Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.144
Filtrar
Más filtros

Intervalo de año de publicación
1.
Ann Anat ; 256: 152313, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39097117

RESUMEN

BACKGROUND: To prevent the absorption and collapse of the labial bone plate of the anterior teeth, immediate implantation and socket shield technique have been increasingly applied to anterior dental aesthetic implant restoration. OBJECTIVE: To provide a biomechanical basis for implant restoration of maxillary anterior teeth, finite element analysis was used to investigate the stress peak and distribution in different anatomical sites of natural teeth, conventional immediate implantation and socket shield technique. METHODS: Three maxillary finite element models were established, including a maxillary incisor as a natural tooth, a conventional immediate implantation and a socket shield technique. A mechanical load of 100 N was applied to simulate and analyze the biomechanical behavior of the root, periodontal ligament (PDL), implant and surrounding bone interface. RESULTS: The stress distribution of the natural tooth was relatively uniform under load. The maximum von Mises stress of the root, periodontal ligament, cortical bone and cancellous bone were 20.14 MPa, 2.473 MPa, 19.48 MPa and 5.068 MPa, respectively. When the conventional immediate implantation was loaded, the stress was mainly concentrated around the neck of implant. Maximum stress on the surface of the implant was 102 MPa, the cortical bone was 16.13 MPa, and the cancellous bone was 18.29 MPa. When the implantation with socket shield technique was loaded, the stress distribution of the implant was similar to that of immediate implantation. Maximum stress on the surface of the implant was 100.5 MPa, the cortical bone was 23.11 MPa, the cancellous bone was 21.66 MPa, the remaining tooth fragment was 29.42 MPa and the periodontal ligament of the tooth fragment was 1.131 MPa. CONCLUSIONS: 1. Under static loading, both socket shield technology and conventional immediate implantation can support the esthetic restoration of anterior teeth biomechanically. 2.Under short-term follow-up, both immediate implant and socket shield technology achieved satisfactory clinical results, including bone healing and patient satisfaction. 3.The stress distribution is mainly located on the buccal bone surface of the implant and is associated with resorption of the buccal bone plate after implant replacement in both socket shield technology and conventional immediate implantation. 4.The presence of retained root fragment had an impact on the bone graft gap. In immediate implantation, the peak stress was located in the cortical bone near the implant position, while in socket shield technology, the peak stress was at the neck of the cortical bone corresponding to the retained root fragment.

2.
J Am Podiatr Med Assoc ; : 1-35, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39146211

RESUMEN

BACKGROUND: In patients with rheumatoid arthritis (RA), the pathological progression of lower limb biomechanics is established. Although specific aspects of RA gait patterns have been studied and described, we are aware of no studies of gait pattern compensations over the entire disease course. This study aimed to describe a model that could predict the evolution of lower limb pathomechanics in patients with RA. METHODS: A literature review was conducted of electronic databases (MEDLINE, PEDro, Trip Database, DOAJ, BioMed Central, PLOS clinical trial, ScienceDirect, and CRD York University, AHRQ, NICE, Cochrane Library) to October 3, 2023. RESULTS: A theory was developed that all people with RA induce or augment gait evolution syndromes following the same biomechanical course. Specifically, we postulate the "rheumatoid equinus syndrome," the "rheumatoid abnormal pronation syndrome" and the "rheumatoid shuffle syndrome," which have never been described before. CONCLUSIONS: A new model of the evolution of gait compensation in RA is proposed. An important challenge of RA is that it increases the risk of ulcerative lesions, falls, pain, fractures, and healthcare costs. The proposed model can be used to reduce morbidity in this patient group by helping to explain and reduce the pain, deformity, and ankylosis of foot RA.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39147267

RESUMEN

BACKGROUND: Surgical treatment of Rockwood grade V AC joint injuries remains varied. We hypothesized that the addition of a second suspensory device between the clavicle and coracoid would yield superior biomechanical results over a single device. We also hypothesized that the addition of an internal brace across the AC joint to a suspensory device would yield superior results over the suspensory device in isolation. METHODS: A total of 24 cadaveric shoulders were dissected and randomized to four groups with four different constructs implanted: Group A: Single AC TightRope (Arthrex Inc., Naples, FL, USA) Group B: Double AC TightRope Group C: Single Knotless AC TightRope (Arthrex Inc., Naples, FL, USA) Group D: Single Knotless AC TightRope with AC InternalBrace Ligament Augmentation (Arthrex Inc., Naples, FL, USA) These were then loaded in the Robotic arm (SIMVITRO) where 250 cycles of 50N of force in the superior plane was applied. Dynamic creep, displacement, translation and stiffness were assessed. RESULTS: Testing was successfully completed for all specimens. There were no failures due to fracture or translation of the clavicle greater than 5mm from the starting position. Reduction was maintained with a mean superior displacement of 1.7 mm (± 1.4 mm). The mean peak to peak displacement, superior and posterior translation, dynamic creep and stiffness did not differ significantly between construct groups. CONCLUSION: This study did not demonstrate any significant biomechanical differences between groups in terms of displacement, translation, creep or stiffness.

4.
J Biomech ; 174: 112268, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39141961

RESUMEN

Premature birth poses a challenge to public health, with one in ten babies being born prematurely worldwide. The pathological distension of the uterus can create tension in the uterine wall, triggering contractions that may lead to birth, including premature birth. While there has been an increase in the use of computational models to study pregnancy in recent years, ethical challenges have limited research on the mechanical properties of the uterus during gestation. This study proposes a biomechanical model based on a stretch-driven growth mechanism to describe uterine evolution during the second half of the gestational period. The constitutive model employed is anisotropic, reflecting the presence of fibers in uterine tissue, and it is also considered incompressible. The geometric model representing the uterine body was derived from truncated ellipsoids, subject to intrauterine pressure as loading. Simulation results indicate that the proposed model is effective in reproducing growth patterns documented in the literature, such as simultaneous increases in intrauterine volume and uterine tissue volume, accompanied by a reduction in uterine wall thickness within limits reported in experimental data.

5.
Int J Numer Method Biomed Eng ; : e3862, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39142807

RESUMEN

Surgery of jawbones has a high potential risk of causing complications associated with temporomandibular joint disorder (TMD). The objective of this study was to investigate the effects of two drive modeling methods on the biomechanical behavior of the temporomandibular joint (TMJ) including articular disc during mandibular movements. A finite element (FE) model from a healthy human computed tomography was used to evaluate TMJ dynamic using two methods, namely, a conventional spatial-oriented method (displacement-driven) and a compliant muscle-initiated method (masticatory muscle-driven). The same virtual FE model was 3D printed and a custom designed experimental platform was established to validate the accuracy of experimental and theoretical results of the TMJ biomechanics during mandibular movements. The results show that stress distributed to TMJ and articular disc from mandibular movements provided better representation from the muscle-driving approach than those of the displacement-driven modeling. The simulation and experimental data exhibited significant strong correlations during opening, protrusion, and laterotrusion (with canonical correlation coefficients of 0.994, 0.993, and 0.932, respectively). The use of muscle-driven modeling holds promise for more accurate forecasting of stress analysis of TMJ and articular disc during mandibular movements. The compliant approach to analyze TMJ dynamics would potentially contribute to clinic diagnosis and prediction of TMD resulting from occlusal disease and jawbone surgery such as orthognathic surgery or tumor resection.

6.
J Exp Biol ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155677

RESUMEN

A select group of hemipterans within the suborder Auchenorrhyncha are the only animals that feed exclusively on xylem sap - a nutritionally poor liquid that exists under negative pressure within a plant's xylem vessels. To consume it, xylem-feeding bugs have evolved enlarged cibarial pumps capable of generating enormous negative pressures. A previous study examining the allometry of this feeding model suggested that small xylem feeders pay relatively higher energetic costs while feeding, favouring the evolution of larger-bodied species. However, this interspecific analysis only considered adult xylem-feeding insects and neglected the considerable intraspecific change in size that occurs across the insect's development. Here, we examine the changes in cibarial pump morphology and function that occur during the development of Philaenus spumarius, the common meadow spittlebug. We show that the cibarial pump scales largely as expected from isometry and that the maximum negative pressure is mass-independent, indicating that size has no effect on the xylem-feeding capacity of juvenile spittlebugs. We conclude that a 1st instar nymph with a body mass 2% of the adult can still feed at the >1 MPa tension present in a plant's xylem vessels without a substantial energetic disadvantage.

7.
Philos Trans R Soc Lond B Biol Sci ; 379(1911): 20230485, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39155720

RESUMEN

Each individual's movements are sculpted by constant interactions between sensorimotor and sociocultural factors. A theoretical framework grounded in motor control mechanisms articulating how sociocultural and biological signals converge to shape movement is currently missing. Here, we propose a framework for the emerging field of ethnokinesiology aiming to provide a conceptual space and vocabulary to help bring together researchers at this intersection. We offer a first-level schema for generating and testing hypotheses about cultural differences in movement to bridge gaps between the rich observations of cross-cultural movement variations and neurophysiological and biomechanical accounts of movement. We explicitly dissociate two interacting feedback loops that determine culturally relevant movement: one governing sensorimotor tasks regulated by neural signals internal to the body, the other governing ecological tasks generated through actions in the environment producing ecological consequences. A key idea is the emergence of individual-specific and culturally influenced motor concepts in the nervous system, low-dimensional functional mappings between sensorimotor and ecological task spaces. Motor accents arise from perceived differences in motor concept topologies across cultural contexts. We apply the framework to three examples: speech, gait and grasp. Finally, we discuss how ethnokinesiological studies may inform personalized motor skill training and rehabilitation, and challenges moving forward.This article is part of the theme issue 'Minds in movement: embodied cognition in the age of artificial intelligence'.


Asunto(s)
Movimiento , Humanos , Fenómenos Biomecánicos , Marcha , Habla/fisiología , Fuerza de la Mano/fisiología
8.
Anat Rec (Hoboken) ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155777

RESUMEN

Many fish use a set of pharyngeal jaws in their throat to aid in prey capture and processing, particularly of large or complex prey. In this study-combining dissection, CT scanning, histology, and performance testing-we demonstrate a novel use of pharyngeal teeth in the ocean sunfish (Mola mola), a species for which pharyngeal jaw anatomy had not been described. We show that sunfish possesses only dorsal pharyngeal jaws where, in contrast to their beaklike oral teeth, teeth are recurved spikes, arranged in three loosely connected rows. Fang-like pharyngeal teeth were tightly socketed in the skeletal tissue, with shorter, incompletely-formed teeth erupting between, suggesting tooth replacement. Trichrome staining revealed teeth anchored into their sockets via a combination of collagen bundles originating from the jaw connective tissue and mineralized trabeculae extending from the teeth bases. In resting position, teeth are nearly covered by soft tissue; however, manipulation of a straplike muscle, running transversely on the dorsal jaw face, everted teeth like a cat's claws. Adult sunfish suction feed almost exclusively on gelatinous prey (e.g., jellyfish) and have been observed to jet water during feeding and other activities; flume experiments simulating jetting behavior demonstrated adult teeth caught simulated gelatinous prey with 70%-100% success, with the teeth immobile in their sockets, even at 50x the jetting force, demonstrating high safety factor. We propose that sunfish pharyngeal teeth function as an efficient retention cage for mechanically challenging prey, a curious evolutionary convergence with the throat spikes of divergent taxa that employ spitting and jetting.

9.
J Biomech ; 174: 112280, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39153296

RESUMEN

In older adults, gait analysis may detect changes that signal early disease states, yet challenges in biomechanical screening limit widespread use in clinical or community settings. Recently, a markerless method from multi-camera video data has become accessible, making screenings less challenging. This study evaluated the test-retest reliability and measurement error of markerless gait kinematics and kinetics in healthy older adults. Twenty-nine healthy older adults performed gait analysis on two occasions, at preferred walking speed, using their everyday clothes. Lower limb angles and moments were averaged from 8 gait cycles. Integrated pointwise indices [Intraclass Correlation Coefficient (ICCA,K) and Standard Error of Measurement (SEM)] were calculated for curve data, as well as ICCA,K, and SEM [95 % confidence intervals] for selected peaks. Generally, kinematic ICCs were good (>0.75) and reasonably stable throughout the gait cycle, except for the hip kinematics during the swing phase in the sagittal plane and pelvis tilt and rotation. The integrated and peaks SEM were <2.4°. The reliability of kinetics was similar (ICC>0.75), except for the transverse hip moment and abduction peak, fluctuating more during the swing than through the stance phase. SEM were < 0.07Nm/Kg. In conclusion, these results showed good overall test-retest reliability for markerless gait kinematics and kinetics for the hip, knee, and ankle joints, moderate for the pelvis angles, and error levels of ≤5°, and SEM%≤5% for the sagittal plane. This supports this method's use in assessing gait in healthy older adults, including kinetics, for which reliability data from markerless systems is difficult to find reported.

10.
Curr Biol ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39153483

RESUMEN

Pollinator behavior is vital to plant-pollinator interactions, affecting the acquisition of floral rewards, patterns of pollen transfer, and plant reproductive success. During buzz pollination, bees produce vibrations with their indirect flight muscles to extract pollen from tube-like flowers. Vibrations can be transmitted to the flower via the mandibles, abdomen, legs, or thorax directly. Vibration amplitude at the flower determines the rate of pollen release and should vary with the coupling of bee and flower. This coupling often occurs through anther biting, but no studies have quantified how biting affects flower vibration. Here, we used high-speed filmography to investigate how flower vibration amplitude changes during biting in Bombus terrestris visiting two species of buzz-pollinated flowering plants: Solanum dulcamara and Solanum rostratum (Solanaceae). We found that floral buzzing drives head vibrations up to 3 times greater than those of the thorax, which doubles the vibration amplitude of the anther during biting compared with indirect vibration transmission when not biting. However, the efficiency of this vibration transmission depends on the angle at which the bee bites the anther. Variation in transmission mechanisms, combined with the diversity of vibrations across bee species, yields a rich assortment of potential strategies that bees could employ to access rewards from buzz-pollinated flowers.

11.
Front Physiol ; 15: 1443675, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148742

RESUMEN

Understanding tendon mechanical properties, such as stiffness and hysteresis, can provide insights into injury mechanisms. This research addresses the inconsistency of previously reported in-vivo and in-vitro tendon hysteresis properties. Although limited, our preliminary findings suggest that in-vivo hystereses (Mean ± SD; 55% ± 9%) are greater than in-vitro hystereses (14% ± 1%) when directly comparing the same tendon for the same loading conditions in a sheep model in-vivo versus within 24 h post-mortem. Overall, it therefore appears that the tendon mechanical properties are affected by the testing environment, possibly related to differences in muscle-tendon interactions and fluid flow experienced in-vivo versus in-vitro. This communication advocates for more detailed investigations into the mechanisms resulting in the reported differences in tendon behaviour. Overall, such knowledge contributes to our understanding of tendon function towards improving modelling and clinical interventions, bridging the gap between in-vivo and in-vitro observations and enhancing the translational relevance of biomechanical studies.

12.
Front Bioeng Biotechnol ; 12: 1386955, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148944

RESUMEN

The rheological properties of porcine heart, kidney, liver and brain were measured using dynamic oscillatory shear tests over a range of frequencies and shear strains. Frequency sweep tests were performed from 0.1 Hz to a maximum of 9.5 Hz at a shear strain of 0.1%, and strain sweep tests were carried out from 0.01% to 10% at 1 Hz. The effect of pre-compression of samples up to 10% axial strain was considered. The experimental measurements were fit to a Semi-Fractional Kelvin Voight (S-FKV) model. The model was then used to predict the stress relaxation in response to a step strain of 0.1%. The prediction was compared to experimental relaxation data for the porcine organ samples, and the results agreed to within 30%. In conclusion, this study measured the rheological properties of porcine organs and used a fractional viscoelastic model to describe the response in frequency and time domain.

13.
BMC Musculoskelet Disord ; 25(1): 626, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107768

RESUMEN

BACKGROUND: This study investigates the potential of novel meniscal parameters as predictive factors for incident radiographic knee osteoarthritis (ROA) over a span of four years, as part of the Osteoarthritis Initiative (OAI) study. OBJECTIVES: Quantitative measurements of meniscal parameters alteration could serve as predictors of OA's occurrence and progression. METHODS AND MATERIALS: A nested matched case-control study design was used to select participants from OAI study. Case knees (n = 178) were defined as those with incident ROA (Kellgren Lawrence Grade (KLG) 0 or 1 at baseline (BL), evolving into KLG 2 or above by year 4). Control knees were matched one-to-one by sex, age and radiographic status with case knees. The mean distance from medial-to-lateral meniscal lesions [Mean(MLD)], mean value of tibial plateau width [Mean(TPW)] and the mean of the relative percentage of the medial-to-lateral meniscal lesions distance [Mean(RMLD)] were evaluated through coronal T2-weighted turbo spin echo (TSE) MRI at P-0 (visit when incident ROA was found on radiograph), P-1(one year prior to P-0) and baseline, respectively. Using the imaging data of one patient, the mechanism was investigated by finite element analysis. RESULTS: Participants were on average 60.22 years old, predominantly female (66.7%) and overweight (mean BMI: 28.15). Mean(MLD) and Mean(RMLD) were significantly greater for incident knees compared to no incident knees at baseline, P-1 and P-0. [Mean(MLD), Mean(RMLD); (42.56-49.73) mean ± (7.70-9.52) mm SD vs. (38.14-40.78) mean ± (5.51-7.05)mm SD; (58.61-68.95) mean ± (8.52-11.40) mm SD vs. (52.52-56.35) mean ± (6.53-7.85)mm SD, respectively]. Baseline Mean(MLD) and Mean(RMLD), [Adjusted OR, 95%CI: 1.11(1.07 to 1.16) and 1.13(1.09 to 1.17), respectively], were associated with incident ROA during 4 years, However, Mean(TPW) [Adjusted OR, 95%CI: 0.98(0.94 to 1.02)] was not associated with incident ROA during 4 years. While Mean(TPW) at P-1 and P-0 was not associated with the risk of incident ROA, Mean(MLD) and Mean(RMLD) at P-1 and P-0 were significantly positively associated with the risk of incident ROA. CONCLUSIONS: The meniscal parameters alteration could be an important imaging biomarker to predict the occurrence of ROA.


Asunto(s)
Imagen por Resonancia Magnética , Meniscos Tibiales , Osteoartritis de la Rodilla , Radiografía , Humanos , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/epidemiología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Estudios de Casos y Controles , Meniscos Tibiales/diagnóstico por imagen , Meniscos Tibiales/patología , Valor Predictivo de las Pruebas , Incidencia , Progresión de la Enfermedad , Lesiones de Menisco Tibial/diagnóstico por imagen , Lesiones de Menisco Tibial/epidemiología
14.
3D Print Med ; 10(1): 29, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110290

RESUMEN

INTRODUCTION: The use of three-dimensional (3D) printed anatomic models is steadily increasing in research and as a tool for clinical decision-making. The mechanical properties of polymers and metamaterials were investigated to evaluate their application in mimicking the biomechanics of the aortic vessel wall. METHODOLOGY: Uniaxial tensile tests were performed to determine the elastic modulus, mechanical stress, and strain of 3D printed samples. We used a combination of materials, designed to mimic biological tissues' properties, the rigid VeroTM family, and the flexible Agilus30™. Metamaterials were designed by tessellating unit cells that were used as lattice-reinforcement to tune their mechanical properties. The lattice-reinforcements were based on two groups of patterns, mainly responding to the movement between links/threads (chain and knitted) or to deformation (origami and diamond crystal). The mechanical properties of the printed materials were compared with the characteristics of healthy and aneurysmal aortas. RESULTS: Uniaxial tensile tests showed that the use of a lattice-reinforcement increased rigidity and may increase the maximum stress generated. The pattern and material of the lattice-reinforcement may increase or reduce the strain at maximum stress, which is also affected by the base material used. Printed samples showed max stress ranging from 0.39 ± 0.01 MPa to 0.88 ± 0.02 MPa, and strain at max stress ranging from 70.44 ± 0.86% to 158.21 ± 8.99%. An example of an application was created by inserting a metamaterial designed as a lattice-reinforcement on a model of the aorta to simulate an abdominal aortic aneurysm. CONCLUSION: The maximum stresses obtained with the printed models were similar to those of aortic tissue reported in the literature, despite the fact that the models did not perfectly reproduce the biological tissue behavior.

15.
Artículo en Inglés | MEDLINE | ID: mdl-39113678

RESUMEN

Objective: Muscle fatigue contributes to anterior cruciate ligament (ACL) injuries, with increased knee and hip abduction observed during fatigue. However, there have been no reports revealing the differences between fatigue tasks or the duration of these changes. In this study, we conducted single-leg drop landings before and after hip and knee fatigue tasks to elucidate the changes in lower limb biomechanics over time. Methods: Twenty-two male participants performed single-leg drop landings before, immediately after, and 5, 10, and 15 min after fatigue tasks involving isokinetic hip abduction/adduction (hip fatigue task [HFT]) and knee extension/flexion (knee fatigue task [KFT]). Hip and knee kinematic and kinetic data were collected using a three-dimensional motion analysis device and two force plates. A two-way ANOVA was performed with both the fatigue task (HFT and KFT) and time point (Time 1 to Time 4) as factors, and the main effects and interactions were calculated. Results: The knee adduction angle after the HFT was significantly greater than that after KFT immediately following the fatigue task. The knee flexion moment was significantly lower in the KFT, whereas the knee adduction and internal rotation moments were significantly higher in the HFT immediately after the fatigue task. Conclusion: This study revealed distinct kinematic and kinetic changes specific to each fatigue task, particularly in the frontal plane for hip joint tasks and the sagittal plane for knee joint tasks. These findings could assist in the development of ACL injury prevention programs tailored to the functional improvement and exercise capacity of each joint.

16.
BMJ Open Sport Exerc Med ; 10(3): e002013, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104376

RESUMEN

Objectives: To examine the propensity of tackle height and the number of tacklers that result in head acceleration events (HAEs) in elite-level male and female rugby tackles. Methods: Instrumented mouthguard data were collected from women (n=67) and men (n=72) elite-level rugby players from five elite and three international teams. Peak linear acceleration and peak angular acceleration were extracted from HAEs. Propensities for HAEs at a range of thresholds were calculated as the proportion of tackles/carries that resulted in an HAE exceeding a given magnitude for coded tackle height (low, medium, high) and number of tacklers. Propensity ratios with 95% CIs were calculated for tackle heights and number of tacklers. Results: High tackles had a 32.7 (95% CI=6.89 to 155.02) and 41.2 (95% CI=9.22 to 184.58) propensity ratio to cause ball carrier HAEs>30 g compared with medium tackles for men and women, respectively. Low tackles had a 2.6 (95% CI=1.91 to 3.42) and 5.3 (95% CI=3.28 to 8.53) propensity ratio to cause tackler HAEs>30 g compared with medium tackles for men and women, respectively. In men, multiple tacklers had a higher propensity ratio (6.1; 95% CI=3.71 to 9.93) than singular tacklers to cause ball carrier HAEs>30 g but a lower propensity ratio (0.4; 95% CI=0.29 to 0.56) to cause tackler HAEs>30 g. No significant differences were observed in female tacklers or carriers for singular or multiple tacklers. Conclusion: To limit HAE exposure, rule changes and coaching interventions that promote tacklers aiming for the torso (medium tackle) could be explored, along with changes to multiple tackler events in the male game.

17.
Front Neurosci ; 18: 1425183, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104608

RESUMEN

Background: This study aimed to identify and quantify the kinematic and kinetic gait deviations in post-stroke hemiplegic patients with matched healthy controls using Statistical Parametric Mapping (SPM). Methods: Fifteen chronic stroke patients [4 females, 11 males; age 53.7 (standard deviation 12.2) years; body mass 65.4 (10.4) kg; standing height 168.5 (9.6) cm] and 15 matched healthy controls [4 females, 11 males; age 52.9 (11.7) years; body weight 66.5 (10.7) years; standing height 168.3 (8.8) cm] were recruited. In a 10-m walking task, joint angles, ground reaction forces (GRF), and joint moments were collected, analyzed, and compared using SPM for an entire gait cycle. Results: Generally, when comparing the stroke patients' affected (hemiplegic) and less-affected (contralateral) limbs with the control group, SPM identified significant differences in the late stance phase and early swing phase in the joint angles and moments in bilateral limbs (all p < 0.005). In addition, the vertical and anteroposterior components of GRF were significantly different in various periods of the stance phase (all p < 0.005), while the mediolateral component showed no differences between the two groups. Conclusion: SPM was able to detect abnormal gait patterns in both the affected and less-affected limbs of stroke patients with significant differences when compared with matched controls. The findings draw attention to significant quantifiable gait deviations in the less-affected post-stroke limb with the potential impact to inform gait retraining strategies for clinicians and physiotherapists.

18.
JOR Spine ; 7(3): e1356, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39104831

RESUMEN

Background: Age-related changes in bone health increase the risk for complications in elderly patients undergoing orthopedic surgery. Osteoporosis is a key therapeutic target that needs to be addressed to ensure successful instrumentation surgery. The effectiveness of pharmacological interventions in orthopedic surgery, particularly the new drug romosozumab, is still unknown. We aim to evaluate the effect of 3-month romosozumab treatment on biomechanical parameters related to spinal instrumentation surgery, using the Quantitative Computed Tomography (QCT)-based Finite Element Method (FEM). Methods: This open-labeled, prospective study included 81 patients aged 60 to 90 years, who met the osteoporosis criteria and were scheduled for either romosozumab or eldecalcitol treatment. Patients were assessed using blood samples, dual-energy absorptiometry (DXA), and QCT. Biomechanical parameters were evaluated using FEM at baseline and 3 months post-treatment. The primary endpoints were biomechanical parameters at 3 months, while secondary endpoints included changes in regional volumetric bone mineral density around the pedicle (P-vBMD) and vertebral body (V-vBMD). Results: Romosozumab treatment led to significant gains in P-vBMD, and V-vBMD compared to eldecalcitol at 3 months. Notably, the romosozumab group showed greater improvements in all biomechanical parameters estimated by FEM at 3 months compared to the eldecalcitol group. Conclusion: Romosozumab significantly increased the regional vBMD as well as biomechanical parameters, potentially offering clinical benefits in reducing post-operative complications in patients with osteoporosis undergoing orthopedic instrumentation surgery. This study highlights the novel advantages of romosozumab treatment and advocates further research on its effectiveness in perioperative management.

19.
Phys Ther Sport ; 69: 76-83, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39106604

RESUMEN

OBJECTIVE: To explore the relationship between knee crepitus, quadriceps muscle thickness and isometric strength in individuals with patellofemoral pain (PFP). DESIGN: Cross-sectional. PARTICIPANTS: Individuals with PFP. MAIN OUTCOME MEASURES: Participants with PFP underwent assessments for presence, frequency and severity of knee crepitus. Real-time ultrasound images of the quadriceps muscles (rectus femoris, vastus medialis and lateralis) at rest and during contraction were obtained, muscle thickness was measured in both conditions. Maximal voluntary isometric contraction tests were performed to measure knee extensor strength. The relationship between knee crepitus and quadriceps muscle thickness and knee extensor strength was explored using logistic and linear regressions. RESULTS: Sixty individuals with PFP were included (age: 24; 60% women; 38% with crepitus). Knee crepitus severity was related to rectus femoris and vastus medialis thickness during rest (R2 = 0.19 and 0.09, respectively) and contraction (R2 = 0.16 and 0.07, respectively) and with vastus lateralis during contraction (R2 = 0.08). Isometric knee extensor strength was not related to knee crepitus presence, frequency, or severity. CONCLUSION: Higher severity of knee crepitus is related to lower quadriceps muscle thickness in individuals with PFP. There is no relationship between the presence and frequency of knee crepitus with quadriceps muscle thickness or knee extensor strength.

20.
J Orthop Res ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107653

RESUMEN

Lesser peak vertical ground reaction force (vGRF) has been widely reported among individuals with anterior cruciate ligament reconstruction (ACLR). Peak vGRF remains less than uninjured controls and relatively stable during the first year following ACLR. However, it is unknown whether there are subgroups of individuals exhibiting consistently greater peak vGRF in the first 6-months following ACLR and if individuals with consistently greater peak vGRF exhibit kinematic and kinetic gait differences compared to individuals with low vGRF. The purpose of this study was to determine if distinct clusters exist based upon magnitude of peak vGRF 2- and 6-months post-ACLR. Subsequently, we explored between cluster differences in vGRF, knee flexion angle, and sagittal and frontal plane knee kinetics throughout stance between clusters. Forty-three individuals (58.1%female, 21.4 ± 4.4 years-old, 95.3% patellar-tendon autograft) completed five gait trials at their habitual walking speed 2- and 6-months post-ACLR. A single K-means cluster analysis was used to identify clusters of individuals based on peak vGRF at 2- and 6-months post-ACLR. Functional waveform analyses were used to compare gait outcomes between clusters with and without controlling for gait speed and age. We identified two clusters that included a subgroup with high vGRF (n = 16) and low vGRF (n = 27). The cluster with high vGRF demonstrated greater vGRFs, knee flexion angles, and knee extension moments during early stance as compared to the low vGRF cluster 2- and 6-months post-ACLR. Individuals with peak vGRF ≥1.02 times body-weight 2-months post-ACLR had 35.4 times greater odds of being assigned to the high vGRF cluster.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA