Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
FASEB J ; 38(10): e23669, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38747734

RESUMEN

Amomum xanthioides (AX) has been used as an edible herbal medicine to treat digestive system disorders in Asia. Additionally, Lactobacillus casei is a well-known probiotic commonly used in fermentation processes as a starter. The current study aimed to investigate the potential of Lactobacillus casei-fermented Amomum xanthioides (LAX) in alleviating metabolic disorders induced by high-fat diet (HFD) in a mouse model. LAX significantly reduced the body and fat weight, outperforming AX, yet without suppressing appetite. LAX also markedly ameliorated excessive lipid accumulation and reduced inflammatory cytokine (IL-6) levels in serum superior to AX in association with UCP1 activation and adiponectin elevation. Furthermore, LAX noticeably improved the levels of fasting blood glucose, serum insulin, and HOMA-IR through positive regulation of glucose transporters (GLUT2, GLUT4), and insulin receptor gene expression. In conclusion, the fermentation of AX demonstrates a pronounced mitigation of overnutrition-induced metabolic dysfunction, including hyperlipidemia, hyperglycemia, hyperinsulinemia, and obesity, compared to non-fermented AX. Consequently, we proposed that the fermentation of AX holds promise as a potential candidate for effectively ameliorating metabolic disorders.


Asunto(s)
Amomum , Dieta Alta en Grasa , Fermentación , Lacticaseibacillus casei , Obesidad , Animales , Dieta Alta en Grasa/efectos adversos , Ratones , Obesidad/metabolismo , Masculino , Lacticaseibacillus casei/metabolismo , Amomum/química , Ratones Endogámicos C57BL , Probióticos/farmacología , Proteína Desacopladora 1/metabolismo , Resistencia a la Insulina , Ratones Obesos , Adiponectina/metabolismo , Insulina/metabolismo , Insulina/sangre , Glucemia/metabolismo
2.
Biomed Pharmacother ; 172: 116250, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38320334

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a substantial global health issue owing to its high prevalence and the lack of effective therapies. Fermentation of medicinal herbs has always been considered a feasible strategy for enhancing efficacy in treating various ailments. This study aimed to investigate the potential benefits of the Lactobacillus casei-fermented Amomum xanthioides (LAX) on NAFLD in a high-fat diet model. HFD-fed C57BL6/j mice were administered with 200 mg/kg of LAX or unfermented Amomum xanthioides (AX) or 100 mg/kg of metformin for 6 weeks from the 4th week. The 10-week HFD-induced alterations of hepatic lipid accumulation and hepatic inflammation were significantly attenuated by LAX dominantly (more than AX or metformin), which evidenced by pathohistological findings, lipid contents, inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)- 6 and IL-1ß, oxidative parameters such as reactive oxygen species (ROS) and malondialdehyde (MDA), and molecular changes reversely between lipogenic proteins such as glycerol-3-phosphate acyltransferase (GPAM) and sterol regulatory element-binding protein (SREBP)- 1, and lipolytic proteins including peroxisome proliferator-activated receptor (PPAR-α) and AMP-activated kinase (AMPK)-α in the liver tissues. In addition, the abnormal serum lipid parameters (triglyceride, total cholesterol and LDL-cholesterol) notably ameliorated by LAX. In conclusion, these findings support the potential of LAX as a promising plant-derived remedy for NAFLD.


Asunto(s)
Amomum , Lacticaseibacillus casei , Metformina , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , LDL-Colesterol , Modelos Animales de Enfermedad , Interleucina-6 , Ratones Endogámicos C57BL
3.
Front Plant Sci ; 14: 1136961, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152127

RESUMEN

Introduction: Medicinal plants have been considered as potential source of therapeutics or as starting materials in drugs formulation. Methods: The current study aims to shed light on the therapeutic potential of the Amomum subulatom and Amomum xanthioides Fruits by analyzing the phytochemical composition of their seeds and fruits using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) techniques to determine the presence of bioactive components such as flavonoids, phenols, vitamins, steroids, and essential oils. Results and Discussion: The protein content is usually higher than the total lipids in both species except the fruit of A. subulatum which contain more lipids than proteins. The total protein contents for A. subulatum were 235.03 ± 21.49 and 227.49 ± 25.82 mg/g dry weight while for A. xanthioides were 201.9 ± 37.79 and 294.99 ± 37.93 mg/g dry weight for seeds and fruit, respectively. The Carvacrol levels in A. subulatum is 20 times higher than that in A. xanthioides. Lower levels of α-Thujene, Phyllanderenes, Ascaridole, and Pinocarvone were also observed in both species. According to DPPH (2,2-diphenylpicrylhydrazyl) assay, seed the extract of A. subulatum exhibited the highest antioxidant activity (78.26±9.27 %) followed by the seed extract of A. xanthioides (68.21±2.56 %). Similarly, FRAP (Ferric Reducing Antioxidant Power) assay showed that the highest antioxidant activity was exhibited by the seed extract of the two species; 20.14±1.11 and 21.18±1.04 µmol trolox g-1 DW for A. subulatum and A. xanthioides, respectively. In terms of anti-lipid peroxidation, relatively higher values were obtained for the fruit extract of A. subulatum (6.08±0.35) and the seed extract of A. xanthioides (6.11±0.55). Ethanolic seed extracts of A. subulatum had the highest efficiency against four Gram-negative bacterial species which causes serious human diseases, namely Pseudomonas aeruginosa, Proteus vulgaris, Enterobacter aerogenes, and Salmonella typhimurium. In addition, P. aeruginosa was also inhibited by the fruit extract of both A. subulatum and A. xanthioides. For the seed extract of A. xanthioides, large inhibition zones were formed against P. vulgaris and the fungus Candida albicans. Finally, we have in silico explored the mode of action of these plants by performing detailed molecular modeling studies and showed that the antimicrobial activities of these plants could be attributed to the high binding affinity of their bioactive compounds to bind to the active sites of the sterol 14-alpha demethylase and the transcriptional regulator MvfR. Conclusion: These findings demonstrate the two species extracts possess high biological activities and therapeutical values, which increases their potential value in a number of therapeutic applications.

4.
Antioxidants (Basel) ; 11(11)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36421440

RESUMEN

In modern society, numerous metabolic disorders are widespread globally. The present study aimed to demonstrate whether Bacillus subtilis-fermented Amomum xanthioides (BSAX) exerts anti-metabolic disturbance effects compared with the ethyl acetate fraction of Amomum xanthioides (EFAX), a previously verified functional fraction. Mice fed with a high-fat, high-fructose diet (HFHFD) for 10 wk presented a typical model of metabolic dysfunction, and BSAX significantly attenuated a string of metabolic-syndrome-related pathological parameters, such as body, fat, organ mass, lipid markers (TGs, TC, free fatty acids), and glucose metabolism (glucose, insulin), without influencing appetite. Further, BSAX markedly lowered malondialdehyde (MDA) and ROS in the blood and restored antioxidative parameters (SOD, GSH, and CAT in liver tissue, and total bilirubin in serum) by elevating Nrf2 and HO-1. Moreover, BSAX noticeably restored gut microbiota diversity and normalized lipid-metabolism-associated proteins, including SREBP-1, p-AMPK, and PPAR-α. Generally, most metabolic parameters were improved by BSAX to a greater extent than EFAX, except for liver weight and hepatic TC. In conclusion, BSAX alleviates metabolic dysfunction by enhancing lipid metabolism and antioxidative capacity and is more effective than EFAX. Therefore, the application of high-yield, effective BSAX might be a promising approach for curing and preventing metabolic disorders.

5.
J Nat Med ; 76(2): 435-450, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35075577

RESUMEN

Previously, to develop an objective identification method for Amomi Semen (AS), the nucleotide sequences of nrDNA ITS region and two cpDNA regions of nine Amomum taxa specimens from Southeast Asia and China were determined, and the generated phylogenetic tree showed six taxa specimens were divided into four groups. In this study, 51 crude drug samples of AS in Japanese markets were classified into four groups or species based on their ITS sequences. Approximately 67% of samples were derived from A. villosum var. xanthioides or A. xanthioides, A. villosum var. villosum and A. longiligulare prescribed in Japanese Pharmacopoeia, and the rest were mixed with A. uliginosum and A. microcarpum. Subsequently, the essential oil compositions of Amomum taxa specimens and AS samples were determined by GC-MS to characterize each group or species. Group 1(A. xanthioides) samples were characterized by containing higher amount of camphor(6) than bornyl acetate(9), and a specific germacrene D-4-ol; group 2(Chinese A. villosum var. villosum and var. xanthioides) by containing higher amount of 9 than 6, a specific isobornyl acetate; group 3(Laotian A. villosum var. villosum and A. longiligulare) by containing higher amount of 6 than 9, and a characteristic neointermedeol, except for A. longiligulare specimen from Hainan, China; group 4(A. uliginosum) by containing equivalent amount of 6 and 9, and the specific (E,E)-farnesyl acetate and (E,E)-farnesol. A. microcarpum samples were discriminated from the above groups by absence of 6 and 9, and with higher amount of (E)-nerolidol. There was a good correlation between genetic classification and chemical discrimination.


Asunto(s)
Amomum , Medicamentos Herbarios Chinos , Aceites Volátiles , Amomum/química , Amomum/genética , Cromatografía de Gases y Espectrometría de Masas , Filogenia
6.
J Nat Med ; 75(4): 798-812, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34032989

RESUMEN

Amomum Semen, the seed mass of Amomum xanthioides, has been imported from Southeast Asia and China and used for the treatment of gastric and intestinal disorders. A. xanthioides has been treated as a synonym of A. villosum var. xanthioides. Furthermore, A. villosum var. villosum, A. villosum var. xanthioides, or A. longiligulare have been described as the botanical origin of Amomi Fructus, which is a similar crude drug in Chinese Pharmacopoeia. Under these circumstances, the botanical origin of Amomum Semen was changed to A. villosum var. xanthioides, A. villosum var. villosum, or A. longiligulare in Supplement II to the 17th edition of the Japanese Pharmacopoeia. To develop an objective identification method for Amomum Semen and to confirm the phylogenetic relationship among Amomum taxa, the nucleotide sequences of the nuclear ribosomal DNA internal transcribed spacer region and chloroplast DNA partial matK-trnK and trnH-psbA intergenic spacer regions were determined in specimens collected from Southeast Asia and China, including those from the type localities of each taxon. Six taxa were divided into four groups. A. xanthioides from Myanmar belonging to group 1 was discriminated from A. villosum var. xanthioides from China of group 2. A. villosum and its varieties were divided into two groups: group 2 included those from China, and group 3 consisted of A. villosum from Laos. A. longiligulare from China and Laos and A. uliginosum from Laos belonged to group 3 and group 4, respectively. These findings illustrate the phylogenetic basis for the need for taxonomical reorganization among the Amomum species.


Asunto(s)
Amomum , Amomum/genética , Asia Sudoriental , China , Variación Genética/genética , Filogenia
7.
Nutrients ; 12(8)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823613

RESUMEN

The global prevalence of nonalcoholic fatty liver disease (NAFLD) is estimated to be 25% and has continued to increase; however, no drugs have yet been approved for NAFLD treatments. The ethyl acetate fraction of Amomum xanthioides (EFAX) was previously reported to have an anti-hepatic fibrosis effect, but its effects on steatosis or steatohepatitis remain unclear. This study investigated the anti-fatty liver of EFAX using a high-fat diet mouse model. High-fat diet intake for 8 weeks induced hepatic steatosis with mild inflammation and oxidative damage and increased the adipose tissue weight along with the development of dyslipidemia. EFAX treatment significantly ameliorated the steatohepatic changes, the increased weight of adipose tissues, and the altered serum lipid profiles. These observed effects were possibly due to the lipolysis-dominant activity of EFAX on multiple hepatic proteins including sterol regulatory element-binding protein (mSREBP)-1c, peroxisome proliferator-activated receptor (PPAR)-α, AMP-activated protein kinase, and diglyceride acyltransferases (DGATs). Taken together, these results show that EFAX might be a potential therapeutic agent for regulating a wide spectrum of NAFLDs from steatosis to fibrosis via multiple actions on lipid metabolism-related proteins. Further studies investigating clear mechanisms and their active compounds are needed.


Asunto(s)
Acetatos/farmacología , Amomum/química , Metabolismo de los Lípidos/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Diacilglicerol O-Acetiltransferasa/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Lípidos/sangre , Lipólisis/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , PPAR alfa/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
8.
J Ethnopharmacol ; 249: 112441, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31786446

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese/Korean medicine suggests "blood stasis ()", "stagnation of vital energy ()" and "dampness and Phlegm ()" as the main etiologies of liver disorders, and multiherbal formulas are generally believed to exert synergistic action. AIM OF THE STUDY: The present study aimed to investigate the synergistic hepatoprotective effects of CGplus (a mixture of Salviae miltiorrhiza, Artemisia iwayomogi and Ammomum xanthioides) compared to those of the individual herbs. METHODS AND MATERIALS: A total of fifty-six male Balb/C mice were randomly divided into eight groups and were administered water (normal and CCl4 groups), 100 mg/kg S. miltiorrhiza, A. iwayomogi, or A. xanthioides, 50 or 100 mg/kg CGPlus or dimethyl dimethoxybiphenyl dicarboxylate (DDB) as a positive control for 4 consecutive days. After a single CCl4 injection (i.p., 10 mL/kg of 0.2% CCl4 in olive oil), blood and liver tissues were collected after 18 h of fasting for serum biochemistry, histopathological examination and molecular analyses. RESULTS: CCl4 injection induced drastic hepatic injury characterized by a more than 30-fold increase in the release of AST and ALT into the serum. These alterations were significantly attenuated by pretreatment with each of the three herbs, while the effects of the individual herbs were synergistically augmented by CGPlus pretreatment. The synergistic hepatoprotective actions of CGPlus were demonstrated consistently by analyses of oxidative stress (oxidative stressors, oxidation products and antioxidant enzymes), pro-/anti-inflammatory cytokines (TNF-ɑ, IL-1ß, IL-6, IL-10), and apoptosis (caspase-3, p53 and BAX) and histopathology. CONCLUSIONS: These data suggest that CGPlus exerts its hepatoprotective effects in a synergistic manner, and further studies are required for clinical application using other chronic models.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Hígado/efectos de los fármacos , Sustancias Protectoras/farmacología , Alanina Transaminasa/sangre , Alanina Transaminasa/metabolismo , Amomum/química , Animales , Artemisia/química , Aspartato Aminotransferasas/sangre , Aspartato Aminotransferasas/metabolismo , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Hígado/enzimología , Hígado/patología , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/uso terapéutico , Salvia miltiorrhiza/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA