Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Más filtros

Intervalo de año de publicación
1.
Curr Res Insect Sci ; 6: 100094, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39262636

RESUMEN

The calcium dependent Calpain proteases are modulatory enzymes with important roles in cell cycle control, development and immunity. In the fly model Drosophila melanogaster Calpain A cleaves Cactus/IkappaB and consequently modifies Toll signals during embryonic dorsal-ventral (DV) patterning. Here we explore the role of Calpains in the hemiptera Rhodnius prolixus, an intermediate germband insect where the Bone Morphogenetic Protein (BMP) instead of the Toll pathway plays a major role in DV patterning. Phylogenetic analysis of Calpains in species ranging from Isoptera to Diptera indicates an increase of Calpain sequences in the R. prolixus genome and other hemimetabolous species. One locus encoding each of the CalpC, CalpD and Calp7 families, and seven Calpain A/B loci are present in the R. prolixus genome. Several predicted R. prolixus Calpains display a unique architecture, such as loss of Calcium-binding EF-hand domains and loss of catalytic residues in the active site CysPc domain, yielding catalytically dead Calpains A/B. Knockdown for one of these inactive Calpains results in embryonic DV patterning defects, with expansion of ventral and lateral gene expression domains and consequent failure of germ band elongation. In conclusion, our results reveal that Calpains may exert a conserved function in insect DV patterning, despite the changing role of the Toll and BMP pathways in defining gene expression territories along the insect DV axis.

2.
Sci Total Environ ; 951: 175614, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39163932

RESUMEN

Plastic and microplastic pollution in the environment has become a significant global concern. Biodegradable plastics (BPs), as environmentally friendly alternatives to conventional plastics, have also emerged as a crucial topic of global discussion. The successful application of BPs appears to offer a solution to the potential ecological risks posed by conventional plastics. However, BPs have negative impacts on the ecological environment and human health. BPs can gradually degrade into biodegradable microplastics (BMPs) in the environment. Wastewater treatment plants (WWTPs) have become an undeniable source and sink of microplastics. With the production and application of BPs, BMPs will inevitably enter WWTPs. This paper reviews the pollution status, degradation behavior of BMPs, and their potential impact on wastewater treatment performance. The focus is on the environmental behavior of BMPs in wastewater treatment systems. The influences of BMPs on microbial communities, sludge treatment, and disposal are thoroughly discussed. The results indicate that BMPs are more easily decomposed into micro/nanoplastics and release additives compared to conventional microplastics. The effects of BMPs on microbial communities and wastewater treatment depend on their characteristics. The numerous oxygen-containing functional groups on the surface of BMPs enable them to serve a dual purpose as transport media and potential sources of environmental pollutants. Finally, in light of existing knowledge gaps, suggestions and prospects for future research on BMPs are proposed.


Asunto(s)
Microplásticos , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Microplásticos/análisis , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Monitoreo del Ambiente , Plásticos Biodegradables , Plásticos/análisis
3.
Environ Manage ; 74(4): 729-741, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38955869

RESUMEN

Agricultural nutrients nitrogen and phosphorus can subsequently be transported to waterways and are often managed through the adoption of best management practices (BMPs). However, we have a poor understanding of how the use of BMPs varies spatially and how BMP adoption might be related to nutrient yields in surface waters. To address this, we performed a survey of agricultural landowners across New York State and compared this with estimates of annual incremental nitrogen and phosphorus yields of agricultural origin from the Spatially Referenced Regressions On Watershed attributes (SPARROW) model. Using these socio-behavioral data and SPARROW predictions, we perform colocation analysis to identify areas where watersheds with high nutrient yield from agriculture are collocated with non-use of agricultural BMPs. This colocation analysis offers a novel methodology for identifying areas where monitoring of waterways and promotion of best management practices could be targeted to achieve the greatest benefits.


Asunto(s)
Agricultura , Nitrógeno , Fósforo , New York , Agricultura/métodos , Nitrógeno/análisis , Fósforo/análisis , Monitoreo del Ambiente/métodos , Conservación de los Recursos Naturales/métodos
5.
Front Cell Dev Biol ; 12: 1395723, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887514

RESUMEN

Several differentiation protocols have enabled the generation of intermediate mesoderm (IM)-derived cells from human pluripotent stem cells (hPSC). However, the substantial variability between existing protocols for generating IM cells compromises their efficiency, reproducibility, and overall success, potentially hindering the utility of urogenital system organoids. Here, we examined the role of high levels of Nodal signaling and BMP activity, as well as WNT signaling in the specification of IM cells derived from a UCSD167i-99-1 human induced pluripotent stem cells (hiPSC) line. We demonstrate that precise modulation of WNT and BMP signaling significantly enhances IM differentiation efficiency. Treatment of hPSC with 3 µM CHIR99021 induced TBXT+/MIXL1+ mesoderm progenitor (MP) cells after 48 h of differentiation. Further treatment with a combination of 3 µM CHIR99021 and 4 ng/mL BMP4 resulted in the generation of OSR1+/GATA3+/PAX2+ IM cells within a subsequent 48 h period. Molecular characterization of differentiated cells was confirmed through immunofluorescence staining and RT-qPCR. Hence, this study establishes a consistent and reproducible protocol for differentiating hiPSC into IM cells that faithfully recapitulates the molecular signatures of IM development. This protocol holds promise for improving the success of protocols designed to generate urogenital system organoids in vitro, with potential applications in regenerative medicine, drug discovery, and disease modeling.

6.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38892389

RESUMEN

Cartilage, a flexible and smooth connective tissue that envelops the surfaces of synovial joints, relies on chondrocytes for extracellular matrix (ECM) production and the maintenance of its structural and functional integrity. Melatonin (MT), renowned for its anti-inflammatory and antioxidant properties, holds the potential to modulate cartilage regeneration and degradation. Therefore, the present study was devoted to elucidating the mechanism of MT on chondrocytes. The in vivo experiment consisted of three groups: Sham (only the skin tissue was incised), Model (using the anterior cruciate ligament transection (ACLT) method), and MT (30 mg/kg), with sample extraction following 12 weeks of administration. Pathological alterations in articular cartilage, synovium, and subchondral bone were evaluated using Safranin O-fast green staining. Immunohistochemistry (ICH) analysis was employed to assess the expression of matrix degradation-related markers. The levels of serum cytokines were quantified via Enzyme-linked immunosorbent assay (ELISA) assays. In in vitro experiments, primary chondrocytes were divided into Control, Model, MT, negative control, and inhibitor groups. Western blotting (WB) and Quantitative RT-PCR (q-PCR) were used to detect Silent information regulator transcript-1 (SIRT1)/Nuclear factor kappa-B (NF-κB)/Nuclear factor erythroid-2-related factor 2 (Nrf2)/Transforming growth factor-beta (TGF-ß)/Bone morphogenetic proteins (BMPs)-related indicators. Immunofluorescence (IF) analysis was employed to examine the status of type II collagen (COL2A1), SIRT1, phosphorylated NF-κB p65 (p-p65), and phosphorylated mothers against decapentaplegic homolog 2 (p-Smad2). In vivo results revealed that the MT group exhibited a relatively smooth cartilage surface, modest chondrocyte loss, mild synovial hyperplasia, and increased subchondral bone thickness. ICH results showed that MT downregulated the expression of components related to matrix degradation. ELISA results showed that MT reduced serum inflammatory cytokine levels. In vitro experiments confirmed that MT upregulated the expression of SIRT1/Nrf2/TGF-ß/BMPs while inhibiting the NF-κB pathway and matrix degradation-related components. The introduction of the SIRT1 inhibitor Selisistat (EX527) reversed the effects of MT. Together, these findings suggest that MT has the potential to ameliorate inflammation, inhibit the release of matrix-degrading enzymes, and improve the cartilage condition. This study provides a new theoretical basis for understanding the role of MT in decelerating cartilage degradation and promoting chondrocyte repair in in vivo and in vitro cultured chondrocytes.


Asunto(s)
Cartílago Articular , Condrocitos , Melatonina , Factor 2 Relacionado con NF-E2 , FN-kappa B , Transducción de Señal , Sirtuina 1 , Factor de Crecimiento Transformador beta , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , Factor 2 Relacionado con NF-E2/metabolismo , Melatonina/farmacología , FN-kappa B/metabolismo , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Condrocitos/patología , Transducción de Señal/efectos de los fármacos , Cartílago Articular/metabolismo , Cartílago Articular/patología , Cartílago Articular/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Masculino , Matriz Extracelular/metabolismo , Inflamación/metabolismo , Inflamación/patología
7.
J Bone Miner Res ; 39(8): 1162-1173, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38836497

RESUMEN

X-linked hypophosphatemia (XLH) is caused by mutations in PHEX, leading to rickets and osteomalacia. Adults affected with XLH develop a mineralization of the bone-tendon attachment site (enthesis), called enthesopathy, which causes significant pain and impaired movement. Entheses in mice with XLH (Hyp) have enhanced bone morphogenetic protein (BMP) and Indian hedgehog (IHH) signaling. Treatment of Hyp mice with the BMP signaling blocker palovarotene attenuated BMP/IHH signaling in Hyp entheses, thus indicating that BMP signaling plays a pathogenic role in enthesopathy development and that IHH signaling is activated by BMP signaling in entheses. It was previously shown that mRNA expression of growth/differentiation factor 5 (Gdf5) is enhanced in Hyp entheses at P14. Thus, to determine a role for GDF5 in enthesopathy development, Gdf5 was deleted globally in Hyp mice and conditionally in Scx + cells of Hyp mice. In both murine models, BMP/IHH signaling was similarly decreased in Hyp entheses, leading to decreased enthesopathy. BMP/IHH signaling remained unaffected in WT entheses with decreased Gdf5 expression. Moreover, deletion of Gdf5 in Hyp entheses starting at P30, after enthesopathy has developed, partially reversed enthesopathy. Taken together, these results demonstrate that while GDF5 is not essential for modulating BMP/IHH signaling in WT entheses, inappropriate GDF5 activity in Scx + cells contributes to XLH enthesopathy development. As such, inhibition of GDF5 signaling may be beneficial for the treatment of XLH enthesopathy.


X-linked hypophosphatemia (XLH) is a rare bone disorder that leads to short stature and poorly mineralized bones. As adults, patients with XLH often develop a mineralization of the bone-tendon attachment site, called enthesopathy, which results in significant pain. We previously showed that Achilles bone-tendon attachment sites (entheses) in mice with XLH (Hyp) have an enthesopathy characterized by increased bone morphogenetic protein (BMP) signaling. In the current studies, we show that treating Hyp mice with the BMP signaling inhibitor palovarotene prevents enthesopathy, demonstrating that the increased BMP signaling in Hyp entheses leads to enthesopathy development. We also reported that gene expression of Gdf5, which activates BMP signaling, is enhanced in Hyp entheses. Therefore, to determine if the enhanced Gdf5 expression leads to the increased BMP signaling seen Hyp entheses, Gdf5 was deleted from Hyp mice and also deleted specifically in the entheses of Hyp mice. In both mouse models, enthesopathy development was attenuated, demonstrating that the increased Gdf5 expression in Hyp entheses plays a role in enthesopathy development. These data indicate that blocking GDF5 and BMP signaling may prevent enthesopathy in patients with XLH.


Asunto(s)
Entesopatía , Raquitismo Hipofosfatémico Familiar , Factor 5 de Diferenciación de Crecimiento , Animales , Ratones , Proteínas Morfogenéticas Óseas/metabolismo , Modelos Animales de Enfermedad , Entesopatía/genética , Entesopatía/metabolismo , Entesopatía/patología , Raquitismo Hipofosfatémico Familiar/genética , Raquitismo Hipofosfatémico Familiar/metabolismo , Raquitismo Hipofosfatémico Familiar/patología , Factor 5 de Diferenciación de Crecimiento/metabolismo , Factor 5 de Diferenciación de Crecimiento/genética , Transducción de Señal
8.
Water Sci Technol ; 89(6): 1497-1511, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557714

RESUMEN

Identifying vulnerable areas to erosion within the watershed and implementing best management practices (BMPs) are crucial steps in mitigating watershed degradation by minimizing sediment yields. The present study evaluates and identifies the BMPs in the Seybouse basin, northeastern Algeria, using the Soil and Water Assessment Tool (SWAT) model. After successful calibration and validation, the model demonstrated a satisfactory ability to simulate monthly discharge and sediment. Then, the calibrated model was employed to evaluate the efficacy of diverse management practices in sediment control. In the SWAT, three soil and conservation practices, as well as vegetated filter strips (VFSs), grade stabilization structures (GSSs), and terracing were evaluated. The average annual sediment yield in the Seybouse watershed is determined to be 14.43 t/ha year, constituting 71% of the total soil loss. VFS demonstrated a sediment reduction of 37.30%, GSS 20.40%, and terracing 42.30%. Among these strategies, terracing results in the greatest reduction, followed by VFS. The results of this study area can be useful for informed decision-making regarding optimal watershed management strategies.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Sedimentos Geológicos/química , Ríos , Argelia , Modelos Teóricos , Suelo , Agua
9.
J Environ Manage ; 356: 120548, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492420

RESUMEN

Urban stormwater runoff is a significant source of nutrient pollution that is very costly to treat. Water quality trading (WQT) is a market-based strategy that can be used to lower the costs associated with meeting stormwater quality regulations. While many WQT programs have experienced low participation, Virginia's program has seen high participation due to the inclusion of land developers and other regulated stormwater dischargers. However, the extent to which WQT is used as a compliance option by regulated stormwater dischargers is not well understood, particularly when compared with the adoption of traditional compliance options. To address this knowledge gap, we collated a novel dataset comprising site characteristics and stormwater compliance methods for all development projects in the City of Roanoke, Virginia from December 2015 to March 2022. We analyzed this dataset to characterize the adoption of nutrient offset credits and other compliance methods being used, including best management practices (BMPs) and improved land covers associated with reduced nutrient export. Results show that credits are the preferred compliance option in Roanoke and were used as the only treatment compliance method for 59% of projects with treatment requirements. Projects using credits corresponded with a lower median disturbed area (1.36 acres) and lower median nutrient load reduction requirement (0.69 pounds of total phosphorus per year) compared with other compliance methods. Furthermore, we found that 58% of the projects that used credits achieved stormwater quantity compliance using methods other than implementing stormwater control devices. By mapping buyers and sellers of credits, we found that all credit sellers are downstream of the development projects. We discuss how this downstream trading could be a cause for concern, as part of a larger discussion of the advantages of tracking stormwater compliance methods, drawing on Roanoke as a case study.


Asunto(s)
Contaminantes Químicos del Agua , Calidad del Agua , Virginia , Lluvia , Ciudades , Fósforo/análisis , Movimientos del Agua , Monitoreo del Ambiente/métodos
10.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38396963

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder with a prolonged prodromal phase. Higher urinary bis(monoacylglycerol)phosphate (BMP) levels associate with LRRK2 (leucine-rich repeat kinase 2) and GBA1 (glucocerebrosidase) mutations, and are considered as potential noninvasive biomarkers for predicting those mutations and PD progression. However, their reliability has been questioned, with inadequately investigated genetics, cohorts, and population. In this study, multiple statistical hypothesis tests were employed on urinary BMP levels and sequences of 90 PD-risk single nucleotide polymorphisms (SNPs) from Parkinson's Progression Markers Institution (PPMI) participants. Those SNPs were categorized into four groups based on their impact on BMP levels in various cohorts. Variants rs34637584 G/A and rs34637584 A/A (LRRK2 G2019S) were identified as the most relevant on increasing urinary BMP levels in the PD cohort. Meanwhile, rs76763715 T/T (GBA1) was the primary factor elevating BMP levels in the prodromal cohort compared to its T/C and C/C variants (N370S) and the PD cohort. Proteomics analysis indicated the changed transport pathways may be the reasons for elevated BMP levels in prodromal patients. Our findings demonstrated that higher urinary BMP levels alone were not reliable biomarkers for PD progression or gene mutations but might serve as supplementary indicators for early diagnosis and treatment.


Asunto(s)
Lisofosfolípidos , Monoglicéridos , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Mutación , Biomarcadores
11.
Environ Manage ; 73(4): 713-724, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38300313

RESUMEN

Promoting conservation on rented farmland is a challenge for stakeholders working with non-operating landowners (NOLs) and tenant farmers (operators). We conducted an online survey to identify stakeholders who engage with NOLs, and understand how their positioning as 'intermediaries' could be leveraged to help bridge the NOL-operator communication gap. A majority of identified stakeholders/intermediaries worked in government agencies, university extension, law firms, or farm management companies. Intermediaries believed that NOLs trusted them for several conservation activities, however, they believed that NOLs were more influenced by operators than by intermediaries. The message that engaging in conservation can help preserve the farm for future generation was perceived to be influential in motivating NOLs. Our findings suggest the need for a holistic approach to engage NOLs by accounting for trust in and influence of intermediaries and operators, and the salience of conservation messages and messaging when promoting conservation behaviors on rented farmlands.


Asunto(s)
Conservación de los Recursos Naturales , Agricultores , Humanos , Granjas , Encuestas y Cuestionarios , Comunicación , Agricultura
12.
Sci Total Environ ; 916: 170299, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38272086

RESUMEN

The detrimental effects of plastic and microplastic accumulation on ecosystems are widely recognized and indisputable. The emergence of biodegradable plastics (BPs) offers a practical solution to plastic pollution. Problematically, however, not all BPs can be fully degraded in the environment. On the contrary, the scientific community has demonstrated that BPs are more likely than conventional plastics (CPs) to degrade into micro/nanoplastics and release additives, which can have similar or even worse effects than microplastics. However, there is very limited information available on the environmental toxicity assessment of BMPs. The absence of a toxicity evaluation system and the uncertainty regarding combined toxicity with other pollutants also impede the environmental toxicity assessment of BMPs. Currently, research is focused on thoroughly exploring the toxic effects of biodegradable microplastics (BMPs). This paper reviews the pollution status of BMPs in the environment, the degradation behavior of BPs and the influencing factors. This paper comprehensively summarizes the ecotoxicological effects of BPs on ecosystems, considering animals, plants, and microorganisms in various environments such as water bodies, soil, and sediment. The focus is on distinguishing between BMPs and conventional microplastics (CMPs). In addition, the combined toxic effects of BMPs and other pollutants are also being investigated. The findings suggest that BMPs may have different or more severe impacts on ecosystems. The rougher and more intricate surface of BMPs increases the likelihood of causing mechanical damage to organisms and breaking down into smaller plastic particles, releasing additives that lead to a series of cascading negative effects on related organisms and ecosystems. In the case of knowledge gaps, future research is also proposed and anticipated to investigate the toxic effects of BMPs and their evaluation.


Asunto(s)
Plásticos Biodegradables , Contaminantes Ambientales , Animales , Plásticos Biodegradables/toxicidad , Ecosistema , Contaminantes Ambientales/toxicidad , Contaminación Ambiental , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad
13.
Exp Neurol ; 373: 114649, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38072150

RESUMEN

GREMLIN1 (GREM1) is a secreted protein that antagonizes bone morphogenetic proteins (BMPs). While abnormal GREM1 expression has been reported to cause behavioral defects in postpartum mice, the spatial and cellular distribution of GREM1 in the brain and the influence of the GREM1-secreting cells on brain function and behavior remain unclear. To address this, we designed a genetic cassette incorporating a 3×Flag-TeV-HA-T2A-tdTomato sequence, resulting in the creation of a novel Grem1Tag mouse model, expressing an epitope tag (3×Flag-TeV-HA-T2A) followed by a fluorescent reporter (tdTomato) under the control of the endogenous Grem1 promoter. This design facilitated precise tracking of the cell origin and distribution of GREM1 in the brain using tdTomato and Flag (or HA) markers, respectively. We confirmed that the Grem1Tag mouse exhibited normal motor, cognitive, and social behaviors at postnatal 60 days (P60), compared with C57BL/6J controls. Through immunofluorescence staining, we comprehensively mapped the distribution of GREM1-secreting cells across the central nervous system. Pervasive GREM1 expression was observed in the cerebral cortex (Cx), medulla, pons, and cerebellum, with the highest levels in the Cx region. Notably, within the Cx, GREM1 was predominantly secreted by excitatory neurons, particularly those expressing calcium/calmodulin-dependent protein kinase II alpha (Camk2a), while inhibitory neurons (parvalbumin-positive, PV+) and glial cells (oligodendrocytes, astrocytes, and microglia) showed little or no GREM1 expression. To delineate the functional significance of GREM1-secreting cells, a selective ablation at P42 using a diphtheria toxin A (DTA) system resulted in increased anxiety-like behavior and impaired memory in mice. Altogether, our study harnessing the Grem1Tag mouse model reveals the spatial and cellular localization of GREM1 in the mouse brain, shedding light on the involvement of GREM1-secreting cells in modulating brain function and behavior. Our Grem1Tag mouse serves as a valuable tool for further exploring the precise role of GREM1 in brain development and disease.


Asunto(s)
Encéfalo , Neuronas , Proteína Fluorescente Roja , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo
14.
Genes (Basel) ; 14(12)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38136984

RESUMEN

Fibrodysplasia ossificans progressiva (FOP) is an enigmatic, ultra-rare genetic disorder characterized by progressive heterotopic ossification, wherein soft connective tissues undergo pathological transformation into bone structures. This incapacitating process severely limits patient mobility and poses formidable challenges for therapeutic intervention. Predominantly caused by missense mutations in the ACVR1 gene, this disorder has hitherto defied comprehensive mechanistic understanding and effective treatment paradigms. This write-up offers a comprehensive overview of the contemporary understanding of FOP's complex pathobiology, underscored by advances in molecular genetics and proteomic studies. We delve into targeted therapy, spanning genetic therapeutics, enzymatic and transcriptional modulation, stem cell therapies, and innovative immunotherapies. We also highlight the intricate complexities surrounding clinical trial design for ultra-rare disorders like FOP, addressing fundamental statistical limitations, ethical conundrums, and methodological advancements essential for the success of interventional studies. We advocate for the adoption of a multi-disciplinary approach that converges bench-to-bedside research, clinical expertise, and ethical considerations to tackle the challenges of ultra-rare diseases like FOP and comparable ultra-rare diseases. In essence, this manuscript serves a dual purpose: as a definitive scientific resource for ongoing and future FOP research and a call to action for innovative solutions to address methodological and ethical challenges that impede progress in the broader field of medical research into ultra-rare conditions.


Asunto(s)
Miositis Osificante , Osificación Heterotópica , Humanos , Miositis Osificante/genética , Miositis Osificante/terapia , Proteómica , Enfermedades Raras , Osificación Heterotópica/genética , Osificación Heterotópica/patología , Huesos/patología
15.
Gynecol Endocrinol ; 39(1): 2276163, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37913790

RESUMEN

OBJECTIVE: To investigate whether the Anti-Müllerian Hormone (AMH), an ovarian hormone belonging to the Transforming Growth Factor ß superfamily, may represent a possible candidate for use as a bone anabolic factor. METHODS: We performed in vitro studies on Human Osteoblasts (HOb) to evaluate the expression and the functionality of AMHRII, the AMH receptor type-2, and investigate the effects of exogenous AMH exposure on osteogenic gene expression and osteoblast functions. RESULTS: We reported the first evidence for the expression and functionality of AMHRII in HOb cells, thus suggesting that osteoblasts may represent a specific target for exogenous AMH treatment. Furthermore, the exposure to AMH exerted a stimulatory effect on HOb cells leading to the activation of osteogenic genes, including the upregulation of osteoblastic transcription factors such as RUNX and OSX, along with increased deposition of mineralized nodules. CONCLUSION: Our findings proved interesting clues on the stimulatory effects of AMH on mature osteoblasts expressing its specific receptor, AMHRII. This study may therefore have translation value in opening the perspective that AMH may be an effective candidate to counteract the bone loss in osteoporotic patients by selectively targeting osteoblast with minimal off-target effect.


Asunto(s)
Hormona Antimülleriana , Hormonas Peptídicas , Humanos , Hormona Antimülleriana/farmacología , Diferenciación Celular , Expresión Génica , Osteoblastos/metabolismo , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Factor de Crecimiento Transformador beta/genética
16.
Animal Model Exp Med ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38013618

RESUMEN

BACKGROUND: Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength. However, current anti-resorptive drugs carry a risk of various complications. The deep learning-based efficacy prediction system (DLEPS) is a forecasting tool that can effectively compete in drug screening and prediction based on gene expression changes. This study aimed to explore the protective effect and potential mechanisms of cinobufotalin (CB), a traditional Chinese medicine (TCM), on bone loss. METHODS: DLEPS was employed for screening anti-osteoporotic agents according to gene profile changes in primary osteoporosis. Micro-CT, histological and morphological analysis were applied for the bone protective detection of CB, and the osteogenic differentiation/function in human bone marrow mesenchymal stem cells (hBMMSCs) were also investigated. The underlying mechanism was verified using qRT-PCR, Western blot (WB), immunofluorescence (IF), etc. RESULTS: A safe concentration (0.25 mg/kg in vivo, 0.05 µM in vitro) of CB could effectively preserve bone mass in estrogen deficiency-induced bone loss and promote osteogenic differentiation/function of hBMMSCs. Both BMPs/SMAD and Wnt/ß-catenin signaling pathways participated in CB-induced osteogenic differentiation, further regulating the expression of osteogenesis-associated factors, and ultimately promoting osteogenesis. CONCLUSION: Our study demonstrated that CB could significantly reverse estrogen deficiency-induced bone loss, further promoting osteogenic differentiation/function of hBMMSCs, with BMPs/SMAD and Wnt/ß-catenin signaling pathways involved.

17.
Biomed Pharmacother ; 169: 115844, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37948990

RESUMEN

Osteoinductive BMPs require a suitable delivery system for treating various pathological conditions of the spine and segmental bone defects. INFUSE, the only commercially available BMP-based osteoinductive device, consisting of rhBMP2 on bovine absorbable collagen sponge (ACS) showed major disadvantages due to serious side effects. A novel osteoinductive device, OSTEOGROW, comprised of rhBMP6 dispersed within autologous blood coagulum (ABC) is a promising therapy for bone regeneration, subjected to several clinical trials for diaphysial bone repair and spinal fusion. In the present study, we have examined the release dynamics showing that the ABC carrier provided a slower, more steady BMP release in comparison to the ACS. Rat subcutaneous assay was employed to evaluate cellular events and the time course of ectopic osteogenesis. The host cellular response to osteoinductive implants was evaluated by flow cytometry, while dynamics of bone formation and maintenance in time were evaluated by histology, immunohistochemistry and micro CT analyses. Flow cytometry revealed that the recruitment of lymphoid cell populations was significantly higher in rhBMP6/ABC implants, while rhBMP2/ACS implants recruited more myeloid populations. Furthermore, rhBMP6/ABC implants more efficiently attracted early and committed progenitor cells. Dynamics of bone formation induced by rhBMP2/ACS was characterized by a delayed endochondral ossification process in comparison to rhBMP6/ABC implants. Besides, rhBMP6/ABC implants induced more ectopic bone volume in all observed time points in comparison to rhBMP2/ACS implants. These results indicate that OSTEOGROW was superior to INFUSE due to ABC's advantages as a carrier and rhBMP6 superior efficacy in inducing bone.


Asunto(s)
Osificación Heterotópica , Osteogénesis , Ratas , Animales , Bovinos , Colágeno/farmacología , Factor de Crecimiento Transformador beta/farmacología , Proteínas Morfogenéticas Óseas , Regeneración Ósea , Proteínas Recombinantes/farmacología
18.
Front Mar Sci ; 10: 1-18, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37854937

RESUMEN

When environmental mitigation requires individual adoption, engagement approaches centered on cost effectiveness and technological efficiency alone are often insufficient. Through focus groups with adopters and prospective adopters, this research identifies factors influencing homeowners' willingness to adopt Innovative/Alternative (I/A) septic systems for nitrogen reduction. We apply concepts from technology adoption and behavior change models as a framework for illustrating the homeowner decision-making process around I/A adoption. The perceived needs to replace an old/failing septic system, comply with local regulations, and protect local water quality synergistically catalyzed adoption. Adoption was further influenced by the larger context within which it is taking place, perceived characteristics of I/A systems and the installation process, system aesthetics concerns, and homeowners' attitudes and beliefs. Considering how these factors affect adoption could enable resource managers to design more targeted interventions to encourage adoption through behavior change strategies such as social marketing, and to improve how these systems are communicated. If I/A systems are to be used as a tool to achieve water quality goals, the considerations influencing homeowners' willingness to install these systems will be critical to incentivizing voluntary adoption. Many of these factors are relevant to the adoption of other individual-level environmental management strategies, which are being increasingly deployed in response to complex, nonpoint source pollution issues.

19.
Environ Monit Assess ; 195(11): 1285, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814193

RESUMEN

This study conducted a spatio-temporal analysis of runoff, total suspended sediment, suspended particulate carbon, nitrogen, and phosphorus loadings within the 2.06 km2 Steppler subwatershed in southern Manitoba of Canada based on 11 years of field monitoring data collected at nine stations. Results showed that the nutrient losses were very small because of the implementation of multiple BMPs in the study area. However, a high spatio-temporal variation of runoff and water quality parameters was found for the nine fields within the subwatershed. The average runoff coefficient was 0.19 at the subwatershed outlet with sediment, suspended particulate carbon, total nitrogen, and total phosphorus losses of 73.8, 6.10, 4.54, and 0.76 kg/ha respectively. Spring snowmelt runoff was about 74.5% of the annual runoff at the subwatershed outlet, while for sediment, suspended particulate carbon, total nitrogen, and total phosphorus, the proportions were 61.1%, 63.6%, 74.9%, and 81.2% respectively during the monitoring period, which suggests that BMPs designed for reducing nutrient loadings from snowmelt runoff would be more effective than BMPs designed for reducing pollutant loading from rainfall storms in the study area. Research findings from this study will benefit the enhancement of current BMPs and the development of new BMPs in the region to minimize soil and nutrient losses from agricultural fields and improve water quality in receiving water bodies.


Asunto(s)
Conservación de los Recursos Naturales , Monitoreo del Ambiente , Canadá , Conservación de los Recursos Naturales/métodos , Pradera , Movimientos del Agua , Fósforo/análisis , Nitrógeno/análisis , Nutrientes , Agricultura/métodos
20.
J Am Water Resour Assoc ; 59(1): 178-196, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37539091

RESUMEN

Excess loading of nitrogen and phosphorus to river networks causes environmental harm, but reducing loads from large river basins is difficult and expensive. We develop a new tool, the River Basin Export Reduction Optimization Support Tool (RBEROST) to identify least-cost combinations of management practices that will reduce nutrient loading to target levels in downstream and mid-network waterbodies. We demonstrate the utility of the tool in a case study in the Upper Connecticut River basin in New England, USA. The total project cost of optimized lowest-cost plans ranged from $18.0 million to $41.0 million per year over 15 years depending on user specifications. Plans include both point source and non-point source management practices, and most costs are associated with urban stormwater practices. Adding a 2% margin of safety to loading targets improved estimated probability of success from 37.5% to 99%. The large spatial scale of RBEROST, and the consideration of both point and non-point source contributions of nutrients, makes it well suited as an initial screening tool in watershed planning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA