances both humoral and cellular immunity in immunized mice. Moreover, peptides C11, C14, C16, and C18 may serve as potential T-cell epitopes for the C129R protein. These results lay the groundwork for the further exploration of ASFV C129R protein and the identification of novel ASF vaccine antigens.

10.
Microorganisms ; 12(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38930494

RESUMEN

The beta T-cell receptor (TRB) expressed by beta T cells is essential for foreign antigen recognition. The TRB locus contains a TRBV family that encodes three complementarity determining regions (CDRs). CDR1 is associated with antigen recognition and interactions with MHC molecules. In contrast to domestic pigs, African suids lack a 284-bp segment spanning exons 1 and 2 of the TRBV27 gene that contains a sequence encoding CDR1. In this study, we used the African swine fever virus (ASFV) as an example to investigate the effect of deleting the TRBV27-encoded CDR1 on the resistance of domestic pigs to exotic pathogens. We first successfully generated TRBV27-edited fibroblasts with disruption of the CDR1 sequence using CRISPR/Cas9 technology and used them as donor cells to generate gene-edited pigs via somatic cell nuclear transfer. The TRBV-edited and wild-type pigs were selected for synchronous ASFV infection. White blood cells were significantly reduced in the genetically modified pigs before ASFV infection. The genetically modified and wild-type pigs were susceptible to ASFV and exhibited typical fevers (>40 °C). However, the TRBV27-edited pigs had a higher viral load than the wild-type pigs. Consistent with this, the gene-edited pigs showed more clinical signs than the wild-type pigs. In addition, both groups of pigs died within 10 days and showed similar severe lesions in organs and tissues. Future studies using lower virulence ASFV isolates are needed to determine the relationship between the TRBV27 gene and ASFV infection in pigs over a relatively long period.

11.
Viruses ; 16(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38932205

RESUMEN

African swine fever (ASF) is a contagious viral disease affecting pigs and wild boars. It typically presents as a hemorrhagic fever but can also manifest in various forms, ranging from acute to asymptomatic. ASF has spread extensively globally, significantly impacting the swine industry. The complex and highly variable character of the ASFV genome makes vaccine development and disease surveillance extremely difficult. The overall trend in ASFV evolution is towards decreased virulence and increased transmissibility. Factors such as gene mutation, viral recombination, and the strain-specificity of virulence-associated genes facilitate viral variations. This review deeply discusses the influence of these factors on viral immune evasion, pathogenicity, and the ensuing complexities encountered in vaccine development, disease detection, and surveillance. The ultimate goal of this review is to thoroughly explore the genetic evolution patterns and variation mechanisms of ASFV, providing a theoretical foundation for advancement in vaccine and diagnostic technologies.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Variación Genética , Genoma Viral , Virus de la Fiebre Porcina Africana/genética , Animales , Porcinos , Fiebre Porcina Africana/virología , Virulencia , Vacunas Virales/inmunología , Vacunas Virales/genética , Evolución Molecular , Evasión Inmune/genética , Mutación , Desarrollo de Vacunas
12.
Viruses ; 16(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38932241

RESUMEN

African swine fever (ASF) is an acute, hemorrhagic, highly contagious disease in pigs caused by African swine fever virus (ASFV). Our previous study identified that the ASFV MGF300-2R protein functions as a virulence factor and found that MGF300-2R degrades IKKß via selective autophagy. However, the E3 ubiquitin ligase responsible for IKKß ubiquitination during autophagic degradation still remains unknown. In order to solve this problem, we first pulled down 328 proteins interacting with MGF300-2R through immunoprecipitation-mass spectrometry. Next, we analyzed and confirmed the interaction between the E3 ubiquitin ligase TRIM21 and MGF300-2R and demonstrated the catalytic role of TRIM21 in IKKß ubiquitination. Finally, we indicated that the degradation of IKKß by MGF300-2R was dependent on TRIM21. In summary, our results indicate TRIM21 is the E3 ubiquitin ligase involved in the degradation of IKKß by MGF300-2R, thereby augmenting our understanding of the functions of MGF300-2R and offering insights into the rational design of live attenuated vaccines and antiviral strategies against ASF.


Asunto(s)
Virus de la Fiebre Porcina Africana , Quinasa I-kappa B , Ribonucleoproteínas , Ubiquitina-Proteína Ligasas , Ubiquitinación , Proteínas Virales , Animales , Virus de la Fiebre Porcina Africana/metabolismo , Virus de la Fiebre Porcina Africana/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Porcinos , Quinasa I-kappa B/metabolismo , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/metabolismo , Humanos , Células HEK293 , Interacciones Huésped-Patógeno , Factores de Virulencia/metabolismo , Autofagia , Unión Proteica
13.
Virology ; 597: 110145, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38941747

RESUMEN

African swine fever virus (ASFV), which was first identified in northern China in 2018, causes high mortality in pigs. Since the I73R protein in ASFV is abundantly expressed during the early phase of virus replication, it can be used as a target protein for early diagnosis. In this study, the I73R protein of ASFV was expressed, and we successfully prepared a novel monoclonal antibody (mAb), 8G11D7, that recognizes this protein. Through both indirect immunofluorescence and Western blotting assays, we demonstrated that 8G11D7 can detect ASFV strains. By evaluating the binding of the antibody to a series of I73R-truncated peptides, the definitive epitope recognized by the monoclonal antibody 8G11D7 was determined to be 58 DKTNTIYPP 66. Bioinformatic analysis revealed that the antigenic epitope had a high antigenic index and conservatism. This study contributes to a deeper understanding of ASFV protein structure and function, helping establish ASFV-specific detection method.

14.
J Biol Chem ; 300(7): 107453, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38852886

RESUMEN

Identification of a conserved G-quadruplex in E165R of ASFVAfrican swine fever virus (ASFV) is a double-stranded DNA arbovirus with high transmissibility and mortality rates. It has caused immense economic losses to the global pig industry. Currently, no effective vaccines or medications are to combat ASFV infection. G-quadruplex (G4) structures have attracted increasing interest because of their regulatory role in vital biological processes. In this study, we identified a conserved G-rich sequence within the E165R gene of ASFV. Subsequently, using various methods, we verified that this sequence could fold into a parallel G4. In addition, the G4-stabilizers pyridostatin and 5,10,15,20-tetrakis-(N-methyl-4-pyridyl) porphin (TMPyP4) can bind and stabilize this G4 structure, thereby inhibiting E165R gene expression, and the inhibitory effect is associated with G4 formation. Moreover, the G4 ligand pyridostatin substantially impeded ASFV proliferation in Vero cells by reducing gene copy number and viral protein expression. These compelling findings suggest that G4 structures may represent a promising and novel antiviral target against ASFV.

15.
Vet J ; 306: 106186, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936461

RESUMEN

African swine fever (ASF) is an acute, febrile, and highly lethal infectious disease in pigs caused by the African swine fever virus (ASFV). Effective detection methods and strict biosecurity measures are crucial for preventing and controlling ASF, especially since there are currently no commercially available vaccines or antiviral drugs to combat ASFV infection effectively. However, the emergence of low-virulence strains of ASFV in recent years has led to false-positive results, highlighting the importance of early-produced antibody detection methods. Therefore, detecting antibodies against ASFV produced early in the infection can facilitate the prompt identification of infected pigs. This study focused on the p30 protein, an early expressed protein during ASFV infection, to develop an indirect ELISA. This method was established using the HEK293F suspension cell expression system, which has the ability to produce large quantities of correctly folded proteins with normal functionality. In this study, we developed an indirect ELISA test utilizing the p30 recombinant protein produced by the HEK293F suspension cell expression system as the antigen coating. The concentration of the p30 protein obtained from the HEK293F suspension cell expression system was measured at 4.668 mg/mL, serving as the foundation for establishing the indirect ELISA. Our findings indicate that the indirect ELISA method exhibits a sensitivity of 1:12800. Furthermore, it demonstrates high specificity and excellent reproducibility. Comparing our results to those obtained from the commercial kit, we found a coincidence rate of 98.148 % for the indirect ELISA. In summary, we have developed a sensitive method for detecting ASFV, providing a valuable tool for monitoring ASFV infection in pig herds.

16.
Vet World ; 17(5): 1157-1167, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38911078

RESUMEN

Background and Aim: African swine fever (ASF) is a highly virulent and contagious viral disease caused by the ASF virus (ASFV). It has a significant impact on swine production throughout the world, while existing vaccines and specific treatments remain ineffective. ASFV p30 is a potent antigenic protein that induces protective antibodies immediately after infection; however, most recombinant p30 is insoluble. This study aimed to improve the solubility, yield, and purity of recombinant p30 by tagging it with a small ubiquitin-like modifier (SUMO) and modifying the protein purification process. Materials and Methods: SUMO fused with ASFV p30 (SUMO-p30) and p30 alone were cloned and expressed in Escherichia coli. SUMO-p30 and p30 solubility and expression levels were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Protein purification was modified by combining ammonium sulfate precipitation method with affinity chromatography. In addition, large-scale production of all versions of p30 were compared using SDS-PAGE and western blotting, and the purified p30 was used to develop the indirect enzyme-linked immunosorbent assay (ELISA). Results: The solubility and expression levels of SUMO-p30 were dramatically enhanced compared with that of p30. Modification of the purification process significantly increased purified and soluble SUMO-p30 and p30 yields by 6.59 and 1.02 µg/mL, respectively. Large-scale production confirmed that this procedure increased the quantity of recombinant p30 while maintaining protein purity and immunogenicity. The p30-based indirect ELISA was able to discriminate between positive and negative serum samples with statistically significant differences in mean optical density 450 values (p < 0.001). Conclusion: This study demonstrates the enhancement of solubility, purity, and yield of ASFV p30 expressed in E.coli by SUMO fusion tagging and combining ammonium sulfate precipitation with affinity chromatography for protein purification. These positive effects were sustained in large-scale production. Cleavage and removal of hexahistidine-SUMO tag from the fusion protein by protease may not be suitable when handling a large amount of the protein. However, the SUMO-fused p30 retained strong immunoreactivity to convalescent swine serum, indicating its application in immunization and diagnostic purposes. The expression and purification procedures in this study could be applied to increase solubility, quality, and quantity of other recombinant proteins as well.

17.
J Virol Methods ; 329: 114980, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876256

RESUMEN

African swine fever virus (ASFV) is the etiological agent of African swine fever (ASF), a disease with detrimental effects on the health, welfare, and production of domestic and wild pigs. The ASF laboratory confirmation is based on the analysis of blood, serum and organ samples. However, testing these samples could not be always convenient, economically feasible or possible. This study describes the validation process of a PCR-based assay targeting a portion of p72 gene, used for the molecular detection of ASFV, from meat juice samples obtained from pigs succumbed to ASFV. More specifically, we investigated the capability of a real-time PCR assay to detect ASFV DNA in meat juices obtained from the diaphragmatic muscle along with the correspondent spleens of 55 ASFV-positive pigs and wild boars sampled from confirmed outbreaks in Romania and from 73 ASFV-negative and regularly slaughtered healthy pigs collected in the Abruzzo region (Italy). The test was able to detect viral DNA in both types of samples, with lower Ct values in spleens (mean=21.11, median=20.61) than meat juices (mean=23.08, median=22.40). However, distributions of Ct values were strongly correlated each other (R2= 0.83, P<0.001). Considering the distribution of the observed Ct values in the 55 positive meat juice samples, a 1:10 dilution would be able to detect 90 % of positive samples, whereas a 1:100 dilution would reduce the detectability to 78 % of more contaminated samples. As meat juice could be obtained easily from muscles and considering the potential use of this test on pooled samples, it could represent a tool to aid the investigation of ASFV spread.

18.
Vet Sci ; 11(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38921999

RESUMEN

African swine fever virus (ASFV) is a double-stranded DNA virus with an envelope. ASFV has almost the largest genome among all DNA viruses, and its mechanisms of immune evasion are complex. Better understanding of the molecular mechanisms of ASFV genes will improve vaccine design. A238L, a nonstructural protein of ASFV, inhibits NF-κB activation by suppressing the HAT activity of p300. Whether A238L also affects the transcriptional activity of IRF3 remains unexplored. Here we first confirmed the ability of A238L to suppress NF-κB-activity in L929 cells. A238L inhibits the expression of proinflammatory cytokine genes. In contrast, A238L increased the phosphorylation levels of TBK1 and IRF3 in three different cell lines. A238L increases the IRF3-driven promoter activity and induces IRF3 nuclear translocation. Furthermore, A238L enhanced innate antiviral immunity in the absence or presence of poly d (A:T) or poly (I:C) stimulation, or herpes simplex virus type 1 (HSV-1) or Sendai virus (SeV) infection. This study reveals a previously unrecognized role of A238L in promoting antiviral immune responses by TBK1-IRF3 pathway activation.

19.
Virus Res ; 346: 199412, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838820

RESUMEN

African swine fever virus (ASFV) is a large double-stranded DNA virus with a complex structural architecture and encodes more than 150 proteins, where many are with unknown functions. E184L has been reported as one of the immunogenic ASFV proteins that may contribute to ASFV pathogenesis and immune evasion. However, the antigenic epitopes of E184L are not yet characterized. In this study, recombinant E184L protein was expressed in prokaryotic expression system and four monoclonal antibodies (mAbs), designated as 1A10, 2D2, 3H6, and 4C10 were generated. All four mAbs reacted specifically with ASFV infected cells. To identify the epitopes of the mAbs, a series of overlapped peptides of E184L were designed and expressed as maltose binding fusion proteins. Accordingly, the expressed fusion proteins were probed with each E184L mAb separately by using Western blot. Following a fine mapping, the minimal linear epitope recognized by mAb 1A10 was identified as 119IQRQGFL125, and mAbs 2D2, 3H6, and 4C10 recognized a region located between 153DPTEFF158. Alignment of amino acids of E184L revealed that the two linear epitopes are highly conserved among different ASFV isolates. Furthermore, the potential application of the two epitopes in ASFV diagnosis was assessed through epitope-based ELISA using 24 ASFV positive and 18 negative pig serum and the method were able to distinguish positive and negative samples, indicating the two epitopes are dominant antigenic sites. To our knowledge, this is the first study to characterize the B cell epitopes of the antigenic E184L protein of ASFV, offering valuable tools for future research, as well as laying a foundation for serological diagnosis and epitope-based marker vaccine development.


Asunto(s)
Virus de la Fiebre Porcina Africana , Anticuerpos Monoclonales , Anticuerpos Antivirales , Mapeo Epitopo , Epítopos de Linfocito B , Virus de la Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/genética , Anticuerpos Monoclonales/inmunología , Epítopos de Linfocito B/inmunología , Animales , Anticuerpos Antivirales/inmunología , Porcinos , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Ratones , Proteínas Virales/inmunología , Proteínas Virales/genética , Proteínas Virales/química , Antígenos Virales/inmunología , Antígenos Virales/genética , Antígenos Virales/química , Ratones Endogámicos BALB C
20.
Arch Virol ; 169(7): 145, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864875

RESUMEN

Since 2020, African swine fever (ASF) has affected all pig breeds in Northeast India except Doom pigs, a unique indigenous breed from Assam and the closest relatives of Indian wild pigs. ASF outbreaks result in significant economic losses for pig farmers in the region. Based on sequencing and phylogenetic analysis of the B646L (p72) gene, it has been determined that ASFV genotype II is responsible for outbreaks in this region. Recent studies have shown that MYD88, LDHB, and IFIT1, which are important genes of the immune system, are involved in the pathogenesis of ASFV. The differential expression patterns of these genes in surviving ASFV-infected and healthy Doom breed pigs were compared to healthy controls at different stages of infection. The ability of Doom pigs to withstand common pig diseases, along with their genetic resemblance to wild pigs, make them ideal candidates for studying tolerance to ASFV infection. In the present study, we investigated the natural resistance to ASF in Doom pigs from an endemic area in Northeast India. The results of this study provide important molecular insights into the regulation of ASFV tolerance genes.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Brotes de Enfermedades , Filogenia , Animales , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/inmunología , India/epidemiología , Porcinos , Brotes de Enfermedades/veterinaria , Genotipo , Factor 88 de Diferenciación Mieloide/genética , Resistencia a la Enfermedad/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA