RESUMEN
Shigella ssp cause bacillary dysentery (shigellosis) which has high global morbidity in young children and the elderly. The virulence of Shigella relies upon a type III secretion system (T3SS) which injects host altering effector proteins into targeted intestinal cells. The Shigella T3SS contains two components, invasion plasmid antigen D (IpaD) and invasion plasmid antigen B (IpaB), that were previously identified as broadly protective antigens. When IpaD and IpaB were co-expressed to give the DB fusion (DBF) protein, vaccine efficacy was further improved. Biophysical characterization under various pH conditions showed that DBF is most stable at pH 7 and 8 and loses its conformational integrity at 48 and 50 °C respectively. Forced degradation studies revealed significant effects on the secondary structure, tertiary structure and conformational stability of DBF. In the presence of phosphate buffers as well as other anionic excipients, DBF demonstrated a concentration dependent conformational stabilization. Molecular docking revealed potential polyanion binding sites in DBF that may interact with phytic acid. These sites can be exploited to stabilize the DBF protein. This work highlights potential destabilizing and stabilizing factors, which not only improves our understanding of the DBF protein but helps in future development of a stable Shigella vaccine.
Asunto(s)
Antígenos Bacterianos , Shigella flexneri , Anciano , Proteínas Bacterianas/genética , Niño , Preescolar , Excipientes , Humanos , Simulación del Acoplamiento MolecularRESUMEN
Concentrated monoclonal antibody (mAb) solutions can lead to high viscosity as a result of protein-protein interactions and pose challenges for manufacture. Dipicolinic acid (DPA, pyridine-2,6-dicarboxylic acid) is a potential excipient for reduction of protein solution viscosity and here we describe new DPA salts with improved aqueous solubility. Crystallinity and solubility screens identified ethanolamine and diethanolamine as two promising counterions which generated crystalline, high melting point, anhydrous salt forms of DPA at 2:1â¯M stoichiometry. These salts significantly reduced the solution viscosity of five mAbs, equal to or better than that for the addition of arginine hydrochloride at equivalent osmolality. The presence of the DPA salts in solution did not significantly perturb the melting point of the mAbs, as determined by calorimetry, indicating an absence of any destabilization of protein conformation. Addition of the DPA salts to the mAb solutions stored at 5⯰C over 6â¯months did not cause additional loss of the monomer fraction, though evidence of increased aggregation and fragmentation for three of the five mAbs was observed during 40⯰C (accelerated and stressed) storage. Overall, this study demonstrates that ethanolamine-DPA and diethanolamine-DPA can serve as two novel excipients for viscosity reduction and could be considered by formulation scientists when developing highly concentrated mAb formulations.