Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 413
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 383, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231834

RESUMEN

GPR56, an adhesion G-protein coupled receptor (aGPCRs) with constitutive and ligand-promoted activity, is involved in many physiological and pathological processes. Whether the receptor's constitutive or ligand-promoted activation occur through the same molecular mechanism, and whether different activation modes lead to functional selectivity between G proteins is unknown. Here we show that GPR56 constitutively activates both G12 and G13. Unlike constitutive activation and activation with 3-α-acetoxydihydrodeoxygedunin (3αDOG), stimulation with an antibody, 10C7, directed against GPR56's extracellular domain (ECD) led to an activation that favors G13 over G12. An autoproteolytically deficient mutant, GPR56-T383A, was also activated by 10C7 indicating that the tethered agonist (TA) exposed through autocatalytic cleavage, is not required for this activation modality. In contrast, this proteolysis-resistant mutant could not be activated by 3αDOG indicating different modes of activation by the two ligands. We show that an N-terminal truncated GPR56 construct (GPR56-Δ1-385) is devoid of constitutive activity but was activated by 3αDOG. Similarly to 3αDOG, 10C7 promoted the recruitment of ß-arrestin-2 but GPR56 internalization was ß-arrestin independent. Despite the slow activation mode of 10C7 that favors G13 over G12, it efficiently activated the downstream Rho pathway in BT-20 breast cancer cells. These data show that different GPR56 ligands have different modes of activation yielding differential G protein selectivity but converging on the activation of the Rho pathway both in heterologous expressions system and in cancer cells endogenously expressing the receptor. 10C7 is therefore an interesting tool to study both the processes underlying GPR56 activity and its role in cancer cells.


Asunto(s)
Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Humanos , Transducción de Señal , Células HEK293 , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Línea Celular Tumoral , Ligandos , Animales , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética
2.
Talanta ; 281: 126821, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39255622

RESUMEN

Bioluminescence is a natural process where biological organisms produce light through chemical reactions. These reactions predominantly occur between small-molecule substrates and luciferase within bioluminescent organisms. Bioluminescence imaging (BLI) has shown significant potential in biomedical research owing to its non-invasive, real-time observation and quantification. In this review, we introduced the chemical mechanism of bioluminescent systems and categorized several strategies that successfully addressed the native limitations, including improvements on the chemical structures of luciferase-luciferin bioluminescence system and bioluminescence resonance energy transfer (BRET) methods. In addition, we also reviewed and summarized recent advances in bioimaging applications. We hope that this review can provide effective guidance for the development and application of bioluminescent systems in the field of bioimaging.

3.
Res Sq ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39281883

RESUMEN

GPR56, an adhesion G-protein coupled receptor (aGPCRs) with constitutive and ligand-promoted activity, is involved in many physiological and pathological processes. Whether the receptor's constitutive or ligand-promoted activation occur through the same molecular mechanism, and whether different activation modes lead to functional selectivity between G proteins is unknown. Here we show that GPR56 constitutively activates both G12 and G13. Unlike constitutive activation and activation with 3-a-acetoxydihydrodeoxygedunin (3αDOG), stimulation with an antibody, 10C7, directed against GPR56's extracellular domain (ECD) led to an activation that favors G13 over G12. An autoproteolytically deficient mutant, GPR56-T383A, was also activated by 10C7 indicating that the tethered agonist (TA) exposed through autocatalytic cleavage, is not required for this activation modality. In contrast, this proteolysis-resistant mutant could not be activated by 3αDOG indicating different modes of activation by the two ligands. We show that an N-terminal truncated GPR56 construct (GPR56-Δ1-385) is devoid of constitutive activity but was activated by 3αDOG. Similarly to 3αDOG, 10C7 promoted the recruitment of b-arrestin-2 but GPR56 internalization was ß-arrestin independent. Despite the slow activation mode of 10C7 that favors G13 over G12, it efficiently activated the downstream Rho pathway in BT-20 breast cancer cells. These data show that different GPR56 ligands have different modes of activation yielding differential G protein selectivity but converging on the activation of the Rho pathway both in heterologous expressions system and in cancer cells endogenously expressing the receptor. 10C7 is therefore an interesting tool to study both the processes underlying GPR56 activity and its role in cancer cells.

4.
World J Clin Cases ; 12(23): 5410-5415, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39156099

RESUMEN

BACKGROUND: Small cell lung cancer (SCLC) exhibits a pronounced tendency for metastasis and relapse, and the acquisition of resistance to chemotherapy and radiotherapy, leading to complexity in treatment outcomes. It is crucial to tackle these challenges by advancing targeted therapeutic approaches in ongoing research endeavors. Variant RET fusions have been reported in several solid tumors, but are rarely reported in SCLC. CASE SUMMARY: We present the first case of a KIF5B-RET fusion in a 65-year-old male patient with SCLC. To date, the patient has received the 4th line chemotherapy with anlotinib for one year and has shown a sustained favorable partial response. According to the results of next generation sequencing, this SCLC patient harbors the KIF5B-RET fusion, suggesting that RET fusion could serve as a promising molecular target for SCLC treatment. Next-generation sequencing (NGS) plays a critical role in comprehensively assessing the genotype and phenotype of cancer. CONCLUSION: NGS can provide SCLC patients with personalized and targeted therapy options, thereby improving their likelihood of survival.

5.
J Enzyme Inhib Med Chem ; 39(1): 2387417, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39163165

RESUMEN

Papain-like protease (PLpro) is an attractive anti-coronavirus target. The development of PLpro inhibitors, however, is hampered by the limitations of the existing PLpro assay and the scarcity of validated active compounds. We developed a novel in-cell PLpro assay based on BRET and used it to evaluate and discover SARS-CoV-2 PLpro inhibitors. The developed assay demonstrated remarkable sensitivity for detecting the reduction of intracellular PLpro activity while presenting high reliability and performance for inhibitor evaluation and high-throughput screening. Using this assay, three protease inhibitors were identified as novel PLpro inhibitors that are structurally disparate from those previously known. Subsequent enzymatic assays and ligand-protein interaction analysis based on molecular docking revealed that ceritinib directly inhibited PLpro, showing high geometric complementarity with the substrate-binding pocket in PLpro, whereas CA-074 methyl ester underwent intracellular hydrolysis, exposing a free carboxyhydroxyl group essential for hydrogen bonding with G266 in the BL2 groove, resulting in PLpro inhibition.


Asunto(s)
Simulación del Acoplamiento Molecular , Pirimidinas , SARS-CoV-2 , Sulfonas , Humanos , SARS-CoV-2/enzimología , SARS-CoV-2/efectos de los fármacos , Sulfonas/farmacología , Sulfonas/química , Pirimidinas/química , Pirimidinas/farmacología , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Proteasas Similares a la Papaína de Coronavirus/química , Transferencia de Energía por Resonancia de Bioluminiscencia , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Estructura Molecular , Relación Dosis-Respuesta a Droga , Relación Estructura-Actividad
6.
Int J Biol Macromol ; 279(Pt 2): 135089, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39197629

RESUMEN

Variants in rhodopsin (RHO) have been linked to autosomal dominant congenital stationary night blindness (adCSNB), which affects the ability to see in dim light, and the pathogenetic mechanism is still not well understood. In this study we report two novel RHO variants found in adCSNB families, p.W265R and p.A269V, that map in the sixth transmembrane domain of RHO protein. We applied in silico molecular simulation and in vitro biochemical and molecular studies to characterize the two new variants and compare the molecular determinants to two previously characterized adCSNB variants, p.G90D and p.T94I, that map in the second transmembrane domain of the RHO protein. We demonstrate that W265R and A269V cause constitutive activation of RHO with light-independent G protein coupling and impaired binding to arrestin. Differently, G90D and T94I are characterized by slow kinetics of RHO activation and deactivation. This study provides new evidence on the differential contribution of transmembrane α-helixes two and six to the interaction with intracellular transducers of RHO and mutations in these helixes result in a similar phenotype in patients but with distinct molecular effects.

7.
Int J Biol Macromol ; 278(Pt 2): 134320, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084415

RESUMEN

Phytoestrogens are plant-derived compounds that have chemical structures and functions similar to estrogen. Phytoestrogens act as ligand-inducible transcription factors involved in cellular growth by binding to estrogen receptors (ERs), specifically ER alpha (ERα) and beta (ERß). Through this mechanism, phytoestrogens have a physiological function similar to that of the female hormone 17ß-estradiol (E2), which can be useful in treating osteoporosis, cardiovascular disease, and cancer. Furthermore, phytoestrogens have been found to elicit various cellular responses depending on their affinity for ERs; in particular, they show a greater affinity with for ERß. This study aimed to comprehensively analyze the mode of action of eight phytoestrogens, namely kaempferol, coumestrol, glycitein, apigenin, daidzein, genistein, equol, and resveratrol, by evaluating their estrogenic activity as ER ligands. Based on the bioluminescence resonance energy transfer (BRET)-based ER dimerization and transactivation assay results, all the phytoestrogens tested were identified as estrogen agonists by mediating ERα and ERß dimerization. The specific binding and functions of ERα and ERß were distinguished by differentiating between their dimerization activity. In addition, this study contributes to advancing our understanding of the overall mechanism of action involving both ERs.


Asunto(s)
Receptor alfa de Estrógeno , Receptor beta de Estrógeno , Fitoestrógenos , Fitoestrógenos/farmacología , Fitoestrógenos/química , Fitoestrógenos/metabolismo , Humanos , Receptor beta de Estrógeno/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/química , Multimerización de Proteína/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Ligandos , Unión Proteica
8.
J Photochem Photobiol B ; 258: 112979, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39003970

RESUMEN

Bioluminescence resonance energy transfer photodynamic therapy, which uses light generated by bioluminescent proteins to activate photosensitizers and produce reactive oxygen species without the need for external irradiation, has shown promising results in cancer models. However, the characterization of delivery systems that can incorporate the components of this therapy for preferential delivery to the tumor remains necessary. In this work, we have characterized parvovirus B19-like particles (B19V-VLPs) as a platform for a photosensitizer and a bioluminescent protein. By chemical and biorthogonal conjugation, we conjugated rose Bengal photosensitizer and firefly luciferase to B19V-VLPs and a protein for added specificity. The results showed that B19V-VLPs can withstand decoration with all three components without affecting its structure or stability. The conjugated luciferase showed activity and was able to activate rose Bengal to produce singlet oxygen without the need for external light. The photodynamic reaction generated by the functionalized VLPs-B19 can decrease the viability of tumor cells in vitro and affect tumor growth and metastasis in the 4 T1 model. Treatment with functionalized VLPs-B19 also increased the percentage of CD4 and CD8 cell populations in the spleen and in inguinal lymph nodes compared to vehicle-treated mice. Our results support B19V-VLPs as a delivery platform for bioluminescent photodynamic therapy components to solid tumors.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Rosa Bengala , Animales , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Ratones , Rosa Bengala/química , Rosa Bengala/farmacología , Rosa Bengala/uso terapéutico , Línea Celular Tumoral , Humanos , Oxígeno Singlete/metabolismo , Parvovirus B19 Humano/efectos de los fármacos , Parvovirus B19 Humano/química , Neoplasias/tratamiento farmacológico , Luciferasas de Luciérnaga/metabolismo , Femenino
9.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39062808

RESUMEN

The melanocortin-4 receptor (MC4R) is a key player in the hypothalamic leptin-melanocortin pathway that regulates satiety and hunger. MC4R belongs to the G protein-coupled receptors (GPCRs), which are known to form heterodimers with other membrane proteins, potentially modulating receptor function or characteristics. Like MC4R, thyroid hormones (TH) are also essential for energy homeostasis control. TH transport across membranes is facilitated by the monocarboxylate transporter 8 (MCT8), which is also known to form heterodimers with GPCRs. Based on the finding in single-cell RNA-sequencing data that both proteins are simultaneously expressed in hypothalamic neurons, we investigated a putative interplay between MC4R and MCT8. We developed a novel staining protocol utilizing a fluorophore-labeled MC4R ligand and demonstrated a co-localization of MC4R and MCT8 in human brain tissue. Using in vitro assays such as BRET, IP1, and cAMP determination, we found that MCT8 modulates MC4R-mediated phospholipase C activation but not cAMP formation via a direct interaction, an effect that does not require a functional MCT8 as it was not altered by a specific MCT8 inhibitor. This suggests an extended functional spectrum of MCT8 as a GPCR signaling modulator and argues for the investigation of further GPCR-protein interactions with hitherto underrepresented physiological functions.


Asunto(s)
Transportadores de Ácidos Monocarboxílicos , Receptor de Melanocortina Tipo 4 , Fosfolipasas de Tipo C , Humanos , Receptor de Melanocortina Tipo 4/metabolismo , Receptor de Melanocortina Tipo 4/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Fosfolipasas de Tipo C/metabolismo , Células HEK293 , Transducción de Señal , AMP Cíclico/metabolismo , Simportadores/metabolismo , Simportadores/genética , Unión Proteica , Animales
10.
SLAS Discov ; 29(6): 100174, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39084335

RESUMEN

Bioluminescence- and fluorescence-based resonance energy transfer assays have gained considerable attention in pharmacological research as high-throughput scalable tools applicable to drug discovery. To this end, G protein-coupled receptors represent the biggest target class for marketed drugs, and among them, orphan G protein-coupled receptors have the biggest untapped therapeutic potential. In this review, the cases where biophysical methods, BRET and FRET, were employed for deorphanization and ligand discovery studies on orphan G protein-coupled receptors are listed and discussed.


Asunto(s)
Técnicas Biosensibles , Descubrimiento de Drogas , Transferencia Resonante de Energía de Fluorescencia , Receptores Acoplados a Proteínas G , Ligandos , Humanos , Transferencia Resonante de Energía de Fluorescencia/métodos , Receptores Acoplados a Proteínas G/metabolismo , Descubrimiento de Drogas/métodos , Técnicas Biosensibles/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA