Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.085
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 333, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112663

RESUMEN

Synaptic dysfunction is an early pathogenic event leading to cognitive decline in Huntington's disease (HD). We previously reported that the active ADAM10 level is increased in the HD cortex and striatum, causing excessive proteolysis of the synaptic cell adhesion protein N-Cadherin. Conversely, ADAM10 inhibition is neuroprotective and prevents cognitive decline in HD mice. Although the breakdown of cortico-striatal connection has been historically linked to cognitive deterioration in HD, dendritic spine loss and long-term potentiation (LTP) defects identified in the HD hippocampus are also thought to contribute to the cognitive symptoms of the disease. The aim of this study is to investigate the contribution of ADAM10 to spine pathology and LTP defects of the HD hippocampus. We provide evidence that active ADAM10 is increased in the hippocampus of two mouse models of HD, leading to extensive proteolysis of N-Cadherin, which has a widely recognized role in spine morphology and synaptic plasticity. Importantly, the conditional heterozygous deletion of ADAM10 in the forebrain of HD mice resulted in the recovery of spine loss and ultrastructural synaptic defects in CA1 pyramidal neurons. Meanwhile, normalization of the active ADAM10 level increased the pool of synaptic BDNF protein and activated ERK neuroprotective signaling in the HD hippocampus. We also show that the ADAM10 inhibitor GI254023X restored LTP defects and increased the density of mushroom spines enriched with GluA1-AMPA receptors in HD hippocampal neurons. Notably, we report that administration of the TrkB antagonist ANA12 to HD hippocampal neurons reduced the beneficial effect of GI254023X, indicating that the BDNF receptor TrkB contributes to mediate the neuroprotective activity exerted by ADAM10 inhibition in HD. Collectively, these findings indicate that ADAM10 inhibition coupled with TrkB signaling represents an efficacious strategy to prevent hippocampal synaptic plasticity defects and cognitive dysfunction in HD.


Asunto(s)
Proteína ADAM10 , Secretasas de la Proteína Precursora del Amiloide , Hipocampo , Enfermedad de Huntington , Potenciación a Largo Plazo , Proteínas de la Membrana , Receptor trkB , Transducción de Señal , Animales , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ratones , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Hipocampo/metabolismo , Hipocampo/patología , Receptor trkB/metabolismo , Receptor trkB/antagonistas & inhibidores , Potenciación a Largo Plazo/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Cadherinas/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Neuroprotección , Masculino , Ratones Endogámicos C57BL , Plasticidad Neuronal , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Ratones Noqueados
2.
Artículo en Ruso | MEDLINE | ID: mdl-39113447

RESUMEN

OBJECTIVE: To evaluate the frequency and severity of various clinical symptoms of Parkinson's disease (PD) depending on the BDNF rs6265 polymorphism. MATERIAL AND METHODS: The study included 533 patients with PD. The stage of PD was assessed using the Hoehn and Yahr scale (1967), motor symptoms were evaluated with MDS-UPDRS. Assessment of non-motor symptoms (NMS) in PD was conducted using the Beck Depression Inventory II (BDI-II); the Hospital Anxiety and Depression Scale (HADS); the Apathy Scale; the Montreal Cognitive Assessment (MoCA test); the Questionnaire for Impulsive-Compulsive Disorders in PD -Rating Scale (QUIP-RS). Genotyping of the BDNF variant (rs6265) was performed using real-time PCR with TaqMan probes. RESULTS: Most PD patients have a combination of NMS increasing as the disease progresses and is determined by molecular-genetic individual characteristics. There are significant differences in the severity of motor symptoms and NMS: individuals with the AA genotype showed significantly pronounced motor symptoms (p<0.0001); emotional-affective symptoms (p<0.0001); cognitive and impulsive behavioral disorders (p<0.0001). CONCLUSION: The rs6265 BDNF allele A is associated with a wide range of NMS, increasing the risk of their development in patients with PD, thus playing the important role in the etiopathogenesis of this pathology.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Enfermedad de Parkinson , Polimorfismo de Nucleótido Simple , Humanos , Factor Neurotrófico Derivado del Encéfalo/genética , Enfermedad de Parkinson/genética , Femenino , Masculino , Persona de Mediana Edad , Anciano , Genotipo , Índice de Severidad de la Enfermedad , Depresión/genética
3.
J Ethnopharmacol ; 335: 118647, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39094756

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Jiawei-Xiaoyao Pill (JWX), a classic formula in traditional Chinese medicine, is derived from Xiaoyao Pill by adding significant amounts of Gardeniae Fructus (GF) and Moutan Cortex (MC). It is frequently used for the treatment of depression. JWX has been demonstrated to uniquely elicit rapid antidepressant-like effects within the prescribed dosage range. To date, GF has been shown to have rapid antidepressant-like effects, but a much higher dose is required than its proportion in JWX. It is assumed that the synergism of GF with a minimum number of other herbs in JWX serves as a refined formula that exerts these rapid antidepressant-like effects. Identification of a refined formula is important for prioritizing the herbs and ingredients to optimize the quality control of JWX. However, such a refined formula for JWX has not been identified yet. AIM OF THE STUDY: Here we aimed to identify a refined formula derived from JWX for optimized rapid antidepressant-like effects. Since the neuroinflammation mechanism involving in depression treatment has not been previously investigated for JWX, we tested the mechanism for both JWX and the refined formula. MATERIALS AND METHODS: Individual herbs (MC; ASR, Angelica Sinensis Radix; Bupleuri Radix; Paeonia Radix Alba) that show antidepressant-like responses were mixed with GF at the proportional dosage in JWX to identify the refined formula. Rapid antidepressant-like effects were assessed by using NSF (Novelty Suppressed Feeding Test) and other behavioral tests following a single administration. The identified formula was further tested in a lipopolysaccharide (LPS)-induced depressive model, and the molecular signaling mechanisms were investigated using Western blot analysis, immunofluorescence, and pharmacological inhibition of mTOR signaling. Scopolamine (Scop) was used as a positive control for induction of rapid antidepressant effects. RESULTS: A combination of GF, MC and ASR (GMA) at their dosages proportional to JWX induced behavioral signs of rapid antidepressant-like responses in both normal and LPS-treated mice, with the antidepressant-like effects sustained for 5 d. Similar to JWX or Scop, GMA rapidly reduced the neuroinflammation signaling of Iba-1-NF-кB, enhanced neuroplasticity signaling of CaMKII-mTOR-BDNF, and attenuated the upregulated expressions of the NMDAR sub-units GluN1 and GluN2B in the hippocampus of LPS-treated mice. GMA, JWX and Scop rapidly restored the number of BDNF-positive cells reduced by LPS treatment in the CA3 region of the hippocampus. Furthermore, rapamycin, a selective inhibitor of mTOR, blunted the rapid antidepressant-like effects and hippocampal BDNF signaling upregulation by GMA. CONCLUSION: GMA may serve as a refined formula from JWX, capable of inducing rapid antidepressant-like effects. In the LPS-induced depression model, the effects of GMA were mediated via rapidly alleviating neuroinflammation and enhancing neuroplasticity.

4.
BMC Neurosci ; 25(1): 36, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103771

RESUMEN

BACKGROUND: Status epilepticus is a common and potentially life-threatening neurological emergency with a high risk for cognitive and neurobiological impairment. Our aim was to evaluate the neuroprotective effects of centrally administered irisin and acute exhausting exercise against oxidative brain injury and memory dysfunction due to a pentylenetetrazole (PTZ)-induced single seizure. Male Sprague Dawley rats with intracerebroventricular (icv) cannulas were randomly divided into intraperitoneally (ip) saline-injected control and PTZ-injected (45 mg/kg) seizure groups. Both the control and PTZ groups were then treated with irisin (7.5 µg/kg, 2 µl, icv), saline (2 µl, icv) or were forced to an acute bout of strenuous exercise before the ip injection of saline (control) or PTZ. Seizures were evaluated using the Racine score. To evaluate memory performance, a passive avoidance test was performed before and after PTZ injection. Following euthanasia at the 24th hour of seizure induction, brain tissues were removed for histopathological examination and for evaluating oxidative damage, antioxidant capacity, and neurotransmitter levels. RESULTS: Glutamate/GABA imbalance observed in PTZ rats was corrected by irisin administration (p < 0.001/p < 0.01), while irisin prevented the generation of reactive oxygen species and lipid peroxidation (p < 0.05 - 0.001) and replenished the antioxidant catalase and glutathione levels (p < 0.01-0.01) in the cerebral tissue, and reduced the histologically evident neuronal injury due to a single seizure (p < 0.05 - 0.01). Irisin also delayed the onset of seizures (p < 0.05) and improved memory dysfunction (p < 0.05), but did not affect the severity of seizures. The acute exhaustive swimming exercise completed before PTZ-seizure depressed glutamate level (p < 0.001), maintained the oxidant/antioxidant balance, alleviated neuronal injury (p < 0.05 - 0.01) and upregulated cerebral BDNF expression (p < 0.05). CONCLUSION: In conclusion, acute high-intensity exercise or exogenously administered irisin provides neuroprotection by maintaining the balance of excitatory/inhibitory neurotransmitters and oxidant/antioxidant systems.


Asunto(s)
Fibronectinas , Trastornos de la Memoria , Pentilenotetrazol , Condicionamiento Físico Animal , Ratas Sprague-Dawley , Convulsiones , Animales , Masculino , Trastornos de la Memoria/etiología , Condicionamiento Físico Animal/fisiología , Condicionamiento Físico Animal/métodos , Fibronectinas/metabolismo , Fibronectinas/administración & dosificación , Ratas , Enfermedades Neuroinflamatorias , Epilepsia , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología
5.
Toxicol Rep ; 13: 101687, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39109071

RESUMEN

Objective: Morphine exposure during pregnancy has detrimental effects on both the mother and her offspring, both during and after childbirth. This study aimed to investigate the impact of prenatal morphine exposure on rat pups and dams, specifically focusing on changes in Neuregulin-1 (Nrg-1)/ErbB4 gene expression, inflammation, and brain-derived neurotrophic factor (BDNF) levels. Materials and methods: Twenty female rats were randomized into two experimental groups:1-Morphine Group: Dams received morphine throughout pregnancy. 2-Control Group: Dams received no interventions.At the end of gestation, blood samples were collected from the dams. Subsequently, dams and their pups underwent tissue collection from the cortical area of the brain to evaluate the following parameters: Interleukin-6 (IL-6), Interleukin-10 (IL-10), total antioxidant capacity (TAC), Malondialdehyde (MDA), and Brain-derived neurotrophic factor (BDNF).Additionally, RNA was extracted from the pup's cortical brain tissue for the assessment of gene expression levels of Neuregulin-1 (NRG-1) and ErbB-4 using quantitative real-time polymerase chain reaction (qrt-PCR). Results: The molecular investigation revealed a decrease in NRG-1 and ErbB-4 expressions in the brain cortex of offspring exposed to morphine during prenatal development. Additionally, the levels of IL-6 and IL-10 in both the serum and brain of both the mothers and their offspring in the morphine group were significantly higher compared to the control group. The morphine-exposed group also exhibited significantly lower levels of TAC and higher levels of MDA, indicating increased oxidative stress. Furthermore, the levels of BDNF in the morphine group were significantly lower compared to the control group. Conclusion: Prenatal morphine exposure in rats has detrimental effects on both the dams and their offspring. This study demonstrates that prenatal morphine exposure disrupts critical molecular pathways involved in neurodevelopment, inflammation, oxidative stress, and neurotrophic signaling. These findings suggest that prenatal morphine exposure can have long-lasting consequences for the offspring, potentially contributing to neurodevelopmental disorders and other health issues later in life.

6.
Neuropharmacology ; 258: 110099, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39098656

RESUMEN

Clinical evidence suggests that early malnutrition promotes symptoms related to psychiatric disorders later in life. Nevertheless, the molecular mechanisms underpinning nutritional injury induce depression remains unknown. The purpose of the present study was to evaluate whether perinatal protein restriction increases vulnerability to developing depressive-like behavior in adulthood by focusing on anhedonia, a core symptom of depression. To this, male adult Wistar rats submitted to a protein restriction schedule at perinatal age (PR-rats), were subjected to the sucrose preference test (SPT), the novel object recognition test (NORT), the forced swim test (FST), and the elevated plus maze (EPM), and compared to animals fed with a normoprotein diet. To investigate neurobiological substrates linked to early protein undernutrition-facilitated depressive-like behavior, we assessed the levels of brain-derived neurotrophic factor (BDNF) and its receptor TrkB in the nucleus accumbens (NAc), and evaluated the reversal of anhedonic-like behavior by infusing ANA-12. We found that early malnutrition decreased sucrose preference, impaired performance in the NORT and increased immobility time in the FST. Furthermore, perinatal protein-restriction-induced anhedonia correlated with increased BDNF and p-TrkB protein levels in the NAc, a core structure in the reward circuit linked with anhedonia. Finally, bilateral infusion of the TrkB antagonist ANA-12 into the NAc shell ameliorated a reduced sucrose preference in the PR-rats. Altogether, these findings revealed that protein restriction during pregnancy and lactation facilitates depressive-like behavior later in life and may increase the risk of developing anhedonia by altering BDNF-TrkB in the NAc shell.

7.
Exp Gerontol ; 195: 112533, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134215

RESUMEN

Cognitive impairment is a common feature in neurodegenerative diseases such as multiple sclerosis (MS). This study aims to explore the potential of enhancing the beneficial effects of fluoxetine (FLX), a neuroprotective agent known for its ability to increase neural plasticity by utilizing nanoparticles. The study specifically focuses on the synthesis and evaluation of PEGylated chitosan nanoparticles of FLX and its effect on demyelination and the subsequent cognitive impairment (CI) in the hippocampus of rats induced by local injection of lysophosphatidylcholine (LPC). Chitosan/polyethylene glycol nanoparticles were synthesized, and their properties were analyzed. Demyelination was induced in rats via hippocampal injections of lysolecithin. Behavioral assessments included open field maze, elevated plus maze, and novel object recognition memory (NORM) tests. Hippocampal levels of insulin-like growth factor (IGF-1) and brain-derived neurotrophic factor (BDNF) were measured using enzyme-linked immunoassay (ELISA). The extent of remyelination was quantified using Luxol fast blue staining. Nanoparticle size measured 240.2 nm with 53 % encapsulation efficacy. Drug release exhibited a slow pattern, with 76 % released within 4 h. Nanoparticle-treated rats displayed reduced anxiety-like behavior, improved memory, increased BDNF levels, and a reduced extent of demyelination, with no change in IGF- levels. In addition, FLX -loaded chitosan nanoparticles had better effect on cognitive improvement, BDNF levels in the hippocampus that FLX. Altering pharmacokinetics and possibly pharmacodynamics. These findings highlight the potential of innovative drug delivery systems, encouraging further research in this direction.

8.
Front Psychiatry ; 15: 1425681, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135986

RESUMEN

Introduction: Previous studies in different populations have shown that vitamin D supplementation may reduce depression levels. In adolescents, vitamin D deficiency has been identified as a factor contributing to the onset of depression. This study aimed to establish a model of adolescent depression in mice by using the scientific unpredictable chronic mild stress (UCMS) model and to preliminarily evaluate the effect of vitamin D on the occurrence and development of depression and whether it is related to the protein expression of the BDNF pathway. Methods: The UCMS method was used to establish a model of adolescent depression in 4-week-old C57BL/6 male mice, randomly divided into five groups: Control group, Stress group, Stress+ low-dose group, Stress+ medium-dose group, Stress+ high-dose group. At the same time as chronic stress, the administration groups were given intramuscular injections of different doses of vitamin D. After 8 weeks, behavioral tests, including the forced swimming test (FST) and open field test (OFT), were performed on each group of mice, along with recording of indicators, blood vitamin D level detection, and brain tissue western blot analysis. Results: The results showed a significant difference in vitamin D levels among mice in different groups after 8 weeks (P=0.012). The results of behavioral testing showed a significant difference in the static time of forced swimming among the groups (P<0.001). Compared with the UCMS group, the static time of mice with vitamin D injection was significantly reduced (P<0.001). The total number of times mice entered the central area, the total distance of movement, and the time spent in the central area significantly increased after vitamin D injection compared with the UCMS-only group (all P<0.001). There was no significant difference in the expression of BDNF in the brain tissues of experimental mice (P>0.05). Discussion: In conclusion, in the mouse adolescent depression model, appropriate vitamin D supplementation can reduce the occurrence of stress-induced depression. Furthermore, vitamin D deficiency may also serve as a potential risk factor for depression.

9.
Neurobiol Learn Mem ; : 107971, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39137861

RESUMEN

Exercise provides a range of cognitive benefits, including improved memory performance. Previously, we demonstrated that 14 days of continuous voluntary wheel-running exercise enables learning in a hippocampus-dependent Object Location Memory (OLM) task under insufficient, subthreshold training conditions in adult mice. Whether similar exercise benefits can be obtained from consistent intermittent exercise as continuous exercise is unknown. Here, we examine whether intermittent exercise (the weekend warrior effect: 2 days of exercise a week for 7 weeks) displays similar or distinct cognitive benefits as previously examined with 14 days of continuous exercise. We find that both continuous and intermittent exercise parameters similarly enable hippocampus-dependent OLM compared to the 2-day exercise control group. Mice receiving intermittent exercise maintained cognitive benefits following a 7-day sedentary delay, whereas mice that underwent 14 continuous days of exercise showed diminished cognitive benefits as previously reported. Further, compared to continuous exercise, intermittent exercise mice exhibited persistently elevated levels of the genes Acvr1c and Bdnf which we know to be critically involved in hippocampus-dependent long-term memory in the dorsal hippocampus. Together findings suggest that consistent intermittent exercise persistently enables hippocampal-dependent long-term memory. Understanding the optimal parameters for persistent cognitive function and the mechanisms mediating persistent effects will aid in therapeutic pursuits investigating the mitigation of cognitive ailments.

10.
Sci Rep ; 14(1): 18818, 2024 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138281

RESUMEN

Despite the growing interest in precision medicine-based therapies for Alzheimer's disease (AD), little research has been conducted on how individual AD risk factors influence changes in cognitive function following transcranial direct current stimulation (tDCS). This study evaluates the cognitive effects of sequential tDCS on 63 mild cognitive impairment (MCI) patients, considering AD risk factors such as amyloid-beta deposition, APOE ε4, BDNF polymorphism, and sex. Using both frequentist and Bayesian methods, we assessed the interaction of tDCS with these risk factors on cognitive performance. Notably, we found that amyloid-beta deposition significantly interacted with tDCS in improving executive function, specifically Stroop Word-Color scores, with strong Bayesian support for this finding. Memory enhancements were differentially influenced by BDNF Met carrier status. However, sex and APOE ε4 status did not show significant effects. Our results highlight the importance of individual AD risk factors in modulating cognitive outcomes from tDCS, suggesting that precision medicine may offer more effective tDCS treatments tailored to individual risk profiles in early AD stages.


Asunto(s)
Enfermedad de Alzheimer , Teorema de Bayes , Cognición , Disfunción Cognitiva , Estimulación Transcraneal de Corriente Directa , Humanos , Enfermedad de Alzheimer/terapia , Estimulación Transcraneal de Corriente Directa/métodos , Masculino , Femenino , Disfunción Cognitiva/terapia , Disfunción Cognitiva/etiología , Anciano , Factores de Riesgo , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Persona de Mediana Edad
11.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125587

RESUMEN

Age-related conditions, such as sarcopenia, cause physical disabilities for an increasing section of society. At the neuromuscular junction, the postsynaptic-derived neurotrophic factors brain-derived neurotrophic factor (BDNF) and neurotrophin 4 (NT-4) have neuroprotective functions and contribute to the correct regulation of the exocytotic machinery. Similarly, presynaptic muscarinic signalling plays a fundamental modulatory function in this synapse. However, whether or not these signalling pathways are compromised in ageing neuromuscular system has not yet been analysed. The present study analyses, through Western blotting, the differences in expression and activation of the main key proteins of the BDNF/NT-4 and muscarinic pathways related to neurotransmission in young versus ageing Extensor digitorum longus (EDL) rat muscles. The main results show an imbalance in several sections of these pathways: (i) a change in the stoichiometry of BDNF/NT-4, (ii) an imbalance of Tropomyosin-related kinase B receptor (TrkB)-FL/TrkB-T1 and neurotrophic receptor p 75 (p75NTR), (iii) no changes in the cytosol/membrane distribution of phosphorylated downstream protein kinase C (PKC)ßI and PKCε, (iv) a reduction in the M2-subtype muscarinic receptor and P/Q-subtype voltage-gated calcium channel, (v) an imbalance of phosphorylated mammalian uncoordinated-18-1 (Munc18-1) (S313) and synaptosomal-associated protein 25 (SNAP-25) (S187), and (vi) normal levels of molecules related to the management of acetylcholine (Ach). Based on this descriptive analysis, we hypothesise that these pathways can be adjusted to ensure neurotransmission rather than undergoing negative alterations caused by ageing. However, further studies are needed to assess this hypothetical suggestion. Our results contribute to the understanding of some previously described neuromuscular functional age-related impairments. Strategies to promote these signalling pathways could improve the neuromuscular physiology and quality of life of older people.


Asunto(s)
Envejecimiento , Factor Neurotrófico Derivado del Encéfalo , Unión Neuromuscular , Receptor trkB , Transducción de Señal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Animales , Unión Neuromuscular/metabolismo , Envejecimiento/metabolismo , Ratas , Receptor trkB/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Masculino , Receptores Muscarínicos/metabolismo , Transmisión Sináptica , Receptores de Factor de Crecimiento Nervioso/metabolismo , Ratas Wistar
12.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125882

RESUMEN

Neurotrophins and their receptors are distinctly expressed during brain development and play crucial roles in the formation, survival, and function of neurons in the nervous system. Among these molecules, brain-derived neurotrophic factor (BDNF) has garnered significant attention due to its involvement in regulating GABAergic system development and function. In this review, we summarize and compare the expression patterns and roles of neurotrophins and their receptors in both the developing and adult brains of rodents, macaques, and humans. Then, we focus on the implications of BDNF in the development and function of GABAergic neurons from the cortex and the striatum, as both the presence of BDNF single nucleotide polymorphisms and disruptions in BDNF levels alter the excitatory/inhibitory balance in the brain. This imbalance has different implications in the pathogenesis of neurodevelopmental diseases like autism spectrum disorder (ASD), Rett syndrome (RTT), and schizophrenia (SCZ). Altogether, evidence shows that neurotrophins, especially BDNF, are essential for the development, maintenance, and function of the brain, and disruptions in their expression or signaling are common mechanisms in the pathophysiology of brain diseases.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Neuronas GABAérgicas , Humanos , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Neuronas GABAérgicas/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/genética , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/genética , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo
13.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39126038

RESUMEN

Obstructive sleep apnea (OSA) has been linked to disruptions in circadian rhythm and neurotrophin (NFT) signaling. This study explored the link between neuromodulators, chronotype, and insomnia in OSA. The participants (n = 166) underwent polysomnography (PSG) before being categorized into either the control or the OSA group. The following questionnaires were completed: Insomnia Severity Index (ISI), Epworth Sleepiness Scale, Chronotype Questionnaire (morningness-eveningness (ME), and subjective amplitude (AM). Blood samples were collected post-PSG for protein level assessment using ELISA kits for brain-derived neurotrophic factor (BDNF), proBDNF, glial-cell-line-derived neurotrophic factor, NFT3, and NFT4. Gene expression was analyzed utilizing qRT-PCR. No significant differences were found in neuromodulator levels between OSA patients and controls. The controls with insomnia exhibited elevated neuromodulator gene expression (p < 0.05). In the non-insomnia individuals, BDNF and NTF3 expression was increased in the OSA group compared to controls (p = 0.007 for both); there were no significant differences between the insomnia groups. The ISI scores positively correlated with all gene expressions in both groups, except for NTF4 in OSA (R = 0.127, p = 0.172). AM and ME were predicting factors for the ISI score and clinically significant insomnia (p < 0.05 for both groups). Compromised compensatory mechanisms in OSA may exacerbate insomnia. The correlation between chronotype and NFT expression highlights the role of circadian misalignments in sleep disruptions.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Ritmo Circadiano , Polisomnografía , Apnea Obstructiva del Sueño , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Trastornos del Inicio y del Mantenimiento del Sueño/fisiopatología , Apnea Obstructiva del Sueño/fisiopatología , Apnea Obstructiva del Sueño/metabolismo , Apnea Obstructiva del Sueño/complicaciones , Masculino , Femenino , Persona de Mediana Edad , Adulto , Factor Neurotrófico Derivado del Encéfalo/sangre , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neurotransmisores/metabolismo , Neurotransmisores/sangre , Encuestas y Cuestionarios , Neurotrofina 3/metabolismo , Neurotrofina 3/genética , Estudios de Casos y Controles
14.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39126055

RESUMEN

Rasmussen's encephalitis (RE) stands as a rare neurological disorder marked by progressive cerebral hemiatrophy and epilepsy resistant to medical treatment. Despite extensive study, the primary cause of RE remains elusive, while its histopathological features encompass cortical inflammation, neuronal degeneration, and gliosis. The underlying molecular mechanisms driving disease progression remain largely unexplored. In this case study, we present a patient with RE who underwent hemispherotomy and has remained seizure-free for over six months, experiencing gradual motor improvement. Furthermore, we conducted molecular analysis on the excised brain tissue, unveiling a decrease in the expression of cell-cycle-associated genes coupled with elevated levels of BDNF and TNF-α proteins. These findings suggest the potential involvement of cell cycle regulators in the progression of RE.


Asunto(s)
Encefalitis , Humanos , Encefalitis/genética , Encefalitis/patología , Encefalitis/metabolismo , Masculino , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corteza Cerebral/patología , Corteza Cerebral/metabolismo , Femenino , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Ciclo Celular/genética
15.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126094

RESUMEN

Chronic and continuous alcohol consumption increases the risk of cognitive decline and may lead to alcohol-related dementia. We investigated the potential of Heracleum moellendorffii Hance root extract (HME) for treating alcohol-related cognitive impairment. Behavioral tests evaluated the effects of HME on cognitive function and depression. Changes in hippocampus and liver tissues were evaluated by Western blotting and H&E staining. The group treated with HME 200 mg/kg showed a significant increase in spontaneous alternation in Y-maze and a decrease in immobility in a forced swimming test (FST) compared to the vehicle-treated group. These results suggest that HME can restore memory deficits and reverse depressive symptoms caused by chronic alcohol consumption. The HME-treated group also upregulated brain-derived neurotrophic factor (BDNF), phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphorylated cAMP response element-binding protein (CREB) in the hippocampus. Additionally, it reduced lipid vacuolation in the liver and increased the expression of aldehyde dehydrogenase 1 (ADH1). The administration of HME improves cognitive impairment and reverses depressive symptoms due to alcohol consumption, restoring neural plasticity in the hippocampus and alcohol metabolism in the liver. These findings suggest that HME is a promising treatment for alcohol-related brain disorders. Molecular mechanisms underlying the therapeutic effects of HME and its active ingredients should be investigated further.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Disfunción Cognitiva , Hipocampo , Extractos Vegetales , Animales , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Masculino , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Etanol/efectos adversos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Depresión/tratamiento farmacológico , Depresión/metabolismo , Modelos Animales de Enfermedad
16.
Neuropharmacology ; : 110110, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39128584

RESUMEN

There is considerable interest in the development of nootropics, pharmacological agents that can improve cognition across a range of both cognitive modalities and cognitive disabilities. One class of cognitive enhancers, the ampakines, has attracted particular attention by virtue of improving cognition associated with animal models of neurodevelopmental, neurodegenerative, and psychiatric conditions, as well as in age-related cognitive impairment. Ampakines elevate CNS levels of BDNF, and it is through this elevation that their beneficial actions are believed to occur. However, what transduces the elevation of BDNF into long-lasting cognitive enhancement is not known. We have previously shown that MSK1, by virtue of its ability to regulate gene transcription, converts the elevation of BDNF associated with environmental enrichment into molecular, synaptic, cognitive and genomic adaptations that underlie enrichment-induced enhanced synaptic plasticity and learning and memory, a property that MSK1 retains across the lifespan. To establish whether MSK1 similarly converts ampakine-induced elevations of BDNF into cognitive enhancement we tested an ampakine (CX929) in male WT mice and in male mice in which the kinase activity of MSK1 was mutated. We found that MSK1 is required for the ampakine-dependent improvement in spatial reference memory and cognitive flexibility, and for the elevations of BDNF and the plasticity-related protein Arc associated with ampakines and experience. These observations implicate MSK1 as a key enabler of the beneficial effects of ampakines on cognitive function, and furthermore identify MSK1 as a hub for BDNF-elevating nootropic strategies.

17.
Exp Gerontol ; 195: 112539, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39116955

RESUMEN

Neurodegenerative diseases (NDDs) are a class of neurological disorders marked by the progressive loss of neurons that afflict millions of people worldwide. These illnesses affect brain connection, impairing memory, cognition, behavior, sensory perception, and motor function. Alzheimer's, Parkinson's, and Huntington's diseases are examples of common NDDs, which frequently include the buildup of misfolded proteins. Cognitive-behavioral impairments are early markers of neurodevelopmental disorders, emphasizing the importance of early detection and intervention. Neurotrophins such as brain-derived neurotrophic factor (BDNF) are critical for neuron survival and synaptic plasticity, which is required for learning and memory. NDDs have been associated with decreased BDNF levels. Physical exercise, a non-pharmacological intervention, benefits brain health by increasing BDNF levels, lowering cognitive deficits, and slowing brain degradation. Exercise advantages include increased well-being, reduced depression, improved cognitive skills, and neuroprotection by lowering amyloid accumulation, oxidative stress, and neuroinflammation. This study examines the effects of physical exercise on cognitive-behavioral deficits and BDNF levels in the limbic system impacted by neurodegeneration. The findings highlight the necessity of including exercise into NDD treatment to improve brain structure, function, and total BDNF levels. As research advances, exercise is becoming increasingly acknowledged as an important technique for treating cognitive decline and neurodegenerative disorders.

18.
Phytomedicine ; 133: 155893, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39111191

RESUMEN

BACKGROUND: Depression is a serious and complex mental disease that has attracted worldwide attention because of its high incidence rate, high disability rate and high mortality. Excitotoxicity is one of the most important mechanisms involved in the pathophysiological process of depression. In our previous studies, n-butanol extract from maize roots was found to have good neuroprotective effects due to its antioxidative activity. However, the antidepressive effective constituents, efficacy in vivo and mechanism of action of maize root extracts have not been determined. PURPOSE: This study aimed to determine the main active neuroprotective compound in maize root extract and investigate its antidepressant effects and possible underlying mechanism in vitro and in vivo. METHODS: Sixteen extracts were isolated and purified from maize roots. The active components of the most active extracts of maize roots (hereafter referred to as EM 2) were identified using UF-HPLC-QTOF/MS. In vitro cell models of NMDA-induced excitotoxicity in SH-SY5Y cells were used to analyze the anti-excitatory activity of the extracts. The MTT assay and Annexin V-FITC/PI Apoptosis Detection were used to evaluate cell viability. Several network pharmacological strategies have been employed to investigate the potential mechanism of action of EM 2. The effects of EM 2 on depressive-like behaviors were evaluated in CUMS mice. Changes in the levels of related proteins were detected via western blotting. RESULTS: Among the 16 extracts extracted by n-butanol, EM 2 was determined to be the most active extract against NMDA-induced excitotoxicity by n-butanol extraction. Meanwhile, seventeen compounds were further identified as the main active components of EM 2. Mechanistically, EM 2 inhibited NMDA-induced excitatory injury in SH-SY5Y cells and alleviated the depressive-like behaviors of CUMS mice by suppressing NR2B and subsequently mediating the downstream CREB/TRKB/BDNF, PI3K/Akt and MAPK pathways, as well as the Nrf2/HO-1 antioxidant signaling pathway. CONCLUSION: The study indicated that EM 2 could potentially be developed as a potential therapeutic candidate to cure depression in NMDA-induced excitatory damage.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39102007

RESUMEN

Parkinson's disease (PD) is the second most frequent neurodegenerative disorder, affecting millions of people and rapidly increasing over the last decades. Even though there is no intervention yet to stop the neurodegenerative pathology, many efficient treatment methods are available, including for patients with advanced PD. Neuroplasticity is a fundamental property of the human brain to adapt both to external changes and internal insults and pathological processes. In this paper we examine the current knowledge and concepts concerning changes at network level, cellular level and molecular level as parts of the neuroplastic response to protein aggregation pathology, synapse loss and neuronal loss in PD. We analyse the beneficial, compensatory effects, such as augmentation of nigral neurons efficacy, as well as negative, maladaptive effects, such as levodopa-induced dyskinesia. Effects of physical activity and different treatments on neuroplasticity are considered and the opportunity of biomarkers identification and use is discussed.

20.
Immunopharmacol Immunotoxicol ; : 1-16, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138615

RESUMEN

OBJECTIVE: The threat of hearing loss has become a universal reality. Gentamycin (GM) can lead to ototoxicity and may result in permanent hearing loss. This study aimed to elucidate whether the hypolipidemic drug Ezetimibe (EZE) has a possible underlying mechanism for protecting rats from GM-induced ototoxicity. METHODS AND RESULTS: 30 male Wister albino rats were separated into three groups, ten in each group: control, GM, and GM + EZE. At the end of the experiment, rats underwent hearing threshold evaluation via auditory brainstem response (ABR), carotid artery blood flow velocity (CBV), and resistance (CVR) measurement, in addition to a biochemical assessment of serum malondialdehyde (MDA), nitric oxide (NO), catalase (CAT), hemeOxygenase-1 (HO-1), and tumor necrosis factor-α (TNF-α). Also, real-time PCR was employed to quantify the levels of brain-derived neurotrophic factor (BDNF). Cochlea was also studied via histological and immunohistochemical methods. GM revealed a significant increase in CVR, MDA, NO, and TNF-α and a significant decrease in ABR, CBV, CAT, HO-1, and cochlear BDNF expression. EZE supplementation revealed a significant rise in ARB in addition to CBV and a decline in CVR and protected cochlear tissues via antioxidant, anti-inflammatory, and antiapoptotic mechanisms via downregulating Caspase-3 immunoreaction, upregulating proliferating cellular nuclear antigen (PCNA) immunoreaction, and upregulating of the cochlear BDNF expression. Correlations were significantly negative between BDNF and MDA, NO, TNF-α, COX 2, and caspase-3 immunoreaction and significantly positive with CAT, HO-1, and PCNA immunoreaction. DISCUSSION: EZE can safeguard inner ear tissues from GM via antioxidant, anti-inflammatory, and antiapoptotic mechanisms, as well as upregulation of BDNF mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA