Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Image Anal ; 94: 103137, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38507893

RESUMEN

Analyzing functional brain networks (FBN) with deep learning has demonstrated great potential for brain disorder diagnosis. The conventional construction of FBN is typically conducted at a single scale with a predefined brain region atlas. However, numerous studies have identified that the structure and function of the brain are hierarchically organized in nature. This urges the need of representing FBN in a hierarchical manner for more effective analysis of the complementary diagnostic insights at different scales. To this end, this paper proposes to build hierarchical FBNs adaptively within the Transformer framework. Specifically, a sparse attention-based node-merging module is designed to work alongside the conventional network feature extraction modules in each layer. The proposed module generates coarser nodes for further FBN construction and analysis by combining fine-grained nodes. By stacking multiple such layers, a hierarchical representation of FBN can be adaptively learned in an end-to-end manner. The hierarchical structure can not only integrate the complementary information from multiscale FBN for joint analysis, but also reduce the model complexity due to decreasing node sizes. Moreover, this paper argues that the nodes defined by the existing atlases are not necessarily the optimal starting level to build FBN hierarchy and exploring finer nodes may further enrich the FBN representation. In this regard, each predefined node in an atlas is split into multiple sub-nodes, overcoming the scale limitation of the existing atlases. Extensive experiments conducted on various data sets consistently demonstrate the superior performance of the proposed method over the competing methods.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Diagnóstico Precoz
2.
Front Hum Neurosci ; 17: 1094592, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778038

RESUMEN

Introduction: The early diagnosis of major depressive disorder (MDD) is very important for patients that suffer from severe and irreversible consequences of depression. It has been indicated that functional connectivity (FC) analysis based on functional magnetic resonance imaging (fMRI) data can provide valuable biomarkers for clinical diagnosis. However, previous studies mainly focus on brain disease classification in small sample sizes, which may lead to dramatic divergences in classification accuracy. Methods: This paper attempts to address this limitation by applying the deep graph convolutional neural network (DGCNN) method on a large multi-site MDD dataset. The resting-state fMRI data are acquired from 830 MDD patients and 771 normal controls (NC) shared by the REST-meta-MDD consortium. Results: The DGCNN model trained with the binary network after thresholding, identified MDD patients from normal controls and achieved an accuracy of 72.1% with 10-fold cross-validation, which is 12.4%, 9.8%, and 7.6% higher than SVM, RF, and GCN, respectively. Moreover, the process of dataset reading and model training is faster. Therefore, it demonstrates the advantages of the DGCNN model with low time complexity and sound classification performance. Discussion: Based on a large, multi-site dataset from MDD patients, the results expressed that DGCNN is not an extremely accurate method for MDD diagnosis. However, there is an improvement over previous methods with our goal of better understanding brain function and ultimately providing a biomarker or diagnostic capability for MDD diagnosis.

3.
Brief Bioinform ; 23(6)2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36259367

RESUMEN

Imaging genetics provides unique insights into the pathological studies of complex brain diseases by integrating the characteristics of multi-level medical data. However, most current imaging genetics research performs incomplete data fusion. Also, there is a lack of effective deep learning methods to analyze neuroimaging and genetic data jointly. Therefore, this paper first constructs the brain region-gene networks to intuitively represent the association pattern of pathogenetic factors. Second, a novel feature information aggregation model is constructed to accurately describe the information aggregation process among brain region nodes and gene nodes. Finally, a deep learning method called feature information aggregation and diffusion generative adversarial network (FIAD-GAN) is proposed to efficiently classify samples and select features. We focus on improving the generator with the proposed convolution and deconvolution operations, with which the interpretability of the deep learning framework has been dramatically improved. The experimental results indicate that FIAD-GAN can not only achieve superior results in various disease classification tasks but also extract brain regions and genes closely related to AD. This work provides a novel method for intelligent clinical decisions. The relevant biomedical discoveries provide a reliable reference and technical basis for the clinical diagnosis, treatment and pathological analysis of disease.


Asunto(s)
Encefalopatías , Neuroimagen , Humanos , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen , Encefalopatías/diagnóstico por imagen , Encefalopatías/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA