Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Heliyon ; 10(16): e35874, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39262957

RESUMEN

Agarwood is a rare and valuable heartwood derived from Aquilaria sinensis in China. Compared with ordinary germplasm, Chi-Nan, a special germplasm of A. sinensis, has a better agarwood-producing capacity. However, the mechanisms underlying their different qualities remain poorly characterized. Here, a comparative transcriptome analysis of Chi-Nan and ordinary A. sinensis was carried out to investigate the wound responses of both germplasms. A total of 198.19 Gb of clean data were obtained with an average of 6.61 Gb of clean reads for each sample. By comparing with their control groups, more differentially expressed genes (DEGs) were observed in Chi-Nan germplasm. Kyoto Encyclopedia of Genes and Genomes (KEGG) and expression profile analysis suggested that Chi-Nan possesses a stronger ability to respond to wounding. Furthermore, the enrichment of biosynthetic pathways related to sesquiterpenes and 2-(2-phenylethyl) chromones (PECs) were more significant in Chi-Nan than in ordinary germplasm, and related genes showed significantly higher up-regulation in Chi-Nan after wounding. Sixteen candidate genes presumably involved in biosynthesis of agarwood components were identified and found to exhibit higher up-regulation in Chi-Nan than in ordinary germplasm in response to wounding. Overall, these results are helpful in explaining reasons for the higher agarwood-producing properties of Chi-Nan, and contribute to a further understanding of the mechanism of agarwood formation in A. sinensis.

2.
Stress Biol ; 4(1): 40, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302547

RESUMEN

Aquilaria sinensis is a significant resin-producing plant worldwide that is crucial for agarwood production. Agarwood has different qualities depending on the method with which it is formed, and the microbial community structures that are present during these methods are also diverse. Furthermore, the microbial communities of plants play crucial roles in determining their health and productivity. While previous studies have investigated the impact of microorganisms on agarwood formation, they lack comprehensiveness, particularly regarding the properties of the microbial community throughout the entire process from seedling to adult to incense formation. We collected roots, stems, leaves, flowers, fruits and other tissues from seedlings, healthy plants and agarwood-producing plants to address this gap and assess the dominant bacterial species in the microbial community structures of A. sinensis at different growth stages and their impacts on growth and agarwood formation. The bacteria and fungi in these tissues were classified and counted from different perspectives. The samples were sequenced using the Illumina sequencing platform, and sequence analyses and species annotations were performed using a range of bioinformatics tools to assess the plant community compositions. An additional comparison of the samples was conducted using diversity analyses to assess their differences. This research revealed that Listeria, Kurtzmanomyces, Ascotaiwania, Acinetobacter, Sphingobium, Fonsecaea, Acrocalymma, Allorhizobium, Bacillus, Pseudomonas, Peethambara, and Debaryomyces are potentially associated with the formation of agarwood. Overall, the data provided in this article help us understand the important roles played by bacteria and fungi in the growth and agarwood formation process of A. sinensis, will support the theoretical basis for the large-scale cultivation of A. sinensis, and provide a basis for further research on microbial community applications in agarwood production and beyond.

3.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4100-4110, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39307742

RESUMEN

The stem bark of Aquilaria sinensis(Thymelaeaceae), with the local name of "Li-Wa-Zi-Xing", is used in traditional Yi medicine for treating chronic gastritis and other diseases. However, its active ingredients remain currently unknown. In this study, Helicobacter pylori(Hp) is used in anti-bacterial experiments to test the active compounds derived from A. sinensis stem bark. Nineteen compounds were isolated from the stem bark of A. sinensis by column chromatography, high-performance liquid chromatography, recrystallization, etc. Aquilaridiester(1) is a new lignan. The other eighteen compounds were reported before, including docosyl caffeate(2), 6-hydroxy-2-[2-(4-methoxyphenyl)ethyl]-4H-1-benzopyran-4-one(3), qinanone A(4), 6-hydroxy-2-(2-phenylethyl)chromone(5), 6-hydroxy-2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]-4H-1-benzopyran-4-one(6), 6-hydroxy-2-[2-(3-methoxy-4-hydroxyphenyl)ethyl]-4H-1-benzopyran-4-one(7), 6-hydroxy-2-[2-(3,4-dimethoxyphenyl)ethyl]chromone(8), 6-hydroxy-2-[(1E)-2-(4-hydroxy-3-methoxyphenyl)ethenyl]-4H-1-benzopyran-4-one(9), genkwanin(10), 5-hydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-7-methoxy-4H-1-benzopyran-4-one(11), 3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone(12),(+)-syringaresinol(13), zhebeiresinol(14), aquilarin A(15), caruilignan D(16),(-)-ficusal(17), pistaciamide(18), and protocatechuic acid(19). The anti-bacterial results show that compounds 2-7, 10-11, and 13 have inhibitory activity against Hp. Among them, 6-hydroxy-2-(2-phenylethyl)chromone(5) and 6-hydroxy-2-[2-(3-methoxy-4-hydroxyphenyl)ethyl]-4H-benzopyran-4-one(7) have superior inhibitory effects on Hp to others, with the same minimum inhibitory concentration(MIC) of 6.25 µmol·L~(-1). The 2-(2-phenylethyl)chromones are the major active ingredients in A. sinensis stem bark.


Asunto(s)
Antibacterianos , Helicobacter pylori , Pruebas de Sensibilidad Microbiana , Corteza de la Planta , Thymelaeaceae , Helicobacter pylori/efectos de los fármacos , Corteza de la Planta/química , Antibacterianos/farmacología , Antibacterianos/química , Thymelaeaceae/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Estructura Molecular , Tallos de la Planta/química
4.
Food Chem ; 463(Pt 2): 141329, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39305674

RESUMEN

Aquilaria sinensis leaves have long been consumed as a popular replacement tea for lowering postprandial blood glucose levels, but their specific functional components remain unclear. In this study, Aquilaria sinensis leaf-tea 70 % ethanol extract (ALTE) exhibited excellent anti-α-glucosidase activity (IC50 = 6.93 ± 1.91 µg/mL) and promoted glucose consumption ability in 3 T3-L1 preadipocyte cells. Subsequently phenolic compositions of ALTE were identified for the first time. After that, five potential α-glucosidase inhibitors (α-GIs) including cynaroside-3,5-diglucose, malvidin 3-glucose, epicatechin, epigallocatechin gallate, and dihydromyricetin in ALTE were screened using a targeted bio-affinity ultrafiltration-HPLC/MS method. Moreover, these five α-GIs all showed good anti-α-glucosidase effects and glucose consumption-promoting ability. Furthermore, the binding properties and inhibition mechanisms of five α-GIs to α-glucosidase were further analyzed via enzyme inhibition kinetics, molecular docking, and molecular dynamics simulation. This study confirms that Aquilaria sinensis leaf-tea is effective in preventing post-hyperglycemia in vitro models, suggesting potential for future research in human trials.

5.
Front Microbiol ; 15: 1446583, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234541

RESUMEN

The process of formation of aromatic components for agarwood in Aquilaria sinensis is closely related to endophytic fungi and the result of complex multiple long-term joint interactions with them. However, the interactions between the aromatic components and endophytic fungi remain unclear during the formation of agarwood. In this study, precise mixed solution of hormones, inorganic salts, and fungi was used to induce its formation in A. sinensis, and sample blocks of wood were collected at different times after inoculation. This study showed that the aromatic compounds found in the three treatments of A. sinensis were primarily chromones (31.70-33.65%), terpenes (16.68-27.10%), alkanes (15.99-23.83%), and aromatics (3.13-5.07%). Chromones and terpenes were the primary components that characterized the aroma. The different sampling times had a more pronounced impact on the richness and diversity of endophytic fungal communities in the A. sinensis xylem than the induction treatments. The species annotation of the operational taxonomic units (OTUs) demonstrated that the endophytic fungi were primarily composed of 18 dominant families and 20 dominant genera. A linear regression analysis of the network topology properties with induction time showed that the interactions among the fungal species continued to strengthen, and the network structure tended to become more complex. The terpenes significantly negatively correlated with the Pielou evenness index (p < 0.05), while the chromones significantly positively correlated with the OTUs and Shannon indices.

6.
J Fungi (Basel) ; 10(8)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39194888

RESUMEN

Xylem-associated fungus can secrete many secondary metabolites to help Aquilaria trees resist various stresses and play a crucial role in facilitating agarwood formation. However, the dynamics of endophytic fungi in Aquilaria sinensis xylem after artificial induction have not been fully elaborated. Endophytic fungi communities and xylem physio-biochemical properties were examined before and after induction with an inorganic salt solution, including four different times (pre-induction (0M), the third (3M), sixth (6M) and ninth (9M) month after induction treatment). The relationships between fungal diversity and physio-biochemical indices were evaluated. The results showed that superoxide dismutase (SOD) and peroxidase (POD) activities, malondialdehyde (MDA) and soluble sugar content first increased and then decreased with induction time, while starch was heavily consumed after induction treatment. Endophytic fungal diversity was significantly lower after induction treatment than before, but the species richness was promoted. Fungal ß-diversity was also clustered into four groups according to different times. Core species shifted from rare to dominant taxa with induction time, and growing species interactions in the network indicate a gradual complication of fungal community structure. Endophytic fungi diversity and potential functions were closely related to physicochemical indices that had less effect on the relative abundance of the dominant species. These findings help assess the regulatory mechanisms of microorganisms that expedite agarwood formation after artificial induction.

7.
Fitoterapia ; 178: 106143, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39053740

RESUMEN

Four undescribed guaiane sesquiterpenes, aquisinenoids I-L (2-5) and five known compounds were isolated from the resins of Aquilaria sinensis. Their structures were deduced based on spectroscopic data analysis, X-ray crystallography and ECD calculations. Biologically, compounds 1, 5, 6 and 9 showed anti-renal fibrosis activity, significantly reducing the levels of fibronectin, collagen I, and α-SMA. Compounds 2-4, 7 and 8 could reduce one or two of these proteins at non-toxic concentrations in TGF-ß1 induced NRK-52E cells.


Asunto(s)
Fitoquímicos , Sesquiterpenos de Guayano , Thymelaeaceae , Thymelaeaceae/química , Animales , Ratas , Estructura Molecular , Sesquiterpenos de Guayano/farmacología , Sesquiterpenos de Guayano/aislamiento & purificación , Sesquiterpenos de Guayano/química , Línea Celular , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Riñón/efectos de los fármacos , China , Fibronectinas , Madera/química , Factor de Crecimiento Transformador beta1/metabolismo , Fibrosis , Colágeno Tipo I , Actinas/metabolismo , Enfermedades Renales/tratamiento farmacológico , Resinas de Plantas/química , Sesquiterpenos/farmacología , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/química
8.
Front Plant Sci ; 15: 1437105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070916

RESUMEN

Obtained from Aquilaria Lam. and Gyrinops Gaertn., agarwood is a prestigious perfume and medicinal material in the world. Its primary chemical constituents and indicators of agarwood's development are 2-(2-phenylethyl)chromones (PECs). However, how PECs affect its quality, accumulation, and transformation pattern is still unclear. The present study investigated this issue by monitoring resin filling in agarwood generated by the whole-tree agarwood-inducing technique over a span of a year, observing the ethanol extract concentration at different sampling times, and statistically examining PECs in agarwood from each sampling period. In agarwood, the resin accumulated over time, except during the 4th-6th month due to the creation of a barrier layer. The relative content of total PECs demonstrated an overall increase throughout the year but a decrease from the 4th month to the 6th month, and the relative content of 19 PECs that persisted throughout the year was positively correlated with the content of ethanol extracts. In addition, the process of chromone accumulation was accompanied by the production and transformation of different types of chromones, with flindersia type 2-(2-phenylethyl)chromones, epoxy-2-(2-phenylethyl)chromones, and diepoxy-2-(2-phenylethyl)chromones being the major chromone components; in addition, the content of 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromones kept increasing after 6 months of agarwood formation. Three main trends were identified from 58 analogs of PECs, each with notable variation. The first type had the highest content at the beginning of resin formation. The second type had the highest content at 6 months and then started to decrease, and the third type had a slowly increasing content. As a whole, this study systematically investigated the accumulation of PECs during injury-induced agarwood production in A. sinensis, which is of scientific significance in resolving the transformation of PECs and revealing the secret of agarwood formation.

9.
J Agric Food Chem ; 72(23): 13297-13307, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38830127

RESUMEN

2-(2-Phenylethyl)chromones (PECs) are the primary constituents responsible for the promising pharmacological activities and unique fragrance of agarwood. However, the O-methyltransferases (OMTs) involved in the formation of diverse methylated PECs have not been reported. In this study, we identified one Mg2+-dependent caffeoyl-CoA-OMT subfamily enzyme (AsOMT1) and three caffeic acid-OMT subfamily enzymes (AsOMT2-4) from NaCl-treated Aquilaria sinensis calli. AsOMT1 not only converts caffeoyl-CoA to feruloyl-CoA but also performs nonregioselective methylation at either the 6-OH or 7-OH position of 6,7-dihydroxy-PEC. On the other hand, AsOMT2-4 preferentially utilizes PECs as substrates to produce structurally diverse methylated PECs. Additionally, AsOMT2-4 also accepts nonPEC-type substrates such as caffeic acid and apigenin to generate methylated products. Protein structure prediction and site-directed mutagenesis revealed that residues of L313 and I318 in AsOMT3, as well as S292 and F313 in AsOMT4 determine the distinct regioselectivity of these two OMTs toward apigenin. These findings provide important biochemical evidence of the remarkable structural diversity of PECs in agarwood.


Asunto(s)
Metiltransferasas , Proteínas de Plantas , Thymelaeaceae , Metiltransferasas/genética , Metiltransferasas/química , Metiltransferasas/metabolismo , Thymelaeaceae/enzimología , Thymelaeaceae/química , Thymelaeaceae/genética , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Madera/química , Especificidad por Sustrato , Ácidos Cafeicos/química , Ácidos Cafeicos/metabolismo , Metilación , Flavonoides
10.
Molecules ; 29(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38792158

RESUMEN

This work is focused on the characterization of the composition of a CO2 supercritical fluid extract of Aquilaria sinensis (Chinese agarwood) collected in the Dongguan area (China) and infected by mechanical methods. The constituents of this extract were analyzed by gas chromatography-mass spectrometry (GC-MS) and quantified accurately by gas chromatography with a flame ionization detector (GC-FID), using an internal reference and predicted response factors. Since a significant number of components of this extract remained non-identified after the initial GC-MS analysis of the whole extract, its fractionation by chromatography on silica gel helped to characterize several additional constituents by isolation and structural analysis by NMR spectroscopy. The main components are the classical agarwood chromones (Flindersia chromone and its mono-, di-, and trimethoxylated analogues (respectively, 11.01% and 0.11-4.02%) along with sesquiterpenic constituents typically found in agarwood essential oils, like baimuxinal (1.90%) and kusunol (1.24%), as well as less common selinane dialdehydes (1.58-2.27%) recently described in the literature. Moreover, the structure and stereochemistry of a new sesquiterpenic alcohol, 14ß,15ß-dimethyl-7αH-eremophila-9,11-dien-8ß-ol (0.67%), was determined unambiguously by the combination of structural analysis (NMR, MS), hemisynthesis, and total synthesis, leading to dihydrokaranone and a neopetasane epimer.


Asunto(s)
Dióxido de Carbono , Cromatografía con Fluido Supercrítico , Cromatografía de Gases y Espectrometría de Masas , Thymelaeaceae , Dióxido de Carbono/química , Cromatografía con Fluido Supercrítico/métodos , Espectroscopía de Resonancia Magnética/métodos , Estructura Molecular , Aceites Volátiles/química , Aceites Volátiles/análisis , Extractos Vegetales/química , Thymelaeaceae/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química
11.
Front Plant Sci ; 15: 1320226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590741

RESUMEN

Recently, some new Qi-Nan clones of Aquilaria sinensis (Lour.) Spreng which intensively produces high-quality agarwood have been identified and propagated through grafting techniques. Previous studies have primarily focused on ordinary A. sinensis and the differences in composition when compared to Qi-Nan and ordinary A. sinensis. There are few studies on the formation mechanism of Qi-Nan agarwood and the dynamic changes in components and endophytic fungi during the induction process. In this paper, the characteristics, chemical composition, and changes in endophytic fungi of Qi-Nan agarwood induced after 1 year, 2 years, and 3 years were studied, and Qi-Nan white wood was used as the control. The results showed that the yield of Qi-Nan agarwood continued to increase with the induction time over a period of 3 years, while the content of alcohol extract from Qi-Nan agarwood reached its peak at two years. During the formation of agarwood, starch and soluble sugars in xylem rays and interxylary phloem are consumed and reduced. Most of the oily substances in agarwood were filled in xylem ray cells and interxylary phloem, and a small amount was filled in xylem vessels. The main components of Qi-Nan agarwood are also chromones and sesquiterpenes. With an increasing induction time, the content of sesquiterpenes increased, while the content of chromones decreased. The most abundant chromones in Qi-Nan agarwood were 2-(2-Phenethyl) chromone, 2-[2-(3-Methoxy-4-hydroxyphenyl) ethyl] chromone, and2-[2-(4-Methoxyphenyl) ethyl] chromone. Significant differences were observed in the species of the endophytic fungi found in Qi-Nan agarwood at different induction times. A total of 4 phyla, 73 orders, and 448 genera were found in Qi-Nan agarwood dominated by Ascomycota and Basidiomycota. Different induction times had a significant effect on the diversity of the endophytic fungal community in Qi-Nan. After the induction of agarwood formation, the diversity of Qi-Nan endophytic fungi decreased. Correlation analysis showed that there was a significant positive correlation between endophytic fungi and the yield, alcohol extract content, sesquiterpene content, and chromone content of Qi-Nan agarwood, which indicated that endophytic fungi play a role in promoting the formation of Qi-Nan agarwood. Qi-Nan agarwood produced at different induction times exhibited strong antioxidant capacity. DPPH free radical scavenging activity and reactive oxygen species clearance activity were significantly positively correlated with the content of sesquiterpenes and chromones in Qi-Nan agarwood.

12.
J Exp Bot ; 75(11): 3452-3466, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38497815

RESUMEN

The 2-(2-phenethyl)chromones (PECs) are the signature constituents responsible for the fragrance and pharmacological properties of agarwood. O-Methyltransferases (OMTs) are necessary for the biosynthesis of methylated PECs, but there is little known about OMTs in Aquilaria sinensis. In this study, we identified 29 OMT genes from the A. sinensis genome. Expression analysis showed they were differentially expressed in different tissues and responded to drill wounding. Comprehensive analysis of the gene expression and methylated PEC content revealed that AsOMT2, AsOMT8, AsOMT11, AsOMT16, and AsOMT28 could potentially be involved in methylated PECs biosynthesis. In vitro enzyme assays and functional analysis in Nicotiana benthamiana demonstrated that AsOMT11 and AsOMT16 could methylate 6-hydroxy-2-(2-phenylethyl)chromone to form 6-methoxy-2-(2-phenylethyl)chromone. A transient overexpression experiment in the variety 'Qi-Nan' revealed that AsOMT11 and AsOMT16 could significantly promote the accumulation of three major methylated PECs. Our results provide candidate genes for the mass production of methylated PECs using synthetic biology.


Asunto(s)
Metiltransferasas , Proteínas de Plantas , Thymelaeaceae , Thymelaeaceae/genética , Thymelaeaceae/metabolismo , Thymelaeaceae/enzimología , Metiltransferasas/metabolismo , Metiltransferasas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Cromonas/metabolismo , Madera/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Metilación , Regulación de la Expresión Génica de las Plantas , Flavonoides
13.
Molecules ; 29(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474587

RESUMEN

The resinous stem of Aquilaria sinensis (Lour.) Gilg is the sole legally authorized source of agarwood in China. However, whether other tissue parts can be potential substitutes for agarwood requires further investigation. In this study, we conducted metabolic analysis and transcriptome sequencing of six distinct tissues (root, stem, leaf, seed, husk, and callus) of A. sinensis to investigate the variations in metabolite distribution characteristics and transcriptome data across different tissues. A total of 331 differential metabolites were identified by chromatography-mass spectrometry (GC-MS), of which 22.96% were terpenoids. The differentially expressed genes (DEGs) in RNA sequencing were enriched in sesquiterpene synthesis via the mevalonate pathway. The present study establishes a solid foundation for exploring potential alternatives to agarwood.


Asunto(s)
Thymelaeaceae , Transcriptoma , Análisis de Secuencia de ARN , Secuencia de Bases , Thymelaeaceae/química , Metaboloma
14.
Plant Foods Hum Nutr ; 79(2): 425-431, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38383946

RESUMEN

The evergreen tree species Aquilaria sinensis holds significant economic importance due to its specific medicinal values and increasing market demand. However, the unrestricted illegal exploitation of its wild population poses a threat to its survival. This study aims to contribute to the conservation efforts of A. sinensis by constructing a library database of DNA barcodes, including two chloroplast genes (psbA-trnH and matK) and two nuclear genes (ITS and ITS2). Additionally, the genetic diversity and structure were estimated using inter-simple sequence repeats (ISSR) markers. Four barcodes of 57 collections gained 194 sequences, and 1371 polymorphic bands (98.63%) were observed using DNA ISSR fingerprinting. The Nei's gene diversity (H) of A. sinensis at the species level is 0.2132, while the Shannon information index (I) is 0.3128. The analysis of molecular variance revealed a large significant proportion of total genetic variations and differentiation among populations (Gst = 0.4219), despite a relatively gene flow (Nm = 0.6853) among populations, which were divided into two groups by cluster analysis. There was a close genetic relationship among populations with distances of 0.0845 to 0.5555. This study provides evidence of the efficacy and dependability of establishing a DNA barcode database and using ISSR markers to assess the extent of genetic diversity A. sinensis. Preserving the genetic resources through the conservation of existing populations offers a valuable proposition. The effective utilization of these resources will be further deliberated in subsequent breeding endeavors, with the potential to breed agarwood commercial lines.


Asunto(s)
Conservación de los Recursos Naturales , Código de Barras del ADN Taxonómico , Variación Genética , Repeticiones de Microsatélite , Thymelaeaceae , Código de Barras del ADN Taxonómico/métodos , Thymelaeaceae/genética , Thymelaeaceae/clasificación , ADN de Plantas/genética , Marcadores Genéticos , Filogenia
15.
Plants (Basel) ; 13(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256813

RESUMEN

Cucurbitacins, oxygenated tetracyclic triterpenoids that are found mainly in the Cucurbitaceae family, play essential roles as defensive compounds, serving as allomones against herbivores and pathogens and as signals for insect-parasite recognition. These compounds also exhibit various pharmacological effects. The biosynthesis of cucurbitacins is largely regulated by the bitter (Bi) gene, encoding an oxidosqualene cyclase, which catalyzes the conversion of 2,3-oxidosqualene into cucurbitadienol, a common precursor for cucurbitacin synthesis. Previous studies focused on uncovering the Bi gene clusters in Cucurbitaceae, but their presence in other cucurbitacin-producing plants remained unexplored. Here, the evolutionary history of Bi genes and their clusters were investigated in twenty-one plant genomes spanning three families based on chemotaxonomy. Nineteen Bi genes were identified in fourteen Cucurbitaceae, four Begoniaceae, and one Aquilaria species. Phylogenetic analysis suggested that the genome of Aquilaria sinensis contained the earliest Bi gene clusters in this dataset. Moreover, the genomic analysis revealed a conserved microsynteny of pivotal genes for cucurbitacin biosynthesis in Cucurbitaceae, while interspersed Bi gene clusters were observed in Begoniaceae, indicating rearrangements during plant Bi gene cluster formation. The bitter gene in A. sinensis was found to promote cucurbitadienol biosynthesis in the leaves of Nicotiana benthamiana. This comprehensive exploration of plant Bi genes and their clusters provides valuable insights into the genetic and evolutionary underpinnings of cucurbitacin biosynthesis. These findings offer prospects for a deeper understanding of cucurbitacin production and potential genetic resources for their enhancement in various plants.

16.
Fitoterapia ; 173: 105824, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244895

RESUMEN

Two new 2-(2-phenylethyl)chromones (1-2), two new sesquiterpenes (12-13), and twelve known compounds (3-11, 14-16) were isolated from agarwood of Aquilaria sinensis. These structures were confirmed by HRESIMS, 1D and 2D NMR spectra. The absolute configurations of two new sesquiterpenes were determined by comparing the experimental and calculated ECD spectra. Among them, 7,8-dihydroxy-2-[2-(4'-methoxyphenyl)ethyl]chromone (2) was the first time found that the hydroxyl groups at both C-7/C-8 in agarwood. And Aseudesm B (13), the aldehyded methyl group at C-5 of eucalyptane sesquiterpenes was first discovered in natural products. In the bioassays, all compounds were evaluated for their inhibitory activity against lipopolysaccharide-activated nitric oxide (NO) production in RAW264.7 cells. Compounds 2-5, 7, 9-10, and 13-14 revealed notable inhibitory effects against NO production with IC50 values ranging from 4.0 to 13.0 µM.


Asunto(s)
Sesquiterpenos , Thymelaeaceae , Cromonas/farmacología , Estructura Molecular , Flavonoides/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Thymelaeaceae/química , Sesquiterpenos/química , Óxido Nítrico , Madera/química
17.
Phytochem Anal ; 35(1): 135-145, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37743673

RESUMEN

INTRODUCTION: Agarwood, a fragrant resinous wood mainly formed by Aquilaria spp., is used worldwide as a natural fragrance and traditional medicine. A large amount of Aquilaria sinensis (Lour.) Gilg leaves are underutilised during the process of the agarwood industry, and the development of A. sinensis leaves as tea has recently attracted more and more attention. However, the small molecule profile of A. sinensis leaves and their bioactivities has been rarely reported. OBJECTIVE: To conduct a rapid untargeted liquid chromatography-mass spectrometry (LC-MS) analysis of A. sinensis leaves with a molecular networking (MN) strategy and evaluate its antioxidant and antidiabetic value. METHOD: A MN-assisted tandem mass spectrometry (MS/MS) analysis strategy was used to investigate the small molecule profile of A. sinensis leaves. Additionally, the integration of antioxidant and α-glucosidase inhibitory assays with MN analysis was executed to expeditiously characterise the bioactive compounds for potential prospective application. RESULTS: Five main chemical groups including phenol C-glycosides, organic acids, 2-(2-phenylethyl) chromones, benzophenone O-glycosides and flavonoids were rapidly revealed from the A. sinensis leaves. Eighty-one compounds were provisionally identified by comparing their MS/MS fragments with canonical pathways. The featured xanthone C-glycosides and benzophenone C-glycosides were recognised as the primary components of A. sinensis leaves. Several dimers and a trimer of mangiferin were reported firstly in A. sinensis leaves. Furthermore, 17 and 14 potential bioactive molecules were rapidly annotated from antioxidant and α-glucosidase inhibitory fraction, respectively. CONCLUSION: Our findings will help expand the utilisation of A. sinensis leaves and thus promote the high-quality development of agarwood industry.


Asunto(s)
Espectrometría de Masas en Tándem , Thymelaeaceae , Antioxidantes/farmacología , alfa-Glucosidasas , Flavonoides/química , Glicósidos , Thymelaeaceae/química , Benzofenonas
18.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38139213

RESUMEN

NAC is a class of plant-specific transcription factors that are widely involved in the growth, development and (a)biotic stress response of plants. However, their molecular evolution has not been extensively studied in Malvales, especially in Aquilaria sinensis, a commercial and horticultural crop that produces an aromatic resin named agarwood. In this study, 1502 members of the NAC gene family were identified from the genomes of nine species from Malvales and three model plants. The macroevolutionary analysis revealed that whole genome duplication (WGD) and dispersed duplication (DSD) have shaped the current architectural structure of NAC gene families in Malvales plants. Then, 111 NAC genes were systemically characterized in A. sinensis. The phylogenetic analysis suggests that NAC genes in A. sinensis can be classified into 16 known clusters and four new subfamilies, with each subfamily presenting similar gene structures and conserved motifs. RNA-seq analysis showed that AsNACs presents a broad transcriptional response to the agarwood inducer. The expression patterns of 15 AsNACs in A. sinensis after injury treatment indicated that AsNAC019 and AsNAC098 were positively correlated with the expression patterns of four polyketide synthase (PKS) genes. Additionally, AsNAC019 and AsNAC098 were also found to bind with the AsPKS07 promoter and activate its transcription. This comprehensive analysis provides valuable insights into the molecular evolution of the NAC gene family in Malvales plants and highlights the potential mechanisms of AsNACs for regulating secondary metabolite biosynthesis in A. sinensis, especially for the biosynthesis of 2-(2-phenyl) chromones in agarwood.


Asunto(s)
Malvales , Thymelaeaceae , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Filogenia , Thymelaeaceae/genética , Thymelaeaceae/química , Genes de Plantas
19.
Front Pharmacol ; 14: 1246761, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035004

RESUMEN

The importance of adequate sleep for good health cannot be overstated. Excessive light exposure at night disrupts sleep, therefore, it is important to find more healthy drinks that can promote sleep under sleep-disturbed conditions. The present study investigated the use of A. sinensis (Lour.) Spreng leaf tea, a natural product, to reduce the adverse effects of nighttime light on sleep. Here, Aquilaria sinensis leaf tea at 1.0 and 1.5 g/L significantly increased sleep time in zebrafish larvae (5-7 dpf) with light-induced sleep disturbance. Transcriptome sequencing and qRT-PCR analysis revealed a decrease in the immune-related genes, such as nfkbiab, tnfrsf1a, nfkbiaa, il1b, traf3, and cd40 in the 1.5 g/L Aquilaria sinensis leaf tea treatment group. In addition, a gene associated with sleep, bhlhe41, showed a significant decrease. Moreover, Aquilaria sinensis leaf tea suppressed the increase in neutrophils of Tg(mpo:GFP) zebrafish under sleep-disturbed conditions, indicating its ability to improve the immune response. Widely targeted metabolic profiling of the Aquilaria sinensis tea using ultra-performance liquid chromatography coupled with electrospray tandem mass spectrometry (UPLC-ESI-MS/MS) revealed flavonoids as the predominant component. Network pharmacological and molecular docking analyses suggested that the flavonoids quercetin and eupatilin in Aquilaria sinensis leaf tea improved the sleep of zebrafish by interacting with il1b and cd40 genes under light exposure at night. Therefore, the results of the study provide evidence supporting the notion that Aquilaria sinensis leaf tea has a positive impact on sleep patterns in zebrafish subjected to disrupted sleep due to nighttime light exposure. This suggests that the utilization of Aquilaria sinensis leaf tea as a potential therapeutic intervention for sleep disturbances induced by light may yield advantageous outcomes.

20.
Life (Basel) ; 13(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-38004287

RESUMEN

(1) Background: Agarwood is an aromatic resin produced by the host tree through an immunological response against biotic and abiotic stress. The aim was, first, to use the fungus Geotrichum candidum to stimulate compound changes in Aquilaria sinensis horizontally (color formation) and vertically (cutting layers) after injection with it. (2) Methods: Horizontal and vertical sections were collected and separated five months after injection with the fungal broth. Two grams of dry powder was mixed with 20 mL methanol for 3 h at room temperature, and the solution was vibrated in an ultrasonic cleaner bath at 40 °C for 1 h. After vacuum drying, a concentration of 10 mg/mL of the tested samples in methanol was prepared for reversed-phase high-performance liquid chromatography (RP-HPLC), gas chromatography/mass spectrometry (GC/MS), and thin-layer chromatography (TLC) analysis. (3) Results: The horizontal changes in the compounds and their concentrations were associated with color. Compared to the normal (N) group, G. candidum injection stimulated more compounds at RT 27-42 in the white (W) group, brown (BR) group, and black (B) group. Furthermore, a significant increase in fatty acids was observed in the W group, implying an early plant response after G. candidum injection. In the BR group, the compounds were more similar to commercial agarwood (Out group). In the B group, alkaloids were the main compounds. Vertical changes in the main compounds were not observed, although the compound level varied. A TLC analysis determined the main compounds in the BR group at 254 nm and in the B group at 365 nm. Higher fatty acid levels were found in L6 and L5 and were correlated with higher terpenoid and sesquiterpene levels, suggesting that these compounds were possibly the first stage of agarwood formation. A GC/MS analysis demonstrated that the main compound groups were almost identical to the BR parts. (4) Conclusions: The injection of G. candidum led A. sinensis to synthesize different phytochemicals horizontally, not vertically, in the BR group.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA