Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Infect Dis ; 148: 107237, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39270925

RESUMEN

OBJECTIVES: ZR-202-CoV and ZR-202a-CoV are novel recombinant vaccines containing 25 µg of the prototype (Wuhan strain) or B.1.351 strain (Beta variant) SARS-CoV-2 S-protein expressed in CHO cells, respectively, adjuvanted with Al(OH)3 and CpG-ODN. We assessed their safety and immunogenicity in this Phase I, randomized, observer-blind, controlled study in Mali. DESIGN: Sixty healthy 18-55-year-old adults randomized 1:1:1 received two doses of ZR-202-CoV, ZR-202a-CoV, or ComirnatyⓇ 28 days apart. Primary outcome measures were solicited and unsolicited adverse events (AEs) including AESI (Adverse Events of Special Interest); secondary outcome was immunogenicity measured as SARS-CoV-2 specific neutralizing antibodies. Participants were followed up for 1 year. RESULTS: Injection site pain and headache were the most frequent solicited local and systemic AEs, respectively. No unsolicited AEs or SAEs related to vaccination were reported during the study period. Although most participants had detectable neutralizing antibodies at baseline robust immune responses were observed in all vaccine groups after the first dose with no further increase after the second dose. Cross-neutralizing antibody responses against Beta, Delta, and Omicron BA.5 variants were similar in magnitude after ZR-202-CoV, ZR-202a-CoV and ComirnatyⓇ. CONCLUSIONS: Similar reactogenicity and immunogenicity profiles of ZR-202-CoV, ZR-202a-CoV and ComirnatyⓇ support further clinical investigation in a wider population.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Vacunas Sintéticas , Humanos , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Masculino , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Persona de Mediana Edad , COVID-19/prevención & control , COVID-19/inmunología , Adulto , Femenino , Anticuerpos Antivirales/sangre , Adulto Joven , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Adolescente , Inmunogenicidad Vacunal , Glicoproteína de la Espiga del Coronavirus/inmunología , Adyuvantes Inmunológicos/efectos adversos , Adyuvantes Inmunológicos/administración & dosificación , Método Simple Ciego , Vacunas de Subunidad
2.
J Microbiol Biotechnol ; 33(12): 1587-1295, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-37915256

RESUMEN

Since its first report in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a grave threat to public health. Virus-specific countermeasures, such as vaccines and therapeutics, have been developed and have contributed to the control of the viral pandemic, which has become endemic. Nonetheless, new variants continue to emerge and could cause a new pandemic. Consequently, it is important to comprehensively understand viral evolution and the roles of mutations in viral infectivity and transmission. SARS-CoV-2 beta variant encode mutations (D614G, N501Y, E484K, and K417N) in the spike which are frequently found in other variants as well. While their individual role in viral infectivity has been elucidated against various therapeutic antibodies, it still remains unclear whether those mutations may act additively or synergistically when combined. Here, we report that N501Y mutation shows differential effect on two therapeutic antibodies tested. Interestingly, the relative importance of E484K and K417N mutations in antibody evasion varies depending on the antibody type. Collectively, these findings suggest that continuous efforts to develop effective antibody therapeutics and combinatorial treatment with multiple antibodies are more rational and effective forms of treatment.


Asunto(s)
Anticuerpos , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Anticuerpos/metabolismo , Anticuerpos Neutralizantes , COVID-19/inmunología , Mutación , Unión Proteica , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética
3.
EBioMedicine ; 98: 104878, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38016322

RESUMEN

BACKGROUND: SARS-CoV-2 booster vaccination should ideally enhance protection against variants and minimise immune imprinting. This Phase I trial evaluated two vaccines targeting SARS-CoV-2 beta-variant receptor-binding domain (RBD): a recombinant dimeric RBD-human IgG1 Fc-fusion protein, and an mRNA encoding a membrane-anchored RBD. METHODS: 76 healthy adults aged 18-64 y, previously triple vaccinated with licensed SARS-CoV-2 vaccines, were randomised to receive a 4th dose of either an adjuvanted (MF59®, CSL Seqirus) protein vaccine (5, 15 or 45 µg, N = 32), mRNA vaccine (10, 20, or 50 µg, N = 32), or placebo (saline, N = 12) at least 90 days after a 3rd boost vaccination or SARS-CoV-2 infection. Bleeds occurred on days 1 (prior to vaccination), 8, and 29. CLINICALTRIALS: govNCT05272605. FINDINGS: No vaccine-related serious or medically-attended adverse events occurred. The protein vaccine reactogenicity was mild, whereas the mRNA vaccine was moderately reactogenic at higher dose levels. Best anti-RBD antibody responses resulted from the higher doses of each vaccine. A similar pattern was seen with live virus neutralisation and surrogate, and pseudovirus neutralisation assays. Breadth of immune response was demonstrated against BA.5 and more recent omicron subvariants (XBB, XBB.1.5 and BQ.1.1). Binding antibody titres for both vaccines were comparable to those of a licensed bivalent mRNA vaccine. Both vaccines enhanced CD4+ and CD8+ T cell activation. INTERPRETATION: There were no safety concerns and the reactogenicity profile was mild and similar to licensed SARS-CoV-2 vaccines. Both vaccines showed strong immune boosting against beta, ancestral and omicron strains. FUNDING: Australian Government Medical Research Future Fund, and philanthropies Jack Ma Foundation and IFM investors.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Australia , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Vacunas de ARNm , SARS-CoV-2 , Adolescente , Adulto Joven , Persona de Mediana Edad
4.
Vaccine ; 41(43): 6505-6513, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37726179

RESUMEN

The SARS-CoV-2 pandemic revealed the critical shortfalls of global vaccine availability for emergent pathogens and the need for exploring additional vaccine platforms with rapid update potential in response to new variants. Thus, it remains essential, for the present evolving SARS-CoV-2/Covid-19 and future pandemics, to continuously develop and characterize new and different vaccine platforms. Here, we describe an expression-optimized DNA vaccine candidate based on the SARS-CoV-2 spike protein of the Beta variant (B.1.351), pNTC-Spike.351, and, in animal models, compare its immunogenicity with a similar DNA vaccine encoding the ancestral index strain spike protein, pNTC-Spike. Both DNA vaccines induced neutralizing antibodies and a Th1 biased immune response. In contrast to the index-specific vaccine, the Beta-specific DNA vaccine induced antibodies in mice and rabbits that, even at low levels, efficiently neutralize the otherwise antibody resistant Beta variant. It similarly neutralized unrelated variants bearing the neutralization resistant E484K spike mutation. Intensive priming using two vaccinations with pNTC-Spike and a single booster immunization with the pNTC-Spike.351 induced a more robust neutralizing antibody response with comparable magnitude against different variants of concern. Thus, DNA vaccine technology with heterologous spike protein prime-boost should be explored further using the Beta derived pNTC-Spike.351 to broaden neutralizing antibody responses against emerging variants of concern.

6.
Front Immunol ; 14: 1161571, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187744

RESUMEN

The magnitude and duration of immune response to COVID-19 vaccination in older adults are known to be adversely affected due to immunosenescence and inflammaging. The threat of emerging variants warrants studies on immune response in older adults to primary vaccination and booster doses so as to understand the effectiveness of vaccines in countering the threat of emerging variants. Non-human primates (NHPs) are ideal translational models, as the immunological responses in NHPs are similar to those in humans, so it enables us to understand host immune responses to the vaccine. We initially studied humoral immune responses in aged rhesus macaques employing a three-dose regimen of BBV152, an inactivated SARS-CoV-2 vaccine. Initially, the study investigated whether the third dose enhances the neutralizing antibody (Nab) titer against the homologous virus strain (B.1) and variants of concern (Beta and Delta variants) in aged rhesus macaques immunized with BBV152, adjuvanted with Algel/Algel-IMDG (imidazoquinoline). Later, we also attempted to understand cellular immunity in terms of lymphoproliferation against γ-inactivated SARS-CoV-2 B.1 and delta in naïve and vaccinated rhesus macaques after a year of the third dose. Following the three-dose regimen with 6 µg of BBV152 with Algel-IMDG, animals had increased Nab responses across all SARS-CoV-2 variants studied, which suggested the importance of booster dose for the enhanced immune response against SARS-CoV-2-circulating variants. The study also revealed the pronounced cellular immunity against B.1 and delta variants of SARS-CoV-2 in the aged rhesus macaques even after a year of vaccination.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Humanos , Anciano , Macaca mulatta , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos Neutralizantes
7.
BMC Public Health ; 23(1): 511, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36927400

RESUMEN

BACKGROUND: The high immune evasion ability of SARS-COV-2 Omicron variant surprised the world and appears to be far stronger than any previous variant. Previous to Omicron it has been difficult to assess and compare immune evasion ability of different variants, including the Beta and Delta variants, because of the relatively small numbers of reinfections and because of the problems in correctly identifying reinfections in the population. This has led to different claims appearing in the literature. Thus we find claims of both high and low immune evasion for the Beta variant. Some findings have suggested that the Beta variant has a higher immune evasion ability than the Delta variant in South Africa, and others that it has a lower ability. METHOD: In this brief report, we re-analyse a unique dataset of variant-specific reinfection data and a simple model to correct for the infection attack rates of different variants. RESULT: We find that a model with the Delta variant having  an equal or higher immune evasion ability than Beta variant is compatible with the data. CONCLUSION: We conclude that the immune evasion ability of Beta variant is not stronger than Delta variant, and indeed, the immune evasion abilities of both variants are weak in South Africa.


Asunto(s)
COVID-19 , Humanos , Sudáfrica/epidemiología , COVID-19/epidemiología , Evasión Inmune/genética , Reinfección , SARS-CoV-2/genética
8.
Viruses ; 15(2)2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36851486

RESUMEN

The COVID-19 pandemic remains a global health threat and novel antiviral strategies are urgently needed. SARS-CoV-2 employs the cellular serine protease TMPRSS2 for entry into lung cells, and TMPRSS2 inhibitors are being developed for COVID-19 therapy. However, the SARS-CoV-2 Omicron variant, which currently dominates the pandemic, prefers the endo/lysosomal cysteine protease cathepsin L over TMPRSS2 for cell entry, raising doubts as to whether TMPRSS2 inhibitors would be suitable for the treatment of patients infected with the Omicron variant. Nevertheless, the contribution of TMPRSS2 to the spread of SARS-CoV-2 in the infected host is largely unclear. In this study, we show that the loss of TMPRSS2 strongly reduced the replication of the Beta variant in the nose, trachea and lung of C57BL/6 mice, and protected the animals from weight loss and disease. The infection of mice with the Omicron variant did not cause disease, as expected, but again, TMPRSS2 was essential for efficient viral spread in the upper and lower respiratory tract. These results identify the key role of TMPRSS2 in SARS-CoV-2 Beta and Omicron infection, and highlight TMPRSS2 as an attractive target for antiviral intervention.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Ratones , Antivirales/farmacología , Antivirales/uso terapéutico , Ratones Endogámicos C57BL , Pandemias , Serina Endopeptidasas/genética
9.
Vaccines (Basel) ; 11(1)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36680037

RESUMEN

The spread of SARS-CoV-2 and its variants leads to a heavy burden on healthcare and the global economy, highlighting the need for developing vaccines that induce broad immunity against coronavirus. Here, we explored the immunogenicity of monovalent or bivalent spike (S) trimer subunit vaccines derived from SARS-CoV-2 B.1.351 (S1-2P) or/and B.1. 618 (S2-2P) in Balb/c mice. Both S1-2P and S2-2P elicited anti-spike antibody responses, and alum adjuvant induced higher levels of antibodies than Addavax adjuvant. The dose responses of the vaccines on immunogenicity were evaluated in vivo. A low dose of 5 µg monovalent recombinant protein or 2.5 µg bivalent vaccine triggered high-titer antibodies that showed cross-activity to Beta, Delta, and Gamma RBD in mice. The third immunization dose could boost (1.1 to 40.6 times) high levels of cross-binding antibodies and elicit high titers of neutralizing antibodies (64 to 1024) prototype, Beta, Delta, and Omicron variants. Furthermore, the vaccines were able to provoke a Th1-biased cellular immune response. Significantly, at the same antigen dose, S1-2P immune sera induced stronger broadly neutralizing antibodies against prototype, Beta, Delta, and Omicron variants compared to that induced by S2-2P. At the same time, the low dose of bivalent vaccine containing S2-2P and S1-2P (2.5 µg for each antigen) significantly improved the cross-neutralizing antibody responses. In conclusion, our results showed that monovalent S1-2P subunit vaccine or bivalent vaccine (S1-2P and S2-2P) induced potent humoral and cellular responses against multiple SARS-CoV-2 variants and provided valuable information for the development of recombinant protein-based SARS-CoV-2 vaccines that protect against emerging SARS-CoV-2 variants.

10.
Heliyon ; 9(1): e12704, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36594041

RESUMEN

Critically ill patients infected with SARS-CoV-2 display adaptive immunity, but it is unknown if they develop cross-reactivity to variants of concern (VOCs). We profiled cross-immunity against SARS-CoV-2 VOCs in naturally infected, non-vaccinated, critically ill COVID-19 patients. Wave-1 patients (wild-type infection) were similar in demographics to Wave-3 patients (wild-type/alpha infection), but Wave-3 patients had higher illness severity. Wave-1 patients developed increasing neutralizing antibodies to all variants, as did patients during Wave-3. Wave-3 patients, when compared to Wave-1, developed more robust antibody responses, particularly for wild-type, alpha, beta and delta variants. Within Wave-3, neutralizing antibodies were significantly less to beta and gamma VOCs, as compared to wild-type, alpha and delta. Patients previously diagnosed with cancer or chronic obstructive pulmonary disease had significantly fewer neutralizing antibodies. Naturally infected ICU patients developed adaptive responses to all VOCs, with greater responses in those patients more likely to be infected with the alpha variant, versus wild-type.

11.
Probiotics Antimicrob Proteins ; 15(1): 17-29, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34837166

RESUMEN

The COVID-19 pandemic caused by a novel coronavirus (SARS-CoV-2) is a serious health concern in the twenty-first century for scientists, health workers, and all humans. The absence of specific biotherapeutics requires new strategies to prevent the spread and prophylaxis of the novel virus and its variants. The SARS-CoV-2 virus shows pathogenesis by entering the host cells via spike protein and Angiotensin-Converting Enzyme 2 receptor protein. Thus, the present study aims to compute the binding energies between a wide range of bacteriocins with receptor-binding domain (RBD) on spike proteins of wild type (WT) and beta variant (lineage B.1.351). Molecular docking analyses were performed to evaluate binding energies. Upon achieving the best bio-peptides with the highest docking scores, further molecular dynamics (MD) simulations were performed to validate the structure and interaction stability. Protein-protein docking of the chosen 22 biopeptides with WT-RBD showed docking scores lower than -7.9 kcal/mol. Pediocin PA-1 and salivaricin P showed the lowest (best) docking scores of - 12 kcal/mol. Pediocin PA-1, salivaricin B, and salivaricin P showed a remarkable increase in the double mutant's predicted binding affinity with -13.8 kcal/mol, -13.0 kcal/mol, and -12.5 kcal/mol, respectively. Also, a better predicted binding affinity of pediocin PA-1 and salivaricin B against triple mutant was observed compared to the WT. Thus, pediocin PA-1 binds stronger to mutants of the RBD, particularly to double and triple mutants. Salivaricin B showed a better predicted binding affinity towards triple mutant compared to WT, showing that it might be another bacteriocin with potential activity against the SARS-CoV-2 beta variant. Overall, pediocin PA-1, salivaricin P, and salivaricin B are the most promising candidates for inhibiting SARS-CoV-2 (including lineage B.1.351) entrance into the human cells. These bacteriocins derived from lactic acid bacteria hold promising potential for paving an alternative way for treatment and prophylaxis of WT and beta variants.


Asunto(s)
Bacteriocinas , COVID-19 , Lactobacillales , Humanos , Bacteriocinas/farmacología , SARS-CoV-2/genética , Simulación del Acoplamiento Molecular , Pandemias
12.
J Infect Dis ; 227(2): 211-220, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35975942

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may be associated with worse clinical outcomes in people with human immunodeficiency virus (HIV) (PWH). We report anti-SARS-CoV-2 antibody responses in patients hospitalized with coronavirus disease 2019 in Durban, South Africa, during the second SARS-CoV-2 infection wave dominated by the Beta (B.1.351) variant. METHODS: Thirty-four participants with confirmed SARS-CoV-2 infection were followed up with weekly blood sampling to examine antibody levels and neutralization potency against SARS-CoV-2 variants. Participants included 18 PWH, of whom 11 were HIV viremic. RESULTS: SARS-CoV-2-specific antibody concentrations were generally lower in viremic PWH than in virologically suppressed PWH and HIV-negative participants, and neutralization of the Beta variant was 4.9-fold lower in viremic PWH. Most HIV-negative participants and antiretroviral therapy-suppressed PWH also neutralized the Delta (B.1.617.2) variant, whereas the majority of viremic PWH did not. CD4 cell counts <500/µL were associated with lower frequencies of immunoglobulin G and A seroconversion. In addition, there was a high correlation between a surrogate virus neutralization test and live virus neutralization against ancestral SARS-CoV-2 virus in both PWH and HIV-negative individuals, but correlation decreased for the Beta variant neutralization in PWH. CONCLUSIONS: HIV viremia was associated with reduced Beta variant neutralization. This highlights the importance of HIV suppression in maintaining an effective SARS-CoV-2 neutralization response.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , SARS-CoV-2 , VIH , Viremia , Sudáfrica/epidemiología , Anticuerpos Antivirales , Infecciones por VIH/tratamiento farmacológico , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes , Pruebas de Neutralización
13.
Viruses ; 14(9)2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36146808

RESUMEN

A wide range of animal species are susceptible to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Natural and/or experimental infections have been reported in pet, zoo, farmed and wild animals. Interestingly, some SARS-CoV-2 variants, such as B.1.1.7/Alpha, B.1.351/Beta, and B.1.1.529/Omicron, were demonstrated to infect some animal species not susceptible to classical viral variants. The present study aimed to elucidate if goats (Capra aegagrus hircus) are susceptible to the B.1.351/Beta variant. First, an in silico approach was used to predict the affinity between the receptor-binding domain of the spike protein of SARS-CoV-2 B.1.351/Beta variant and angiotensin-converting enzyme 2 from goats. Moreover, we performed an experimental inoculation with this variant in domestic goat and showed evidence of infection. SARS-CoV-2 was detected in nasal swabs and tissues by RT-qPCR and/or immunohistochemistry, and seroneutralisation was confirmed via ELISA and live virus neutralisation assays. However, the viral amount and tissue distribution suggest a low susceptibility of goats to the B.1.351/Beta variant. Therefore, although monitoring livestock is advisable, it is unlikely that goats play a role as SARS-CoV-2 reservoir species, and they are not useful surrogates to study SARS-CoV-2 infection in farmed animals.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/veterinaria , Cabras , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
14.
Euro Surveill ; 27(34)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36017713

RESUMEN

BackgroundDuring the COVID-19 pandemic, national and local measures were implemented on the island of Mayotte, a French overseas department in the Indian Ocean with critical socioeconomic and health indicators.AimWe aimed to describe the COVID-19 outbreak in Mayotte from March 2020 to March 2021, with two waves from 9 March to 31 December 2020 and from 1 January to 14 March 2021, linked to Beta (20H/501Y.V2) variant.MethodsTo understand and assess the dynamic and the severity of the COVID-19 outbreak in Mayotte, surveillance and investigation/contact tracing systems were set up including virological, epidemiological, hospitalisation and mortality indicators.ResultsIn total, 18,131 cases were laboratory confirmed, with PCR or RAT. During the first wave, incidence rate (IR) peaked in week 19 2020 (133/100,000). New hospitalisations peaked in week 20 (54 patients, including seven to ICU). Testing rate increased tenfold during the second wave. Between mid-December 2020 and mid-January 2021, IR doubled (851/100,000 in week 5 2021) and positivity rate tripled (28% in week 6 2021). SARS-CoV-2 Beta variant (Pangolin B.1.351) was detected in more than 80% of positive samples. Hospital admissions peaked in week 6 2021 with 225 patients, including 30 to ICU.ConclusionThis massive second wave could be linked to the high transmissibility of the Beta variant. The increase in the number of cases has naturally led to a higher number of severe cases and an overburdening of the hospital. This study shows the value of a real-time epidemiological surveillance for better understanding crisis situations.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Comoras/epidemiología , Humanos , Pandemias
15.
Math Biosci Eng ; 19(10): 10361-10373, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-36031998

RESUMEN

The COVID-19 pandemic caused multiple waves of mortality in South Africa, where three genetic variants of SARS-COV-2 and their ancestral strain dominated consecutively. State-of-the-art mathematical modeling approach was used to estimate the time-varying transmissibility of SARS-COV-2 and the relative transmissibility of Beta, Delta, and Omicron variants. The transmissibility of the three variants were about 73%, 87%, and 276% higher than their preceding variants. To the best of our knowledge, our model is the first simple model that can simulate multiple mortality waves and three variants' replacements in South Africa. The transmissibility of the Omicron variant is substantially higher than that of previous variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Sudáfrica
16.
J Virol ; 96(16): e0075822, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35924921

RESUMEN

Ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lacks the intrinsic ability to bind to the mouse ACE2 receptor, and therefore establishment of SARS-CoV-2 mouse models has been limited to the use of mouse-adapted viruses or genetically modified mice. Interestingly, some of the variants of concern, such as the Beta B.1.351 variant, show an improved binding to the mouse receptor and hence better replication in different wild-type (WT) mouse species. Here, we describe the establishment of a SARS-CoV-2 Beta B.1.351 variant infection model in male SCID mice as a tool to assess the antiviral efficacy of potential SARS-CoV-2 small-molecule inhibitors. Intranasal infection of male SCID mice with 105 50% tissue culture infective doses (TCID50) of the Beta B.1.351 variant resulted in high viral loads in the lungs and moderate signs of lung pathology on day 3 postinfection. Treatment of infected mice with the antiviral drugs molnupiravir (200 mg/kg, twice a day [BID]) or nirmatrelvir (300 mg/kg, BID) for 3 consecutive days significantly reduced the infectious virus titers in the lungs by 2 and 3.9 log10 TCID50/mg of tissue, respectively, and significantly improved lung pathology. Together, these data demonstrate the validity of this SCID mouse Beta B.1.351 variant infection model as a convenient preclinical model for assessment of potential activity of antivirals against SARS-CoV-2. IMPORTANCE Unlike the ancestral SARS-CoV-2 strain, the Beta (B.1.351) variant of concern has been reported to replicate to some extent in WT mice (C57BL/6 and BALB/c). We demonstrate here that infection of SCID mice with the Beta variant resulted in high viral loads in the lungs on day 3 postinfection. Treatment of infected mice with molnupiravir or nirmatrelvir for 3 consecutive days markedly reduced the infectious virus titers in the lungs and improved lung pathology. The SARS-CoV2 SCID mouse infection model, which is ideally suited for antiviral studies, offers an advantage in comparison to other SARS-CoV2 mouse models, in that there is no need for the use of mouse-adapted virus strains or genetically modified mice. Mouse models also have advantages over hamster models because (i) lower amounts of test drugs are needed, (ii) more animals can be housed in a cage, and (iii) reagents to analyze mouse samples are more readily available than those for hamsters.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Cricetinae , Modelos Animales de Enfermedad , Humanos , Pulmón , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones SCID , ARN Viral
17.
Life (Basel) ; 12(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35888077

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is evolving, with emergence of mutational variants due to the error-prone replication process of RNA viruses, in general. More recently, the Delta and Omicron variants (including sub-variants BA.1-5) predominate globally, and a Delta-Omicron recombinant termed Deltacron has emerged. The emergence of variants of concern (VOC) demonstrating immune evasion and potentially greater transmissibility and virulence naturally raises concern in both the infection control communities and the public at large, as to the continued suitability of interventions intended to mitigate the risk of viral dissemination and acquisition of the associated disease COVID-19. We evaluated the virucidal efficacy of targeted surface hygiene products (an ethanol/quaternary ammonium compound (QAC)-containing disinfectant spray, a QAC disinfectant wipe, a lactic acid disinfectant wipe, and a citric acid disinfectant wipe) through both theoretical arguments and empirical testing using international standard methodologies (ASTM E1053-20 hard surface test and EN14476:2013+A2:2019 suspension test) in the presence of soil loads simulating patients' bodily secretions/excretions containing shed virus. The results demonstrate, as expected, complete infectious viral inactivation (≥3.0 to ≥4.7 log10 reduction in infectious virus titer after as little as 15 s contact time at room temperature) by these surface hygiene agents of the original SARS-CoV-2 isolate and its Beta and Delta VOC. Through appropriate practices of targeted surface hygiene, it is expected that irrespective of the SARS-CoV-2 VOC encountered as the current pandemic unfolds (and, for that matter, any emerging and/or re-emerging enveloped virus), the chain of infection from virus-contaminated fomites to the hand and mucous membranes of a susceptible person may be disrupted.

18.
PNAS Nexus ; 1(3): pgac091, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35873792

RESUMEN

Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to cross-neutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL-15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific CD4+ and CD8+ T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing.

19.
Indian J Med Res ; 155(1): 105-122, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35859437

RESUMEN

The WHO emergency use-listed (EUL) COVID-19 vaccines were developed against early strains of SARS-CoV-2. With the emergence of SARS-CoV-2 variants of concern (VOCs) - Alpha, Beta, Gamma, Delta and Omicron, it is necessary to assess the neutralizing activity of these vaccines against the VOCs. PubMed and preprint platforms were searched for literature on neutralizing activity of serum from WHO EUL vaccine recipients, against the VOCs, using appropriate search terms till November 30, 2021. Our search yielded 91 studies meeting the inclusion criteria. The analysis revealed a drop of 0-8.9-fold against Alpha variant, 0.3-42.4-fold against Beta variant, 0-13.8-fold against Gamma variant and 1.35-20-fold against Delta variant in neutralization titres of serum from the WHO EUL COVID-19 vaccine recipients, as compared to early SARS-CoV-2 isolates. The wide range of variability was due to differences in the choice of virus strains selected for neutralization assays (pseudovirus or live virus), timing of serum sample collection after the final dose of vaccine (day 0 to 8 months) and sample size (ranging from 5 to 470 vaccinees). The reasons for this variation have been discussed and the possible way forward to have uniformity across neutralization assays in different laboratories have been described, which will generate reliable data. Though in vitro neutralization studies are a valuable tool to estimate the performance of vaccines against the backdrop of emerging variants, the results must be interpreted with caution and corroborated with field-effectiveness studies.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2 , Proteínas del Envoltorio Viral
20.
Front Med (Lausanne) ; 9: 849217, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669924

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuing to evolve, emerging novel variants with spike protein mutations. Although most mutations emerged in the SARS-CoV-2 genome are neutral or mildly deleterious, a small number of mutations can affect virus phenotype that confers the virus a fitness advantage. These mutations can enhance viral replication, raise the risk of reinfection and blunt the potency of neutralizing antibodies triggered by previous infection and vaccination. Since December 2020, the SARS-CoV-2 has emerged five quickly spreading strains, designated variants of concern (VOCs), including the Alpha (B.1.1.7) variant, the Beta (B.1.351) variant, the Gamma (P.1) variant, the Delta (B.1.617.2) variant and the Omicron (B.1.1.529) variant. These variants have a high number of the mutations in the spike protein that promotes viral cell entry through the angiotensin-converting enzyme -2 (ACE2). Mutations that have arisen in the receptor binding domain (RBD) of the spike protein are of great concern due to their potential to evade neutralizing antibodies triggered by previous infection and vaccines. The Alpha variant emerged in the United Kingdom in the second half of 2020 that has spread quickly globally and acquired the E484K mutation in the United Kingdom and the United States. The Beta and Gamma variants emerged in South Africa and Brazil, respectively, that have additional mutations at positions E484 and K417 in the RBD. SARS-CoV-2 variants containing the combination of N501Y, E484K, and K417N/T mutations exhibit remarkably decreased sensitivity to neutralizing antibodies mediated by vaccination or previous infection. The Gamma variant may result in more severe disease than other variants do even in convalescent individuals. The Delta variant emerged in India in December 2020 and has spread to many countries including the United States and the United Kingdom. The Delta variant has 8 mutations in the spike protein, some of which can influence immune responses to the key antigenic regions of RBD. In early November 2021, the Omicron (B.1.1.529) variant was first detected in Botswana and South Africa. The Omicron variant harbors more than 30 mutations in the spike protein, many of which are located within the RBD, which have been associated with increased transmissibility and immune evasion after previous infection and vaccination. Additionally, the Omicron variant contains 3 deletions and one insertion in the spike protein. Recently, the Omicron variant has been classified into three sublineages, including BA.1, BA.2, and BA.3, with strikingly different genetic characteristics. The Omicron BA.2 sublineage has different virological landscapes, such as transmissibility, pathogenicity and resistance to the vaccine-induced immunity compared to BA.1 and BA.3 sublineages. Mutations emerged in the RBD of the spike protein of VOCs increase viral replication, making the virus more infectious and more transmissible and enable the virus to evade vaccine-elicited neutralizing antibodies. Unfortunately, the emergence of novel SARS-CoV-2 VOCs has tempered early optimism regarding the efficacy of COVID-19 vaccines. This review addresses the biological and clinical significance of SARS-CoV-2 VOCs and their impact on neutralizing antibodies mediated by existing COVID-19 vaccines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA