Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Heliyon ; 10(15): e35183, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170306

RESUMEN

The battery's performance heavily influences the safety, dependability, and operational efficiency of electric vehicles (EVs). This paper introduces an innovative hybrid deep learning architecture that dramatically enhances the estimation of the state of charge (SoC) of lithium-ion (Li-ion) batteries, crucial for efficient EV operation. Our model uniquely integrates a convolutional neural network (CNN) with bidirectional long short-term memory (Bi-LSTM), optimized through evolutionary intelligence, enabling an advanced level of precision in SoC estimation. A novel aspect of this work is the application of the Group Learning Algorithm (GLA) to tune the hyperparameters of the CNN-Bi-LSTM network meticulously. This approach not only refines the model's accuracy but also significantly enhances its efficiency by optimizing each parameter to best capture and integrate both spatial and temporal information from the battery data. This is in stark contrast to conventional models that typically focus on either spatial or temporal data, but not both effectively. The model's robustness is further demonstrated through its training across six diverse datasets that represent a range of EV discharge profiles, including the Highway Fuel Economy Test (HWFET), the US06 test, the Beijing Dynamic Stress Test (BJDST), the dynamic stress test (DST), the federal urban driving schedule (FUDS), and the urban development driving schedule (UDDS). These tests are crucial for ensuring that the model can perform under various real-world conditions. Experimentally, our hybrid model not only surpasses the performance of existing LSTM and CNN frameworks in tracking SoC estimation but also achieves an impressively quick convergence to true SoC values, maintaining an average root mean square error (RMSE) of less than 1 %. Furthermore, the experimental outcomes suggest that this new deep learning methodology outstrips conventional approaches in both convergence speed and estimation accuracy, thus promising to significantly enhance battery life and overall EV efficiency.

2.
Heliyon ; 10(15): e34735, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39144994

RESUMEN

This study aims to explore methods for classifying and describing volleyball training videos using deep learning techniques. By developing an innovative model that integrates Bi-directional Long Short-Term Memory (BiLSTM) and attention mechanisms, referred to BiLSTM-Multimodal Attention Fusion Temporal Classification (BiLSTM-MAFTC), the study enhances the accuracy and efficiency of volleyball video content analysis. Initially, the model encodes features from various modalities into feature vectors, capturing different types of information such as positional and modal data. The BiLSTM network is then used to model multi-modal temporal information, while spatial and channel attention mechanisms are incorporated to form a dual-attention module. This module establishes correlations between different modality features, extracting valuable information from each modality and uncovering complementary information across modalities. Extensive experiments validate the method's effectiveness and state-of-the-art performance. Compared to conventional recurrent neural network algorithms, the model achieves recognition accuracies exceeding 95 % under Top-1 and Top-5 metrics for action recognition, with a recognition speed of 0.04 s per video. The study demonstrates that the model can effectively process and analyze multimodal temporal information, including athlete movements, positional relationships on the court, and ball trajectories. Consequently, precise classification and description of volleyball training videos are achieved. This advancement significantly enhances the efficiency of coaches and athletes in volleyball training and provides valuable insights for broader sports video analysis research.

3.
Stud Health Technol Inform ; 316: 988-992, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39176957

RESUMEN

Continuous monitoring of physiological signals such as electrocardiogram (ECG) in driving environments has the potential to reduce the need for frequent health check-ups by providing real-time information on cardiovascular health. However, capturing ECG from sensors mounted on steering wheels creates difficulties due to motion artifacts, noise, and dropouts. To address this, we propose a novel method for reliable and accurate detection of heartbeats using sensor fusion with a bidirectional long short-term memory (BiLSTM) model. Our dataset contains reference ECG, steering wheel ECG, photoplethysmogram (PPG), and imaging PPG (iPPG) signals, which are more feasible to capture in driving scenarios. We combine these signals for R-wave detection. We conduct experiments with individual signals and signal fusion techniques to evaluate the performance of detected heartbeat positions. The BiLSTMs model achieves a performance of 62.69% in the driving scenario city. The model can be integrated into the system to detect heartbeat positions for further analysis.


Asunto(s)
Electrocardiografía , Fotopletismografía , Procesamiento de Señales Asistido por Computador , Humanos , Fotopletismografía/métodos , Frecuencia Cardíaca/fisiología , Conducción de Automóvil , Algoritmos
4.
J Neurosci Methods ; 411: 110250, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151658

RESUMEN

BACKGROUND: Wide-field calcium imaging (WFCI) with genetically encoded calcium indicators allows for spatiotemporal recordings of neuronal activity in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming, invasive and often suffers from low inter- and intra-rater reliability. Therefore, an automated sleep state classification method that operates on spatiotemporal WFCI data is desired. NEW METHOD: A hybrid network architecture consisting of a convolutional neural network (CNN) to extract spatial features of image frames and a bidirectional long short-term memory network (BiLSTM) with attention mechanism to identify temporal dependencies among different time points was proposed to classify WFCI data into states of wakefulness, NREM and REM sleep. RESULTS: Sleep states were classified with an accuracy of 84 % and Cohen's κ of 0.64. Gradient-weighted class activation maps revealed that the frontal region of the cortex carries more importance when classifying WFCI data into NREM sleep while posterior area contributes most to the identification of wakefulness. The attention scores indicated that the proposed network focuses on short- and long-range temporal dependency in a state-specific manner. COMPARISON WITH EXISTING METHOD: On a held out, repeated 3-hour WFCI recording, the CNN-BiLSTM achieved a κ of 0.67, comparable to a κ of 0.65 corresponding to the human EEG/EMG-based scoring. CONCLUSIONS: The CNN-BiLSTM effectively classifies sleep states from spatiotemporal WFCI data and will enable broader application of WFCI in sleep research.

5.
Med Eng Phys ; 130: 104206, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39160030

RESUMEN

Epilepsy is one of the most common brain diseases, characterised by repeated seizures that occur on a regular basis. During a seizure, a patient's muscles flex uncontrollably, causing a loss of mobility and balance, which can be harmful or even fatal. Developing an automatic approach for warning patients of oncoming seizures necessitates substantial research. Analyzing the electroencephalogram (EEG) output from the human brain's scalp region can help predict seizures. EEG data were analyzed to extract time domain features such as Hurst exponent (Hur), Tsallis entropy (TsEn), enhanced permutation entropy (impe), and amplitude-aware permutation entropy (AAPE). In order to automatically diagnose epileptic seizure in children from normal children, this study conducted two sessions. In the first session, the extracted features from the EEG dataset were classified using three machine learning (ML)-based models, including support vector machine (SVM), K nearest neighbor (KNN), or decision tree (DT), and in the second session, the dataset was classified using three deep learning (DL)-based recurrent neural network (RNN) classifiers in The EEG dataset was obtained from the Neurology Clinic of the Ibn Rushd Training Hospital. In this regard, extensive explanations and research from the time domain and entropy characteristics demonstrate that employing GRU, LSTM, and BiLSTM RNN deep learning classifiers on the All-time-entropy fusion feature improves the final classification results.


Asunto(s)
Aprendizaje Profundo , Electroencefalografía , Entropía , Epilepsia , Procesamiento de Señales Asistido por Computador , Humanos , Electroencefalografía/métodos , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Niño , Automatización , Diagnóstico por Computador/métodos , Convulsiones/diagnóstico , Convulsiones/fisiopatología , Masculino , Máquina de Vectores de Soporte , Preescolar
6.
PeerJ Comput Sci ; 10: e2149, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39145217

RESUMEN

Agriculture is the main source of livelihood for most of the population across the globe. Plants are often considered life savers for humanity, having evolved complex adaptations to cope with adverse environmental conditions. Protecting agricultural produce from devastating conditions such as stress is essential for the sustainable development of the nation. Plants respond to various environmental stressors such as drought, salinity, heat, cold, etc. Abiotic stress can significantly impact crop yield and development posing a major threat to agriculture. SNARE proteins play a major role in pathological processes as they are vital proteins in the life sciences. These proteins act as key players in stress responses. Feature extraction is essential for visualizing the underlying structure of the SNARE proteins in analyzing the root cause of abiotic stress in plants. To address this issue, we developed a hybrid model to capture the hidden structures of the SNAREs. A feature fusion technique has been devised by combining the potential strengths of convolutional neural networks (CNN) with a high dimensional radial basis function (RBF) network. Additionally, we employ a bi-directional long short-term memory (Bi-LSTM) network to classify the presence of SNARE proteins. Our feature fusion model successfully identified abiotic stress in plants with an accuracy of 74.6%. When compared with various existing frameworks, our model demonstrates superior classification results.

7.
Sci Rep ; 14(1): 19024, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152199

RESUMEN

Radar observation variables reflect the precipitation amount of strong convective precipitation processes, which accurate forecast is an important difficulty in weather forecasting. Current forecasting methods are mostly based on radar echo extrapolation, which has the insufficiency of input information and the ineffectiveness of model architecture. This paper presents a Bidirectional Long Short-Term Memory forecasting method for strong convective precipitation based on the attention mechanism and residual neural network (ResNet-Attention-BiLSTM). First, this paper uses ResNet to effectively extract the key information of extreme weather and solves the problem of regression to the mean of the prediction model by learning the residuals of the radar observation data. Second, this paper uses the attention mechanism to adaptively weight the fusion of the features to enhance the extraction of the important features of the precipitation image data. On this basis, this paper presents a novel spatio-temporal reasoning method for radar observations and establishes a precipitation forecasting model, which captures the past and future time-order relationship of the sequence data. Finally, this paper conducts experiments based on the real collected data of a strong convective precipitation process and compares its performance with the existing models, the mean absolute percentage error of this model was reduced by 15.94% (1 km), 18.72% (3 km), and 14.91% (7 km), and the coefficient of determination ( R 2 ) was increased by 10.89% (1 km), 9.61% (3 km), and 9.29% (7 km), which proves the state of the art and effectiveness of this forecasting model.

8.
Sci Rep ; 14(1): 18004, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097607

RESUMEN

With the establishment of the "double carbon" goal, various industries are actively exploring ways to reduce carbon emissions. Cloud data centers, represented by cloud computing, often have the problem of mismatch between load requests and resource supply, resulting in excessive carbon emissions. Based on this, this paper proposes a complete method for cloud computing carbon emission prediction. Firstly, the convolutional neural network and bidirectional long-term and short-term memory neural network (CNN-BiLSTM) combined model are used to predict the cloud computing load. The real-time prediction power is obtained by real-time prediction load of cloud computing, and then the carbon emission prediction is obtained by power calculation. Develop a dynamic server carbon emission prediction model, so that the server carbon emission can change with the change of CPU utilization, so as to achieve the purpose of low carbon emission reduction. In this paper, Google cluster data is used to predict the load. The experimental results show that the CNN-BiLSTM combined model has good prediction effect. Compared with the multi-layer feed forward neural network model (BP), long short-term memory network model (LSTM ), bidirectional long short-term memory network model (BiLSTM), modal decomposition and convolution long time series neural network model (CEEMDAN-ConvLSTM), the MSE index decreased by 52 % , 50 % , 34 % and 45 % respectively.

9.
PeerJ Comput Sci ; 10: e2153, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983220

RESUMEN

Rapid identification of flight actions by utilizing flight data is more realistic so the quality of flight training can be objectively assessed. The bidirectional long short-term memory (bi-LSTM) algorithm is implemented to forecast the flight actions of aircraft. The dataset containing the flight actions is structured by collecting tagged flight data when real flight training is exercised. However, the dataset needs to be preprocessed and annotated with expert rules. One of the deep learning (DL) methods, called the bi-LSTM algorithm, is implemented to train and test, and the pivotal parameters of the algorithm are optimized. Finally, the constructed model is applied to forecast the flight actions of aircraft. The training's accuracy and loss rates are computed. The duration is kept between 1 through 3 h per session. Thus, the development of training the model is continued until an accuracy rate above 85% is achieved. The word-run inference time is kept under 2 s. Finally, the proposed algorithm's specific characteristics, which are short training time and high recognition accuracy, are achieved when complex rules and large sample sizes exist.

10.
Curr Res Food Sci ; 8: 100723, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39022740

RESUMEN

Fruit and vegetable freshness testing can improve the efficiency of agricultural product management, reduce resource waste and economic losses, and plays a vital role in increasing the added value of fruit and vegetable agricultural products. At present, the detection of fruit and vegetable freshness mainly relies on manual feature extraction combined with machine learning. However, manual extraction of features has the problem of poor adaptability, resulting in low efficiency in fruit and vegetable freshness detection. Although exist some studies that have introduced deep learning methods to automatically learn deep features that characterize the freshness of fruits and vegetables to cope with the diversity and variability in complex scenes. However, the performance of these studies on fruit and vegetable freshness detection needs to be further improved. Based on this, this paper proposes a novel method that fusion of different deep learning models to extract the features of fruit and vegetable images and the correlation between various areas in the image, so as to detect the freshness of fruits and vegetables more objectively and accurately. First, the image size in the dataset is resized to meet the input requirements of the deep learning model. Then, deep features characterizing the freshness of fruits and vegetables are extracted by the fused deep learning model. Finally, the parameters of the fusion model were optimized based on the detection performance of the fused deep learning model, and the performance of fruit and vegetable freshness detection was evaluated. Experimental results show that the CNN_BiLSTM deep learning model, which fusion convolutional neural network (CNN) and bidirectional long-short term memory neural network (BiLSTM), is combined with parameter optimization processing to achieve an accuracy of 97.76% in detecting the freshness of fruits and vegetables. The research results show that this method is promising to improve the performance of fruit and vegetable freshness detection.

11.
Heliyon ; 10(12): e32639, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988581

RESUMEN

The objective of this study is to investigate methodologies concerning enterprise financial sharing and risk identification to mitigate concerns associated with the sharing and safeguarding of financial data. Initially, the analysis examines security vulnerabilities inherent in conventional financial information sharing practices. Subsequently, blockchain technology is introduced to transition various entity nodes within centralized enterprise financial networks into a decentralized blockchain framework, culminating in the formulation of a blockchain-based model for enterprise financial data sharing. Concurrently, the study integrates the Bi-directional Long Short-Term Memory (BiLSTM) algorithm with the transformer model, presenting an enterprise financial risk identification model referred to as the BiLSTM-fused transformer model. This model amalgamates multimodal sequence modeling with comprehensive understanding of both textual and visual data. It stratifies financial values into levels 1 to 5, where level 1 signifies the most favorable financial condition, followed by relatively good (level 2), average (level 3), high risk (level 4), and severe risk (level 5). Subsequent to model construction, experimental analysis is conducted, revealing that, in comparison to the Byzantine Fault Tolerance (BFT) algorithm mechanism, the proposed model achieves a throughput exceeding 80 with a node count of 146. Both data message leakage and average packet loss rates remain below 10 %. Moreover, when juxtaposed with the recurrent neural networks (RNNs) algorithm, this model demonstrates a risk identification accuracy surpassing 94 %, an AUC value exceeding 0.95, and a reduction in the time required for risk identification by approximately 10 s. Consequently, this study facilitates the more precise and efficient identification of potential risks, thereby furnishing crucial support for enterprise risk management and strategic decision-making endeavors.

12.
BMC Med Inform Decis Mak ; 24(1): 198, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039464

RESUMEN

Genes, expressed as sequences of nucleotides, are susceptible to mutations, some of which can lead to cancer. Machine learning and deep learning methods have emerged as vital tools in identifying mutations associated with cancer. Thyroid cancer ranks as the 5th most prevalent cancer in the USA, with thousands diagnosed annually. This paper presents an ensemble learning model leveraging deep learning techniques such as Long Short-Term Memory (LSTM), Gated Recurrent Units (GRUs), and Bi-directional LSTM (Bi-LSTM) to detect thyroid cancer mutations early. The model is trained on a dataset sourced from asia.ensembl.org and IntOGen.org, consisting of 633 samples with 969 mutations across 41 genes, collected from individuals of various demographics. Feature extraction encompasses techniques including Hahn moments, central moments, raw moments, and various matrix-based methods. Evaluation employs three testing methods: self-consistency test (SCT), independent set test (IST), and 10-fold cross-validation test (10-FCVT). The proposed ensemble learning model demonstrates promising performance, achieving 96% accuracy in the independent set test (IST). Statistical measures such as training accuracy, testing accuracy, recall, sensitivity, specificity, Mathew's Correlation Coefficient (MCC), loss, training accuracy, F1 Score, and Cohen's kappa are utilized for comprehensive evaluation.


Asunto(s)
Aprendizaje Profundo , Mutación , Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/diagnóstico , Progresión de la Enfermedad
13.
Micromachines (Basel) ; 15(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39064429

RESUMEN

This paper presents a gesture-controlled robotic arm system designed for agricultural harvesting, utilizing a data glove equipped with bending sensors and OptiTrack systems. The system aims to address the challenges of labor-intensive fruit harvesting by providing a user-friendly and efficient solution. The data glove captures hand gestures and movements using bending sensors and reflective markers, while the OptiTrack system ensures high-precision spatial tracking. Machine learning algorithms, specifically a CNN+BiLSTM model, are employed to accurately recognize hand gestures and control the robotic arm. Experimental results demonstrate the system's high precision in replicating hand movements, with a Euclidean Distance of 0.0131 m and a Root Mean Square Error (RMSE) of 0.0095 m, in addition to robust gesture recognition accuracy, with an overall accuracy of 96.43%. This hybrid approach combines the adaptability and speed of semi-automated systems with the precision and usability of fully automated systems, offering a promising solution for sustainable and labor-efficient agricultural practices.

14.
Waste Manag Res ; : 734242X241259643, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078040

RESUMEN

Continuous emission monitoring system is commonly employed to monitor NOx emissions in municipal solid waste incineration (MSWI) processes. However, it still encounters the challenges of regular maintenance and measurement lag. These issues significantly impact the accurate and stable control of NOx emissions. Therefore, developing a soft NOx emission sensor to complement hardware monitoring becomes imperative. Considering data noise, dynamic nonlinearity, time series characteristics and volatility in the MSWI process, this article introduces a soft sensor model for NOx emission prediction utilizing the complete ensemble empirical mode decomposition adaptive noise (CEEMDAN)-wavelet threshold (WT) method and bidirectional long short-term memory (Bi-LSTM). Firstly, the original data signal is decomposed into a group of intrinsic mode functions (IMFs) using the CEEMDAN. Subsequently, the WT processes the high-frequency IMFs that are noise-dominant. Then, all IMFs are reconstructed to obtain the denoized signal. Finally, the Bi-LSTM model is employed to predict NOx emissions. Compared to conventional modelling approaches, the model proposed in this article demonstrates the best predictive performance. The mean absolute percentage error, root-mean-squared error and average absolute error on the test set of the proposed model are 3.75%, 5.34 mg m-3 and 4.34 mg m-3, respectively. The proposed model provides a new method to soft sensing NOx emissions. It holds significant practical value for precise and stable monitoring of NOx emissions in MSWI processes and provides a reference for research on modelling key process parameters.

15.
Water Res ; 261: 122027, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39018904

RESUMEN

Depletion of dissolved oxygen (DO) is a significant incentive for biological catastrophic events in freshwater lakes. Although predicting the DO concentrations in lakes with high-frequency real-time data to prevent hypoxic events is effective, few related experimental studies were made. In this study, a short-term predicting model was developed for DO concentrations in three problematic areas in China's Chaohu Lake. To predict the DO concentrations at these representative sites, which coincide with biological abnormal death areas, water quality indicators at the three sampling sites and hydrometeorological features were adopted as input variables. The monitoring data were collected every 4 h between 2020 and 2023 and applied separately to train and test the model at a ratio of 8:2. A new AC-BiLSTM coupling model of the convolution neural network (CNN) and the bidirectional long short-term memory (BiLSTM) with the attention mechanism (AM) was proposed to tackle characteristics of discontinuous dynamic change of DO concentrations in long time series. Compared with the BiLSTM and CNN-BiLSTM models, the AC-BiLSTM showed better performance in the evaluation criteria of MSE, MAE, and R2 and a stronger ability to capture global dependency relationships. Although the prediction accuracy of hypoxic events was slightly worse, the general time series characteristics of abrupt DO depletion were captured. Water temperature regularly affects DO concentrations due to its periodic variations. The high correlation and the universal importance of total nitrogen (TN) and total phosphorus (TP) with DO reveals that point source pollution are critical cause of DO depletion in the freshwater lake. The importance of NTU at the Zhong Miao Station indicates the self-purification capacity of the lake is affected by the flow rate changes brought by the tributaries. Calculating linear correlations of variables in conjunction with a permutation variable importance analysis enhanced the interpretability of the proposed model results. This study demonstrates that the AC-BiLSTM model can complete the task of short-term prediction of DO concentration of lakes and reveal its response features of timing and magnitude of abrupt DO depletion.


Asunto(s)
Lagos , Redes Neurales de la Computación , Oxígeno , Lagos/química , Oxígeno/análisis , China , Monitoreo del Ambiente/métodos , Calidad del Agua
16.
PeerJ ; 12: e17729, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040937

RESUMEN

Background: Global public health is seriously threatened by the escalating issue of antimicrobial resistance (AMR). Antimicrobial peptides (AMPs), pivotal components of the innate immune system, have emerged as a potent solution to AMR due to their therapeutic potential. Employing computational methodologies for the prompt recognition of these antimicrobial peptides indeed unlocks fresh perspectives, thereby potentially revolutionizing antimicrobial drug development. Methods: In this study, we have developed a model named as deepAMPNet. This model, which leverages graph neural networks, excels at the swift identification of AMPs. It employs structures of antimicrobial peptides predicted by AlphaFold2, encodes residue-level features through a bi-directional long short-term memory (Bi-LSTM) protein language model, and constructs adjacency matrices anchored on amino acids' contact maps. Results: In a comparative study with other state-of-the-art AMP predictors on two external independent test datasets, deepAMPNet outperformed in accuracy. Furthermore, in terms of commonly accepted evaluation matrices such as AUC, Mcc, sensitivity, and specificity, deepAMPNet achieved the highest or highly comparable performances against other predictors. Conclusion: deepAMPNet interweaves both structural and sequence information of AMPs, stands as a high-performance identification model that propels the evolution and design in antimicrobial peptide pharmaceuticals. The data and code utilized in this study can be accessed at https://github.com/Iseeu233/deepAMPNet.


Asunto(s)
Péptidos Antimicrobianos , Redes Neurales de la Computación , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Biología Computacional/métodos , Humanos
17.
Front Aging Neurosci ; 16: 1341227, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081395

RESUMEN

Objective: Early identification of cognitive impairment in older adults could reduce the burden of age-related disabilities. Gait parameters are associated with and predictive of cognitive decline. Although a variety of sensors and machine learning analysis methods have been used in cognitive studies, a deep optimized machine vision-based method for analyzing gait to identify cognitive decline is needed. Methods: This study used a walking footage dataset of 158 adults named West China Hospital Elderly Gait, which was labelled by performance on the Short Portable Mental Status Questionnaire. We proposed a novel recognition network, Deep Optimized GaitPart (DO-GaitPart), based on silhouette and skeleton gait images. Three improvements were applied: short-term temporal template generator (STTG) in the template generation stage to decrease computational cost and minimize loss of temporal information; depth-wise spatial feature extractor (DSFE) to extract both global and local fine-grained spatial features from gait images; and multi-scale temporal aggregation (MTA), a temporal modeling method based on attention mechanism, to improve the distinguishability of gait patterns. Results: An ablation test showed that each component of DO-GaitPart was essential. DO-GaitPart excels in backpack walking scene on CASIA-B dataset, outperforming comparison methods, which were GaitSet, GaitPart, MT3D, 3D Local, TransGait, CSTL, GLN, GaitGL and SMPLGait on Gait3D dataset. The proposed machine vision gait feature identification method achieved a receiver operating characteristic/area under the curve (ROCAUC) of 0.876 (0.852-0.900) on the cognitive state classification task. Conclusion: The proposed method performed well identifying cognitive decline from the gait video datasets, making it a prospective prototype tool in cognitive assessment.

18.
Sci Rep ; 14(1): 16855, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039111

RESUMEN

Accurate prediction of regional terrestrial water storage change (TWSA) is of great significance for water resources planning and management, and early warning of extreme climate disasters. Aiming at the problem that the conventional methods on prediction of TWSA time series are difficult to be accurate, the six typical regions are selected in China as examples, including the upper reaches of the Yangtze River (UYR), the southwest region (SWR), the Liaohe River Basin (LRB), the North China Plain (NCP), the Qinghai-Tibet Plateau (QTP), and the Pearl River Basin (PRB). The mascon product from GRACE/GRACE-FO provided by CSR is used to extract TWSA time series in six typical areas. The improved Back Propagation (BP) neural network, Long Short-Term Memory (LSTM) neural network and the latest Bidirectional LSTM (BiLSTM-attention) neural network model based on attention mechanism are proposed to predict and analyze the regional TWSA. In the experiment, the selection of the optimal model parameters such as the number of hidden layer nodes and the number of hidden units of the neural network model is tested and analyzed in detail. Meanwhile, the model prediction results are compared with the traditional least squares method and random forest (RF) prediction method. The root mean square error (RMSE), determination coefficient (R2), Nash-Sutcliffe efficiency coefficient (NSE) and mean absolute percentage error (MAPE) were used to evaluate the accuracy of the predicted results. The results show that the improved BP, LSTM and Bi-LSTM-attention neural network models all achieve higher prediction accuracy in UYR and SWR areas. RMSE is less than 2.641 cm, R2 is as high as 0.8 or more, NSE is above 0.6, and MAPE is within 0.1. Compared with the least square method, the RMSE of the predicted results from three neural network decreased by 0.998 cm, 0.700 cm and 0.7563 on average, and the R2 increased by 81.75%, 69.89% and 72% on average. Compared with RFML method, the RMSE from three neural network is reduced by 0.601 cm, 0.316 cm and 0.360, and R2 is increased by 38.20%, 24.60% and 27.06% on average. NSE and RMSE are improved to varying degrees in the above regions. It shows that the improved BP, LSTM and BiLSTM-attention model used can effectively predict TWSA. The research methods and results in this paper can provide important reference for the rational utilization of regional water resources and disaster risk assessment.

19.
Technol Health Care ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38848203

RESUMEN

BACKGROUND: The Ultimate Fighting Championship (UFC) stands as a prominent global platform for professional mixed martial arts, captivating audiences worldwide. With its continuous growth and globalization efforts, UFC events have garnered significant attention and achieved commendable results. However, as the scale of development expands, the operational demands on UFC events intensify. At its core, UFC thrives on the exceptional performances of its athletes, which serve as the primary allure for audiences. OBJECTIVE: This study aims to enhance the allure of UFC matches and cultivate exceptional athletes by predicting athlete performance on the field. To achieve this, a recurrent neural network prediction model based on Bidirectional Long Short-Term Memory (BiLSTM) is proposed. The model seeks to leverage athlete portraits and characteristics for performance prediction. METHODS: The proposed methodology involves constructing athlete portraits and analyzing athlete characteristics to develop the prediction model. The BiLSTM-based recurrent neural network is utilized for its ability to capture temporal dependencies in sequential data. The model's performance is assessed through experimental analysis. RESULTS: Experimental results demonstrate that the athlete performance prediction model achieved an overall accuracy of 0.7524. Comparative analysis reveals that the proposed BiLSTM model outperforms traditional methods such as Linear Regression and Multilayer Perceptron (MLP), showcasing superior prediction accuracy. CONCLUSION: This study introduces a novel approach to predicting athlete performance in UFC matches using a BiLSTM-based recurrent neural network. By leveraging athlete portraits and characteristics, the proposed model offers improved accuracy compared to classical methods. Enhancing the predictive capabilities in UFC not only enriches the viewing experience but also contributes to the development of exceptional athletes in the sport.

20.
Sci Rep ; 14(1): 14203, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902305

RESUMEN

Hearing problems are commonly diagnosed with the use of tonal audiometry, which measures a patient's hearing threshold in both air and bone conduction at various frequencies. Results of audiometry tests, usually represented graphically in the form of an audiogram, need to be interpreted by a professional audiologist in order to determine the exact type of hearing loss and administer proper treatment. However, the small number of professionals in the field can severely delay proper diagnosis. The presented work proposes a neural network solution for classification of tonal audiometry data. The solution, based on the Bidirectional Long Short-Term Memory architecture, has been devised and evaluated for classifying audiometry results into four classes, representing normal hearing, conductive hearing loss, mixed hearing loss, and sensorineural hearing loss. The network was trained using 15,046 test results analysed and categorised by professional audiologists. The proposed model achieves 99.33% classification accuracy on datasets outside of training. In clinical application, the model allows general practitioners to independently classify tonal audiometry results for patient referral. In addition, the proposed solution provides audiologists and otolaryngologists with access to an AI decision support system that has the potential to reduce their burden, improve diagnostic accuracy, and minimise human error.


Asunto(s)
Audiometría de Tonos Puros , Redes Neurales de la Computación , Humanos , Audiometría de Tonos Puros/métodos , Femenino , Masculino , Pérdida Auditiva/diagnóstico , Pérdida Auditiva/clasificación , Adulto , Persona de Mediana Edad , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/clasificación , Pérdida Auditiva Sensorineural/fisiopatología , Pérdida Auditiva Conductiva/diagnóstico , Pérdida Auditiva Conductiva/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA