Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Med Chem ; 111: 117835, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39053075

RESUMEN

Achieving effective intracellular delivery of therapeutic molecules such as antibodies (IgG) is a challenge in biomedical research and pharmaceutical development. Conjugation of IgG with a cell-penetrating peptide is a rational approach. Here, not only the efficacy of the conjugates in internalizing into cells, but also the physicochemical property of the conjugates allowing their solubilized states in solution without forming aggregates are critical. In this study, we have shown that the first requirement can be addressed using a cell-permeable attenuated cationic amphiphilic lytic (CP-ACAL) peptide, L17ER4. The second requirement can be addressed by ligation of IgG to L17ER4 using sortase A, where the use of a linker of appropriate chain length is also important. For evaluation, the intracellular delivery efficacy was studied using conjugate structures with different orientations and conjugation modes of L17ER4 in ligation to a model protein, green fluorescent protein fused to a nuclear localization signal (NLS-EGFP). The effect of tetraarginine positioning in the L17ER4 sequence was also investigated. Following these studies, an optimized peptide sequence containing L17ER4 was ligated to an anti-green fluorescent protein (GFP) IgG bearing a sortase A recognition sequence. Treatment of the cells with the conjugate of anti-GFP IgG and L17ER4 resulted in a high efficiency of cytosolic translocation of the conjugate and the binding to the target protein in the cell without significant aggregate formation. The feasibility of the d-form of L17ER4 as a CP-ACAL was also confirmed.


Asunto(s)
Péptidos de Penetración Celular , Cisteína Endopeptidasas , Inmunoglobulina G , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/química , Humanos , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Péptidos de Penetración Celular/farmacología , Aminoaciltransferasas/metabolismo , Aminoaciltransferasas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Cationes/química , Péptidos/química , Péptidos/farmacología , Células HeLa , Sistemas de Liberación de Medicamentos , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/química
2.
J Control Release ; 367: 877-891, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301930

RESUMEN

To facilitate the introduction of proteins, such as antibodies, into cells, a variety of delivery peptides have been engineered. These peptides are typically highly cationic and somewhat hydrophobic, enabling cytosolic protein delivery at the cost of causing cell damage by rupturing membranes. This balance between delivery effectiveness and cytotoxicity presents obstacles for their real-world use. To tackle this problem, we designed a new endosome-disruptive cytosolic delivery peptide, E3MPH16, inspired by mastoparan X (MP). E3MPH16 was engineered to incorporate three Glu (E3) and 16 His (H16) residues at the N- and C-termini of MP, respectively. The negative charges of E3 substantially mitigate the cell-surface damage induced by MP. The H16 segment is known to enhance cell-surface adsorption and endocytic uptake of the associated molecules. With these modifications, E3MPH16 was successfully trapped within endosomes. The acidification of endosomes is expected to protonate the side chains of E3 and H16, enabling E3MPH16 to rupture endosomal membranes. As a result, nearly 100% of cells achieved cytosolic delivery of a model biomacromolecule, Alexa Fluor 488-labeled dextran (10 kDa), via endosomal escape by co-incubation with E3MPH16. The delivery process also suggested the involvement of macropinocytosis and caveolae-mediated endocytosis. With the assistance of E3MPH16, Cre recombinase and anti-Ras-IgG delivered into HEK293 cells and HT1080 cells enabled gene recombination and inhibited cell proliferation, respectively. The potential for in vivo application of this intracellular delivery method was further validated by topically injecting the green fluorescent protein fused with a nuclear localization signal (NLS-GFP) along with E3MPH16 into Colon-26 tumor xenografts in mice.


Asunto(s)
Endocitosis , Péptidos , Humanos , Animales , Ratones , Células HEK293 , Péptidos/química , Endosomas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA