RESUMEN
In the clinical application of freeze-dried highly concentrated omalizumab formulations, extensive visible bubbles (VBs) can be generated and remain for a long period of time in the reconstitution process, which greatly reduces the clinical use efficiency. It is necessary to understand the forming and breaking mechanism of VBs in the reconstitution process, which is a key factor for efficient and safe administration of biopharmaceutical injection. The effects of different thermal treatments on the volume of VBs and stability of omalizumab, mAb-1, and mAb-2 were investigated. The internal microvoids of the cake were characterized by scanning electron microscopy and mercury intrusion porosimetry. Electron paramagnetic resonance was applied to obtain the molecular mobility of the protein during annealing. A large number of VBs were generated in the reconstitution process of unannealed omalizumab and remained for a long period of time. When annealing steps were added, the volume of VBs was dramatically reduced. When annealed at an aggressive temperature (i.e., -6 °C), although the volume of VBs decreased, the aggregation and acidic species increased significantly. Thus, our observations highlight the importance of setting an additional annealing step with a suitable temperature, which contributes to reducing the VBs while maintaining the stability of the high concentration freeze-dried protein formulation.
Asunto(s)
Omalizumab , Proteínas , Temperatura , Liofilización , Estabilidad de MedicamentosRESUMEN
COVID-19 is caused by the infection of the lungs by SARS-CoV-2. Monoclonal antibodies, such as sotrovimab, showed great efficiency in neutralizing the virus before its internalization by lung epithelial cells. However, parenteral routes are still the preferred route of administration, even for local infections, which requires injection of high doses of antibody to reach efficacious concentrations in the lungs. Lung administration of antibodies would be more relevant requiring lower doses, thus reducing the costs and the side effects. But aerosolization of therapeutic proteins is very challenging, as the different processes available are harsh and trigger protein aggregation and conformational changes. This decreases the efficiency of the treatment, and can increase its immunogenicity. To address those issues, we developed a series of new excipients composed of a trehalose core, a succinyl side chain and a hydrophobic carbon chain (from 8 to 16 carbons). Succinylation increased the solubility of the excipients, allowing their use at relevant concentrations for protein stabilization. In particular, the excipient with 16 carbons (C16TreSuc) used at 5.6 mM was able to preserve colloidal stability and antigen-binding ability of sotrovimab during the nebulization process. It could also be used as a cryoprotectant, allowing storage of sotrovimab in a lyophilized form during weeks. Finally, we demonstrated that C16TreSuc could be used as an excipient to stabilize antibodies for the treatment against COVID-19, by in vitro and in vivo assays. The presence of C16TreSuc during nebulization preserved the neutralization capacity of sotrovimab against SARS-CoV-2 in vitro; an increase of its efficacy was even observed, compared to the non-nebulized control. The in vivo study also showed the wide distribution of sotrovimab in mice lungs, after nebulization with 5.6 mM of excipient. This work brings a solution to stabilize therapeutic proteins during storage and nebulization, making pulmonary immunotherapy possible in the treatment of COVID-19 and other lung diseases.
Asunto(s)
COVID-19 , Excipientes , Ratones , Animales , Excipientes/química , Trehalosa/química , SARS-CoV-2 , Anticuerpos AntiviralesRESUMEN
Addition of pharmaceutical excipients is a commonly used approach to decrease the viscosity of highly concentrated protein formulations, which otherwise could not be subcutaneously injected or processed. The variety of protein-protein interactions, which are responsible for increased viscosities, makes a portfolio approach necessary. Screening of several excipients to develop such a portfolio is time and money consuming in industrial settings. Responsible protein-protein interactions were investigated using the interaction parameter kD obtained from dynamic light scattering measurements in the studies presented herein. Together with in-silico calculated excipient parameter, kD could be used as a screening tool accelerating screening and formulation development as kD is suitable to high-throughput formats using small quantities of protein and low concentrations. A qualitative correlation between kD and high-concentration viscosity behavior could be shown in our case.
Asunto(s)
Excipientes , Inmunoglobulina G , Anticuerpos Monoclonales , Desarrollo Industrial , ViscosidadRESUMEN
Nano differential scanning fluorimetry (nanoDSF) is a high-throughput protein stability screening technique that simultaneously monitors protein unfolding and aggregation properties. The thermal stability of immunoglobulin G (IgG) was investigated in three different buffers (sodium acetate, sodium citrate, and sodium phosphate) ranging from pH 4 to 8. In all three buffers, the midpoint temperature of thermal unfolding (Tm) showed a tendency to increase as the pH increased, but the aggregation propensity was different depending on the buffer species. The best stability against aggregation was obtained in the sodium acetate buffers below pH 4.6. On the other hand, IgG in the sodium citrate buffer had higher aggregation and viscosity than in the sodium acetate buffer at the same pH. Difference of aggregation between acetate and citrate buffers at the same pH could be explained by a protein-protein interaction study, performed with dynamic light scattering, which suggested that intermolecular interaction is attractive in citrate buffer but repulsive in acetate buffer. In conclusion, this study indicates that the sodium acetate buffer at pH 4.6 is suitable for IgG formulation, and the nanoDSF method is a powerful tool for thermal stability screening and optimal buffer selection in antibody formulations.
RESUMEN
Polysorbates (PSs) are common protein stabilizers used in biotherapeutic formulations. However, PSs are heterogeneous and unstable in liquid protein formulations [1,2]. The purpose of this work is to explore possible alternatives for polysorbate replacements that demonstrate superior protein protection, superior self-stability, low toxicity, and wide applicability. For this purpose, 8 non-ionic surfactants that have not yet been used as excipients in marketed biotherapeutic products were investigated with PS20/80 as the benchmark. Compared with PS20/80, Brij-58 showed better protein protection ability in the mAb1 formulation under forced degradation conditions when examined by visual inspection, SEC, and dynamic lighting scanning. Additionally, Brij-58 has a better inherent stability than PS20/80 in the protein formulation when detected by UPLC-CAD. Moreover, Brij-58 is an inert excipient that does not affect protein bioactivity and conformation. In addition, the LD50 and hemolysis concentration of Brij-58 were determined, which is relatively safe when used as a parenteral injection. Furthermore, Brij-58 was also an effective protein stabilizer for the other two antibody products (IgG4 subtype and bispecific antibody) in the shaking study. In summary, Brij-58 stands out as a promising PS replacement in biotherapeutic formulations with a safe, stable and effective protein-protection profile among candidate surfactants.
Asunto(s)
Productos Biológicos/química , Cetomacrogol/química , Composición de Medicamentos/métodos , Excipientes/química , Tensoactivos/química , Administración Intravenosa , Animales , Anticuerpos Biespecíficos/administración & dosificación , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/toxicidad , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/toxicidad , Productos Biológicos/administración & dosificación , Productos Biológicos/toxicidad , Cetomacrogol/toxicidad , Química Farmacéutica , Estabilidad de Medicamentos , Excipientes/toxicidad , Femenino , Células HEK293 , Hemólisis/efectos de los fármacos , Humanos , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/química , Inmunoglobulina G/toxicidad , Dosificación Letal Mediana , Masculino , Ratones , Polisorbatos/química , Polisorbatos/toxicidad , Estabilidad Proteica , Conejos , Tensoactivos/toxicidad , Pruebas de Toxicidad AgudaRESUMEN
Despite the significant interest in therapeutic antibodies for the treatment of airway diseases, no study addressed the challenge, which can arise when such formulations need to be made accessible for nebulization in concentrated (viscous) form. By (1) determining the maximum viscosity, which can still be atomized by vibrating-mesh technology and (2) supplementing the antibody formulation under investigation with at least 1 excipient, which decreases the viscosity under that specific threshold value of the utilized inhaler (and maintains the stability of the formulation), it should be possible to nebulize concentrated antibody formulations. Using sucrose as a viscosity enhancer, the viscosity threshold value amounted to â¼6 mPa*s for the eFlow®rapid device (output rate of <0.1 g/min). When a supplementation of a concentrated model antibody formulation (125 mg/mL) with specific amounts of lysine (≥50 mM) and arginine (≥20 mM) led to the desired drop in viscosity (to <5.5 mPa*s), the previously non-nebulizable formulation (no measurable aerosol output) was made accessible for vibrating-mesh nebulization (output rate of up to â¼0.5 g/min, droplet diameter of <5 µm). The stability of the current antibody formulation was not adversely affected when nebulized in the presence of lysine and arginine. Overall, the presented results will help increase the understanding on how to aerosolize concentrated protein formulations by vibrating-mesh technology.
Asunto(s)
Aerosoles/química , Composición de Medicamentos/métodos , Excipientes/química , Inmunoglobulina G/química , Viscosidad , Administración por Inhalación , Aerosoles/administración & dosificación , Excipientes/administración & dosificación , Humanos , Inmunoglobulina G/administración & dosificación , Nebulizadores y Vaporizadores , Sacarosa/administración & dosificación , Sacarosa/química , VibraciónRESUMEN
Concentrated monoclonal antibody (mAb) solutions can lead to high viscosity as a result of protein-protein interactions and pose challenges for manufacture. Dipicolinic acid (DPA, pyridine-2,6-dicarboxylic acid) is a potential excipient for reduction of protein solution viscosity and here we describe new DPA salts with improved aqueous solubility. Crystallinity and solubility screens identified ethanolamine and diethanolamine as two promising counterions which generated crystalline, high melting point, anhydrous salt forms of DPA at 2:1â¯M stoichiometry. These salts significantly reduced the solution viscosity of five mAbs, equal to or better than that for the addition of arginine hydrochloride at equivalent osmolality. The presence of the DPA salts in solution did not significantly perturb the melting point of the mAbs, as determined by calorimetry, indicating an absence of any destabilization of protein conformation. Addition of the DPA salts to the mAb solutions stored at 5⯰C over 6â¯months did not cause additional loss of the monomer fraction, though evidence of increased aggregation and fragmentation for three of the five mAbs was observed during 40⯰C (accelerated and stressed) storage. Overall, this study demonstrates that ethanolamine-DPA and diethanolamine-DPA can serve as two novel excipients for viscosity reduction and could be considered by formulation scientists when developing highly concentrated mAb formulations.
Asunto(s)
Anticuerpos Monoclonales/química , Etanolaminas/química , Excipientes/química , Ácidos Picolínicos/química , Estabilidad de Medicamentos , Sales (Química) , Soluciones , ViscosidadRESUMEN
Preferential interactions of weakly interacting formulation excipients govern their effect on the equilibrium and kinetics of several reactions of protein molecules in solution. Using vapor pressure osmometry, we characterized the preferential interactions of commonly used excipients trehalose, L-arginine.HCl and NaCl with three therapeutically-relevant, IgG1 monoclonal antibodies that have similar size and shape, but differ in their surface hydrophobicity and net charge. We further characterized the effect of these excipients on the reversible self-association, aggregation and viscosity behavior of these antibody molecules. We report that trehalose, L-arginine.HCl and NaCl are all excluded from the surface of the three IgG1 monoclonal antibodies, and that the exclusion behavior is linearly related to the excipient molality in the case of trehalose and NaCl, whereas a non-linear behavior is observed for L-arginine.HCl. Interestingly, we find that the magnitude of trehalose exclusion depends upon the nature of the protein surface. Such behavior is not observed in case of NaCl and L-arginine.HCl as they are excluded to the same extent from the surface of all three antibody molecules tested in this study. Analysis of data presented in this study provides further insight into the mechanisms governing excipient-mediated stabilization of mAb formulations.
Asunto(s)
Anticuerpos Monoclonales/efectos de los fármacos , Arginina/farmacología , Inmunoglobulina G/efectos de los fármacos , Cloruro de Sodio/farmacología , Trehalosa/farmacología , Estabilidad de Medicamentos , Excipientes/farmacología , OsmometriaRESUMEN
Protein instability is a major obstacle in the production and delivery of monoclonal antibody-based therapies for cancer. This study presents real-time isothermal differential scanning fluorimetry as an emerging method to evaluate the stability of human immunoglobulin G protein with high sensitivity. The stability of polyclonal human immunoglobulin G against urea-induced denaturation was assessed following: (1) oxidation by the free-radical generator 2,2-Azobis[2-amidinopropane]dihydrochloride and (2) in selected storage buffers. Significant differences in immunoglobulin G stability were detected by real-time isothermal differential scanning fluorimetry when the immunoglobulin G was stored in 1,4-Piperazinediethanesulfonic acid buffer compared to phosphate-buffered saline, with half-maximal rate of denaturation occurring at a higher urea concentration in 1,4-Piperazinediethanesulfonic acid than phosphate-buffered saline (Knd;PIPES = 3.56 ± 0.09 M, Knd;PBS = 2.94 ± 0.08 M; P < .01), but differential scanning fluorimetry did not detect differences in unfolding temperature (Tm;PIPES = 70.5 ± 0.3°C, Tm;PBS = 69.7 ± 0.2°C). The effects of 2,2-Azobis[2-amidinopropane]dihydrochloride-induced oxidation on immunoglobulin G stability were analyzed by real-time isothermal differential scanning fluorimetry; the oxidized protein showed greater sensitivity to urea (Knd;CNTRL = 3.96 ± 0.19 M, Knd;AAPH = 3.49 ± 0.07 M; P < .05). Similarly, differential scanning fluorimetry indicated greater thermal sensitivity of oxidized immunoglobulin G (Tm;CNTRL = 70.5 ± 0.3°C, Tm;AAPH = 62.9 ± 0.1°C; P < .001). However, a third method for assessing protein stability, pulse proteolysis, proved to be substantially less sensitive and did not detect significant effects of 2,2-Azobis[2-amidinopropane]dihydrochloride on the half-maximal concentration of urea needed to denature immunoglobulin G (Cm;CNTRL= 6.8 ± 0.1 M; Cm;AAPH = 6.4 ± 0.7 M). Overall these results demonstrate the merit of using real-time isothermal differential scanning fluorimetry as a rapid and sensitive technique for the evaluation of protein stability in solution using a quantitative real-time thermocycler.
RESUMEN
Ionic excipients are commonly used in aqueous therapeutic monoclonal antibody (mAb) formulations. Novel excipients are of industrial interest, with a recent focus on Arg salt forms and their application as viscosity reducing and stabilizing additives. Here, we report that the calcium salt of dipicolinic acid (DPA, pyridine-2,6-dicarboxylic acid), uniquely present in nature in the core of certain bacterial spores, reduces the viscosity of a mAb formulated at 150mg/mL, below that achieved by Arg hydrochloride at the same concentration (10mM). DPA also reduced the reversible phase separation of the same formulation, which characteristically occurs for this mAb upon cooling to 4°C. Differential scanning calorimetry and differential scanning fluorimetry did not reveal a conformation destabilisation of the mAb in the presence of 10mM DPA, or by the related quinolinic acid (QA, pyridine-2,3-dicarboxylic acid). However, fluorescence spectrophotometry did reveal localised (aromatic) conformational changes to the mAb attributed to DPA, dependent on the salt form. While precise mechanisms of action remain to be identified, our preliminary data suggest that these DPA salts are worthy of further investigation as novel ionic excipient for biologics formulation.
Asunto(s)
Anticuerpos Monoclonales/química , Excipientes/química , Ácidos Picolínicos/química , Esporas Bacterianas , ViscosidadRESUMEN
Herein we report an injectable film by which antibodies can be localized in vivo. The system builds upon a bifunctional polypeptide consisting of a fluorogen-activating protein (FAP) and a ß-fibrillizing peptide (ßFP). The FAP domain generates fluorescence that reflects IgG binding sites conferred by Protein A/G (pAG) conjugated with the fluorogen malachite green (MG). A film is generated by mixing these proteins with molar excess of EAK16-II, a ßFP that forms ß-sheet fibrils at high salt concentrations. The IgG-binding, fluorogenic film can be injected in vivo through conventional needled syringes. Confocal microscopic images and dose-response titration experiments showed that loading of IgG into the film was mediated by pAG(MG) bound to the FAP. Release of IgG in vitro was significantly delayed by the bioaffinity mechanism; 26% of the IgG were released from films embedded with pAG(MG) after five days, compared to close to 90% in films without pAG(MG). Computational simulations indicated that the release rate of IgG is governed by positive cooperativity due to pAG(MG). When injected into the subcutaneous space of mouse footpads, film-embedded IgG were retained locally, with distribution through the lymphatics impeded. The ability to track IgG binding sites and distribution simultaneously will aid the optimization of local antibody delivery systems.
Asunto(s)
Sistemas de Liberación de Medicamentos , Inmunoglobulina G/administración & dosificación , Animales , Sitios de Unión , Femenino , Colorantes Fluorescentes/administración & dosificación , Inyecciones , Ratones Endogámicos BALB C , Péptidos/administración & dosificación , Unión Proteica , Colorantes de Rosanilina/administración & dosificaciónRESUMEN
Differences in filtration behavior of concentrated protein formulations were observed during aseptic drug product manufacturing of biologics dependent on formulation composition. The present study investigates filtration forces of monoclonal antibody formulations in a small-scale set-up using polyvinylidene difluoride (PVDF) or polyethersulfone (PES) filters. Different factors like formulation composition and protein concentration related to differences in viscosity, as well as different filtration rates were evaluated. The present study showed that filtration behavior was influenced by the presence or absence of a surfactant in the formulation, which defines the interaction between filter membrane and surface active formulation components. This can lead to a change in filter resistance (PES filter) independent on the buffer system used. Filtration behavior was additionally defined by rheological non-Newtonian flow behavior. The data showed that high shear rates resulting from small pore sizes and filtration pressure up to 1.0 bar led to shear-thinning behavior for highly concentrated protein formulations. Differences in non-Newtonian behavior were attributed to ionic strength related to differences in repulsive and attractive interactions. The present study showed that the interplay of formulation composition, filter material, and filtration rate can explain differences in filtration behavior/filtration flux observed for highly concentrated protein formulations thus guiding filter selection.
Asunto(s)
Productos Biológicos/química , Filtración/métodos , Proteínas/química , Esterilización/métodos , Anticuerpos Monoclonales/química , Química Farmacéutica , Excipientes/química , Membranas Artificiales , Polímeros/química , Polivinilos , Porosidad , Reología , Sulfonas/química , ViscosidadRESUMEN
Development of injection devices for subcutaneous drug administration requires a detailed understanding of user capability and forces occurring during the drug administration process. Injection forces of concentrated protein therapeutics are influenced by syringe properties (e.g., needle diameter) and injection speed, and are driven by solution properties such as rheology. In the present study, it is demonstrated that concentrated protein therapeutics may show significantly reduced injection forces because of shear-thinning (non-Newtonian) behavior. A mathematical model was thus established to predict/correlate injection forces of Newtonian and non-Newtonian solutions with viscosity data from plate/cone rheometry. The model was verified experimentally by glide-force measurements of reference and surrogate solutions. Application of the suggested model was demonstrated for injection force measurements of concentrated protein solutions to determine viscosity data at high shear rates (3 × 10(4)-1.6 × 10(5)s(-1)). By combining these data with viscosity data obtained by different viscosity methods (plate/cone and capillary rheometry), a viscosity-shear rate profile of the protein solution between 10(2) and 1.6 × 10(5)s(-1) was obtained, which was mathematically described by the Carreau model. Characterization of rheological properties allows to accurately predict injection forces for different syringe-needle combinations as well as injection rates, thus supporting the development of injection devices for combination products.