Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 583
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39120374

RESUMEN

High-energy-density Li-CO2 batteries are promising candidates for large-capacity energy storage systems. However, the development of Li-CO2 batteries has been hindered by low cycle life and high overpotential. In this study, we propose a CO2-based thermoplastic polyurethane (CO2-based TPU) with CO2 adsorption properties and excellent self-healing performance to replace traditional polyvinylidene fluoride (PVDF) as the cathode binder. The CO2-based TPU enhances the interfacial concentration of CO2 at the cathode/electrolyte interfaces, effectively increasing the discharge voltage and lowering the charge voltage of Li-CO2 batteries. Moreover, the CO2 fixed by urethane groups (-NH-COO-) in the CO2-based TPU are difficult to shuttle to and corrode the Li anode, minimizing CO2 side reactions with lithium metal and improving the cycling performance of Li-CO2 batteries. In this work, Li-CO2 batteries with CO2-based TPU as the multifunctional binders exhibit stable cycling performance for 52 cycles at a current density of 0.2 A g-1, with a distinctly lower polarization voltage than PVDF bound Li-CO2 batteries.

2.
Chem Biodivers ; : e202400768, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980964

RESUMEN

Bis-intercalators play a significant role in altering the DNA structure, affecting its stability, and potentially influencing various cellular processes. These compounds have gained considerable attention in medicinal chemistry and biochemistry due to their potential applications in cancer therapy, where they may interfere with DNA replication and transcription, leading to anticancer effects. Traditionally, these molecules often possess a high positive charge to enhance their affinity for the negatively charged DNA. However, due to a high positive charge, their cellular uptake is compromised, along with their enhanced potential off-target effects. In this study, we utilized bis-intercalator TOTO and replaced the charged linker segment (propane-1,3-diammonium) with a neutral peroxodisulphuric acid linker. Using molecular modeling and computer simulations (500 ns, 3 replicas), we investigated the potential of the designed molecule as a bis-intercalator and compared the properties with the control bis-intercalator bound to DNA. We observed that the designed bis-intercalator exhibited improved DNA binding (as assessed through MM-PBSA and Delphi methods) and membrane translocation permeability. With an overall reduced charge, significantly less off-target binding of the designed molecule is also anticipated. Consequently, bis-intercalators based on peroxodisulphuric linkers can potentially target DNA effectively, and their role in the future design of bis-intercalators is foreseen.

3.
J Vet Res ; 68(2): 233-240, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38947151

RESUMEN

Introduction: The productivity of domestic animals and the safety of food products derived from them are jeopardised by mycotoxins in animal feed. To control them, feed additives are used, which limit the absorption of mycotoxins in the gastrointestinal tract of animals by binding to them. The study aimed to evaluate the effectiveness of a new in vitro model in experiments on the binding of mycotoxins from buffers and contaminated feed and to confirm the effect of a single sorbent or mixture in binding them. Material and Methods: Nine mineral sorbents were tested for their efficiency binding eight mycotoxins. Two in vitro experiments were conducted to indicate the mycotoxin-binding capacity of sorbents, each specifying a buffer with one of two different pH levels reflecting gastrointestinal conditions (pH 3.5 and 7.0). The first investigated the sorbent with only the buffer and mycotoxin standards, while the second did so with the sorbent, buffer and feed naturally contaminated with mycotoxins (deoxynivalenol, zearalenone, and ochratoxin A). Results: The sorption was significantly lower in the trial with feed. In the first experiment at gastric pH (pH 3.5), activated charcoal bound deoxynivalenol and sepiolite bound zearalenone at 70% and 96%, respectively, whereas in the second experiment with feed, the binding was only 3% and 6%. Conclusion: The study underlines the challenge of finding a feed additive that would work comprehensively, binding all mycotoxins regulated by law.

5.
Am J Clin Nutr ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032787

RESUMEN

BACKGROUND: Plant-based diets (PBD) may induce hyperkalemia in chronic kidney disease (CKD) patients. OBJECTIVES: We explored the safety and feasibility of PBD in hyperkalemic CKD patients receiving the potassium binder sodium zirconium cyclosilicate (SZC). METHODS: In the current 6-wk trial, 26 hyperkalemic patients with CKD stage 4-5 not on dialysis received a low-protein low-potassium diet plus SZC for 3 wk and then a PBD with high potassium content delivered as a weekly food basket while continuing SZC for subsequent 3 wk. Plasma potassium was monitored weekly and SZC was titrated to achieve normokalemia. The 24-h urine excretion of potassium and sodium, 24-h food records, dietary quality, nutritional status, Bristol stool scale, Quality of life (QoL), and renal treatment satisfaction were assessed at baseline (week 0), week 3, and week 6. RESULTS: Mean plasma potassium decreased from 5.5 to 4.4 mEq/L within 48-72 h after baseline, then rose to 4.7-5.0 mEq/L throughout the remaining study period following dose adjustments of SZC that matched the increased potassium intake of PBD from week 3 to week 6. Over the study period, 24-h urinary potassium excretion decreased from week 0 to week 3 and increased from week 3 to week 6. During the study, 58% of patients had fasting plasma potassium between 3.5 and 5.0 mEq/L and there was no episode of plasma potassium >6.5 mEq/L or <3.0 mEq/L during the study. P-carbon dioxide increased from baseline until week 6 (21 ± 2 to 23 ± 2 mEq/L; P = 0.002; mean ± SD), whereas remaining laboratory values remained unchanged. Fiber intake, dietary quality, the domain physical functioning from QoL, and 1 question of renal treatment satisfaction improved, whereas stool type and frequency did not change after starting PBD. CONCLUSIONS: PBD in hyperkalemia-prone CKD patients receiving SZC improved dietary quality and increased the intake of healthy foods, whereas plasma potassium concentration remained stable within normal values for most patients. TRIAL REGISTRATION NUMBER: This trial was registered at the https://clinicaltrials.gov/study/NCT04207203 as NCT04207203.

6.
Materials (Basel) ; 17(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38998283

RESUMEN

This study investigates how different sodium silicate SiO2/Na2O MS ratios (0.75, 0.9, and 1.2) affect the hydration behavior of amorphous wollastonitic hydraulic (AWH) binders containing various amounts of Al2O3 content (4, 7, 10, and 12%wt). The effects of and interaction between the MS ratio of the activator and the Al2O3 content of the sample on the hydration reaction and paste performance were investigated. The reaction was followed by calorimetry, and the pastes' compressive strength performances were tested at different curing times (2, 7, and 28 days). The hydrated pastes were characterized by FTIR, thermogravimetry analysis, and X-ray diffraction. The calorimetric results show that a higher Al2O3 cContent and a higher MS ratio result in a longer induction period. In terms of paste performance, an increase of the Al2O3 coupled with an activation with a 1.2 MS ratio results in a lower compressive strength after 28 days of hydration; the results range from 76 to 52 MPa. A decrease of the MS ratio to 0.9 allowed the obtention of a narrower range of results, from 76 to 69 MPa. Even though a decrease of the MS ratio to 0.75 led to higher hydration kinetics and high compressive strength results at early ages, at 28 days of curing, a decrease in compressive strength was observed. This may be a consequence of the fast kinetic of the mixture, since the rapid growth of hydration products may inhibit the dissolution at later ages and increase the porosity of the paste. Moreover, the high Al intake in the hydration product, facilitated by the high sodium content of the activator, promotes the formation of a higher number of calcium aluminate silicate hydrate structures (C-A-S-H) to the detriment of calcium silicate hydrate structures (C-S-H), decreasing the compressive strength of the samples. The TGA results indicate that the samples hydrated with the MS075 solution resulted in a higher number of hydrated products at early ages, while the samples hydrated with the MS09 and MS1.2 solutions exhibit a steady increase with curing time. Hence, an equilibrium in the hydration kinetic promoted by Si saturation-undersaturation appears to be fundamental in this system, which is influenced by both the MS ratio and the Al(OH)4- content in solution. The results of this study suggest that for this type of binder, optimal performance can be achieved by decreasing the MS ratio to 0.9. This composition allows for a controlled kinetic and overall higher compressive strength results in pastes produced with this AWH precursor.

7.
Materials (Basel) ; 17(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38998386

RESUMEN

A drawback of recycled mixtures containing reclaimed asphalt is their increased stiffness, further worsened by the accelerated aging of binders in extreme weather conditions. Previous studies have shown that while rejuvenating agents can mitigate some of these issues by improving flexibility and reducing brittleness, they often present challenges, such as performance variability and the potential for rutting. This study aims to develop an optimal blend of reclaimed bitumen, a rejuvenating agent, and pure bitumen to achieve rheological properties similar to a control 35/50 pen-grade bitumen for road paving. Hence, the rejuvenated binders comprised 30:70 blends of reclaimed asphalt bitumen and 50/70 pen-grade bitumen, adding 0.2% to 0.6% of a rejuvenating agent by mass of the reclaimed asphalt. Sample testing included conventional penetration grade, softening point, and viscosity tests, followed by dynamic shear rheometer tests under unaged, short-term, and long-term aging conditions. The results show that the binder blend with 0.4% rejuvenator closely resembles the rheological properties of 35/50 pen-grade bitumen. This blend exhibits a 20% to 55% stiffness reduction for recycled mixtures with 30% reclaimed asphalt. Notably, the rejuvenated binders exhibited a similar level of aging resistance to the control bitumen, with a marginal difference of less than 5% in aging ratios. Meanwhile, large strain amplitude tests showed the importance of defining maximum rejuvenating incorporation rates in recycled mixtures to avoid rutting problems, where binders with 0.4% rejuvenator doubled the rutting potential (Jnr values). This innovative study highlights the potential for enhancing recycled mixtures' performance by evaluating rejuvenated reclaimed binders' rheology subjected to different aging conditions, thus contributing to sustainability in pavement construction.

8.
Int J Biol Macromol ; 276(Pt 1): 133834, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002899

RESUMEN

IL-2 regulates the immune response by interacting with different IL-2 receptor (IL-2R) subunits. High dose of IL-2 binds to IL-2Rßγc heterodimer, which induce various side effects while activating immune function. Disrupting IL-2 and IL-2R interactions can block IL-2 mediated immune response. Here, we used a computational approach to de novo design mini-binder proteins against IL-2R ß chain (IL-2Rß) to block IL-2 signaling. The hydrophobic region where IL-2 binds to IL-2Rß was selected and the promising binding mode was broadly explored. Three mini-binders with amino acid numbers ranging from 55 to 65 were obtained and binder 1 showed the best effects in inhibiting CTLL-2 cells proliferation and STAT5 phosphorylation. Molecular dynamics simulation showed that the binding of binder 1 to IL-2Rß was stable; the free energy of binder1/IL-2Rß complex was lower, indicating that the affinity of binder 1 to IL-2Rß was higher than that of IL-2. Free energy decomposition suggested that the ARG35 and ARG131 of IL-2Rß might be the key to improve the affinity of binder. Our efforts provided new insights in developing of IL-2R blocker, offering a potential strategy for ameliorating the side effects of IL-2 treatment.

10.
Pharmaceutics ; 16(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39065551

RESUMEN

Binder selection is a crucial step in continuous twin-screw wet granulation (TSWG), as the material experiences a much shorter residence time (2-40 s) in the granulator barrel compared to batch-wise granulation processes. Polyvinyl alcohol (PVA) 4-88 was identified as an effective binder during TSWG, but the potential of other PVA grades-differing in polymerization and hydrolysis degree-has not yet been studied. Therefore, the aim of the current study was to evaluate the potential of different PVA grades as a binder during TSWG. The breakage and drying behavior during the fluidized bed drying of drug-loaded granules containing the PVA grades was also studied. Three PVA grades (4-88, 18-88, and 40-88) were characterized and their attributes were compared to previously investigated binders by Vandevivere et al. through principal component analysis. Three binder clusters could be distinguished according to their attributes, whereby each cluster contained a PVA grade and a previously investigated binder. PVA 4-88 was the most effective binder of the PVA grades for both a good water-soluble and water-insoluble formulation. This could be attributed to its high total surface energy, low viscosity, good wettability of hydrophilic and hydrophobic surfaces, and good wettability by water of the binder. Compared to the previously investigated binders, all PVA grades were more effective in the water-insoluble formulation, as they yielded strong granules (friability below 30%) at lower L/S-ratios. This was linked to the high dispersive surface energy of the high-energy sites on the surface of PVA grades and their low surface tension. During fluidized bed drying, PVA grades proved suitable binders, as the acetaminophen (APAP) granules were dried within a short time due to the low L/S-ratio, at which high-quality granules could be produced. In addition, no attrition occurred, and strong tablets were obtained. Based on this study, PVA could be the preferred binder during twin screw granulation due to its high binder effectiveness at a low L/S-ratio, allowing efficient downstream processing. However, process robustness must be controlled by the included excipients, as PVA grades are operating in a narrow L/S-ratio range.

11.
Int J Nephrol Renovasc Dis ; 17: 151-161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38831770

RESUMEN

Hyperphosphataemia represents a significant challenge in the management of chronic kidney disease, exerting a pronounced influence on the pathogenesis of cardiovascular complications and mineral bone disorders. Traditional approaches to address hyperphosphataemia involve implementing dietary phosphate restrictions, administering phosphate binders, and, in cases of end-stage renal disease, resorting to dialysis. Unfortunately, these interventions frequently prove inadequate in maintaining phosphate levels within recommended ranges. Additionally, commonly employed pharmacological agents are not immune to eliciting adverse events, thereby limiting their prescription and therapeutic adherence. There is a growing focus on exploring novel therapeutic strategies in this context. The current discussion centres on tenapanor, a pharmacological agent predominantly acting as a selective inhibitor of sodium/hydrogen exchanger isoform 3 (NHE3). Its mechanism of action involves modulating tight junctions, resulting in reduced sodium absorption and intestinal paracellular permeability to phosphate. Furthermore, tenapanor downregulates sodium-dependent phosphate 2b transport protein (NaPi2b) expression, thereby impeding active transcellular phosphate transport. Clinical trials have elucidated the efficacy and safety profile of tenapanor. This evidence hints at a potential paradigm shift in the management of hyperphosphataemia. However, the burgeoning optimism surrounding tenapanor warrants tempered enthusiasm, as further research remains indispensable. The imperative lies in meticulously delineating its efficacy and safety contours within the crucible of clinical practice. In this review, we synthesize the intricate interplay between hyperphosphataemia and Chronic Kidney Disease-Mineral Bone Disorder, and we discuss the existing pharmacological interventions for hyperphosphataemia and explore emerging treatment paradigms that offer novel perspectives in managing elevated phosphate levels in CKD patients.

12.
Small ; : e2402581, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940389

RESUMEN

In this work, the potential of bio-inspired strategies for the synthesis of calcium sulfate (CaSO4·nH2O) materials for heritage conservation is explored. For this, a nonclassical multi-step crystallization mechanism to understand the effect of calcein- a fluorescent chelating agent with a high affinity for divalent cations- on the nucleation and growth of calcium sulfate phases is proposed. Moving from the nano- to the macro-scale, this strategy sets the basis for the design and production of fluorescent nano-bassanite (NB-C; CaSO4·0.5H2O), with application as a fully compatible consolidant for the conservation of historic plasterwork. Once applied to gypsum (CaSO4·2H2O) plaster specimens, cementation upon hydration of nano-bassanite results in a significant increase in mechanical strength, while intracrystalline occlusion of calcein in newly-formed gypsum cement improves its weathering resistance. Furthermore, under UV irradiation, the luminescence produced by calcein molecules occluded in gypsum crystals formed upon nano-bassanite hydration allows the easy identification of the newly deposited consolidant within the treated gypsum plaster without altering the substrate's appearance.

13.
Molecules ; 29(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38930800

RESUMEN

Cangjie Temple was built to commemorate Cangjie, the legendary inventor of Chinese characters. It stands as one of the few remaining temples in China dedicated to the invention and creation of writing. In this study, the material properties of wooden paintings from the Cangjie temple were characterized using Polarized Light Microscopy (PLM), Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy (SEM-EDS), Micro-confocal Raman Spectroscopy, X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC/MS). It was confirmed that the pigments of the paintings included cinnabar, lapis lazuli, lead white, Paris green, and carbon black. The proteinaceous glue was used as an adhesive in the pigment samples, with tung oil likely being utilized as a primer for the wooden structures before painting. This study not only provides valuable data support for the conservation and restoration of the architectural features of Cangjie Temple but also provides useful reference for the maintenance and inheritance of similar ancient buildings.

14.
J Mol Biol ; 436(16): 168665, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878854

RESUMEN

Transporters of the solute carrier superfamily (SLCs) are responsible for the transmembrane traffic of the majority of chemical substances in cells and tissues and are therefore of fundamental biological importance. As is often the case with membrane proteins that can be heavily glycosylated, a lack of reliable high-affinity binders hinders their functional analysis. Purifying and reconstituting transmembrane proteins in their lipidic environments remains challenging and standard approaches to generate binders for multi-transmembrane proteins, such as SLCs, channels or G protein-coupled receptors (GPCRs) are lacking. While generating protein binders to 27 SLCs, we produced full length protein or cell lines as input material for binder generation by selected binder generation platforms. As a result, we obtained 525 binders for 22 SLCs. We validated the binders with a cell-based validation workflow using immunofluorescent and immunoprecipitation methods to process all obtained binders. Finally, we demonstrated the potential applications of the binders that passed our validation pipeline in structural, biochemical, and biological applications using the exemplary protein SLC12A6, an ion transporter relevant in human disease. With this work, we were able to generate easily renewable and highly specific binders against SLCs, which will greatly facilitate the study of this neglected protein family. We hope that the process will serve as blueprint for the generation of binders against the entire superfamily of SLC transporters.


Asunto(s)
Unión Proteica , Proteínas Transportadoras de Solutos , Humanos , Proteínas Transportadoras de Solutos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/química , Células HEK293
15.
Materials (Basel) ; 17(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38730806

RESUMEN

To improve the in situ soil stabilization, different chemical additives are used (ion exchange compounds, additives based on H2SO4 or vinyl polymers, and organic additives using lignosulfonates). One interesting alternative is the production of additives from various waste materials. The extensive testing of waste-based blends with soil was performed; the mechanical (unconfined compressive strength (UCS)) and hydraulic (capillary rise, water absorption, and frost resistance (FR)) soil properties were measured. The optimization process led to obtaining additive compositions ensuring high strength and sealing properties: by-pass ash from the ceramics industry, waste H2SO4, pyrolytic waxes/oils from waste mixed plastics, waste tires and HDPE, and emulsion from chewing gum waste. For sandy soil, the following additives were the most promising: emulsion from pyrolytic wax (EPW) from waste PE foil (WPEF) with the addition of waste H2SO4, pyrolytic-oil emulsion from waste tires, EPW from waste mixed plastics with the addition of "by-pass" waste ash and NaOH, EPW from WPEF with the addition of NaOH, and EPW from WPEF reaching up to 93% FR, a 79.6% 7-day UCS increase, and a 27.6% of 28-day UCS increase. For clay: EPW from WPEF with the addition of NaOH, EPW from WPEF with the addition of waste H2SO4, and solely EPW from WPEF reaching up to 7.5% FR, an 80.7% 7-day UCS increase, and a 119.1% 28-day UCS increase.

16.
Materials (Basel) ; 17(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38730973

RESUMEN

This study analyzes the pigments and binders used in the painted wooden structure of DaZhong Gate in the Confucius Temple in Qufu, Shandong Province, China. Five samples were collected from the building and analyzed using techniques such as polarized light microscopy (PLM), energy-dispersive X-ray spectroscopy (EDX), micro-Raman spectroscopy (m-RS), and Fourier-transform infrared spectroscopy (FT-IR). The findings reveal that the red, yellow, green, and blue pigments are identified as lead red, lead chromate yellow, emerald green, and ultramarine, respectively. The white pigment is determined to be a combination of chalk and lead white or anglesite. Considering the production period of the yellow and green pigments, it is inferred that architectural paintings underwent restoration or repainting during the late Qing Dynasty. The analysis of the binder in the pigment using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) reveals that the binder employed is a protein-based glue. Additionally, the detected presence of Heat-bodied tung oil suggests a potential connection to traditional Chinese painting techniques on wooden surfaces. This discovery not only contributes to the historical research of the Confucius Temple but also provides crucial data for the conservation and restoration efforts of this culturally significant heritage site.

17.
Heliyon ; 10(10): e30825, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38778993

RESUMEN

One of the major obstacles to Nigeria's techno-economic development has been a lack of good road infrastructure. Despite a large deposit of natural bitumen in the form of semi-liquid and bitumen sand, the reliance on imported bitumen/asphalt for road construction and maintenance in Nigeria has reduced road coverage and quality. To use local bitumen as a binder in pavement construction, an efficient upgrading process is required using polymers, nanomaterials, and other chemical additives. However, the selection of an appropriate modifier depends on many factors including the origin, elemental and chemical composition of bitumen. This review presents vital properties of Nigerian bitumen extracted from oil wells and tar sands with the view to identifying potential additives as solutions for its upgrading. Based on predefined selection criteria, we conducted a systematic review of the literature. We gathered information on the current state of knowledge about the major issues encountered during the polymeric modification of bitumen. In addition, data on existing practices used by various road researchers to address such issues was gathered. Effort was made to review waste packaging polymers and plastics for possible utilization to ensure sustainable pavement infrastructure in Nigeria. The results of this review showed relatively little information on Nigerian bitumen upgrading. Many authors have investigated different polymer additives on asphaltic bitumen sourced from different countries and the results has pointed to the capability of polymeric modification to improve some of the properties of bitumen. A knowledge gap however, exists in the optimization of polymer dosage, and characterization of bitumen at the SARA level to aid the understanding of the effects of polymeric modification and mechanisms involved during the pavement degradation. Additionally, it has been challenging to generalize the effects of different polymers due to the variation of bitumen properties from different sources. This review identifies the potential for upgrading Nigerian bitumen using polymer additives, the potential of waste plastics, crumb rubbers, and packaging waste materials as alternative and sustainable additives also highlighted.

18.
Bioorg Chem ; 148: 107414, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733748

RESUMEN

Spectroscopic, biochemical, and computational modelling studies have been used to assess the binding capability of a set of minor groove binding (MGB) ligands against the self-complementary DNA sequences 5'-d(CGCACTAGTGCG)-3' and 5'-d(CGCAGTACTGCG)-3'. The ligands were carefully designed to target the DNA response element, 5'-WGWWCW-3', the binding site for several nuclear receptors. Basic 1D 1H NMR spectra of the DNA samples prepared with three MGB ligands show subtle variations suggestive of how each ligand associates with the double helical structure of both DNA sequences. The variations among the investigated ligands were reflected in the line shape and intensity of 1D 1H and 31P-{1H} NMR spectra. Rapid visual inspection of these 1D NMR spectra proves to be beneficial in providing valuable insights on MGB binding molecules. The NMR results were consistent with the findings from both UV DNA denaturation and molecular modelling studies. Both the NMR spectroscopic and computational analyses indicate that the investigated ligands bind to the minor grooves as antiparallel side-by-side dimers in a head-to-tail fashion. Moreover, comparisons with results from biochemical studies offered valuable insights into the mechanism of action, and antitumor activity of MGBs in relation to their structures, essential pre-requisites for future optimization of MGBs as therapeutic agents.


Asunto(s)
ADN , ADN/química , ADN/metabolismo , Ligandos , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Estructura Molecular , Conformación de Ácido Nucleico , Sitios de Unión , Relación Estructura-Actividad , Modelos Moleculares , Relación Dosis-Respuesta a Droga , Espectroscopía de Resonancia Magnética , Línea Celular Tumoral
19.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791537

RESUMEN

Many years of foundry practice and much more accurate analytical methods have shown that sands with organic binders, in addition to their many technological advantages, pose risks associated with the emission of many compounds, including harmful ones (e.g., formaldehyde, phenol, benzene, polycyclic aromatic hydrocarbons, and sulfur), arising during the pouring of liquid casting alloys into molds, their cooling, and knock-out. The aim of this research is to demonstrate the potential benefits of adopting inorganic binders in European iron foundries. This will improve the environmental and working conditions by introducing cleaner and more ecological production methods, while also ranking the tested binders studied in terms of their harmful content. The article pays special attention to the analysis of seven innovative inorganic binders and one organic binder, acting as a reference for emissions of gases from the BTEX (benzene, toluene, ethylbenzene, and xylenes) and PAHs (polycyclic aromatic hydrocarbons) groups and other compounds such as phenol, formaldehyde, and isocyanates (MDI and TDI) generated during the mold pouring process with liquid metals. The knowledge gained will, for the first time, enrich the database needed to update the Reference Document on The Best Available Techniques for the Smitheries and Foundries Industry (SF BREF).


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/química , Compuestos Inorgánicos/química , Metalurgia , Formaldehído/química
20.
Materials (Basel) ; 17(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612155

RESUMEN

This review scrutinizes current research on new methods for enhancing bituminous binder performance through radiation and radical grafting of polymer modifiers of bitumen. It investigates innovative methods, including using waste polymers as modifiers and applying radiation for polymer grafting, to overcome challenges like high costs, low aging resistance, and storage stability issues, of which separation of phases polymer/bitumen is the most significant obstacle. These advanced modification techniques promise sustainability through the decrease of the carbon footprint of transportation systems by improving the properties and durability of binders. Additionally, this review discusses the parameters and mechanistic aspects from a scientific perspective, shedding light on the underlying processes that contribute to the improved performance of modified bituminous binders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA