Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Rice (N Y) ; 17(1): 45, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39060652

RESUMEN

Leaf morphology is a crucial agronomic characteristic of rice that influences crop yield directly. One primary cause of rice leaf rolling can be attributed to alterations in bulliform cells. Several HD-ZIP IV genes have been identified to be epidemical characterized and function in leaf rolling in rice. Still others need to be studied to fully understand the overall function of HD-ZIP IV family. Among the nine ROC genes encoding HD-ZIP IV family transcription factors in rice, ROC1 exhibits the highest expression in the leaves. Overexpression of ROC1 decreased the size of bulliform cells, and thus resulted in adaxially rolled leaves. To the contrary, knockout of ROC1 (ROC1KO) through Crispr-cas9 system enlarged bulliform cells, and thus led to abaxially rolled leaves. Moreover, ROC1KO plants were sensitive to drought. ROC1 could form homodimers on its own, and heterodimers with ROC5 and ROC8 respectively. Compared to ROC1KO plants, leaves of the ROC1 and ROC8 double knocked out plants (ROC1/8DKO) were more severely rolled abaxially due to enlarged bulliform cells, and ROC1/8DKO plants were more drought sensitive. However, overexpression of ROC8 could not restore the abaxial leaf phenotype of ROC1KO plants. Therefore, we proved that ROC1, a member of the HD-ZIP IV family, regulated leaf rolling and drought stress response through tight association with ROC5 and ROC8.

2.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35955949

RESUMEN

Leaf morphology is one of the important traits related to ideal plant architecture and is an important factor determining rice stress resistance, which directly affects yield. Wax layers form a barrier to protect plants from different environmental stresses. However, the regulatory effect of wax synthesis genes on leaf morphology and salt tolerance is not well-understood. In this study, we identified a rice mutant, leaf tip rumpled 1 (ltr1), in a mutant library of the classic japonica variety Nipponbare. Phenotypic investigation of NPB and ltr1 suggested that ltr1 showed rumpled leaf with uneven distribution of bulliform cells and sclerenchyma cells, and disordered vascular bundles. A decrease in seed-setting rate in ltr1 led to decreased per-plant grain yield. Moreover, ltr1 was sensitive to salt stress, and LTR1 was strongly induced by salt stress. Map-based cloning of LTR1 showed that there was a 2-bp deletion in the eighth exon of LOC_Os02g40784 in ltr1, resulting in a frameshift mutation and early termination of transcription. Subsequently, the candidate gene was confirmed using complementation, overexpression, and knockout analysis of LOC_Os02g40784. Functional analysis of LTR1 showed that it was a wax synthesis gene and constitutively expressed in entire tissues with higher relative expression level in leaves and panicles. Moreover, overexpression of LTR1 enhanced yield in rice and LTR1 positively regulates salt stress by affecting water and ion homeostasis. These results lay a theoretical foundation for exploring the molecular mechanism of leaf morphogenesis and stress response, providing a new potential strategy for stress-tolerance breeding.


Asunto(s)
Oryza , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Fitomejoramiento , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Tolerancia a la Sal/genética
3.
Front Plant Sci ; 12: 697764, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557209

RESUMEN

Corolla closure protects pollen from high-temperature stress during pollen germination and fertilization in the ornamental plant morning glory (Ipomoea purpurea). However, the morphological nature of this process and the molecular events underpinning it remain largely unclear. Here, we examined the cellular and gene expression changes that occur during corolla closure in the I. purpurea. We divided the corolla closure process into eight stages (S0-S7) based on corolla morphology. During flower opening, bulliform cells appear papillate, with pigments in the adaxial epidermis of the corolla. These cells have distinct morphology from the smaller, flat cells in the abaxial epidermis in the corolla limb and intermediate of the corolla. During corolla closure, the bulliform cells of the adaxial epidermis severely collapse compared to cells on the abaxial side. Analysis of transparent tissue and cross sections revealed that acuminate veins in the corolla are composed of spiral vessels that begin to curve during corolla closure. When the acuminate veins were compromised, the corolla failed to close normally. We performed transcriptome analysis to obtain a time-course profile of gene expression during the process from the open corolla stage (S0) to semi-closure (S3). Genes that were upregulated from S0 to S1 were enriched in the polysaccharide degradation pathway, which positively regulates cell wall reorganization. Senescence-related transcription factor genes were expressed beginning at S1, leading to the activation of downstream autophagy-related genes at S2. Genes associated with peroxisomes and ubiquitin-mediated proteolysis were upregulated at S3 to enhance reactive oxygen species scavenging and protein degradation. Therefore, bulliform cells and acuminate veins play essential roles in corolla closure. Our findings provide a global understanding of the gene regulatory processes that occur during corolla closure in I. purpurea.

4.
Plant Direct ; 4(10): e00282, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33163853

RESUMEN

The hydrophobic cuticle of plant shoots serves as an important interaction interface with the environment. It consists of the lipid polymer cutin, embedded with and covered by waxes, and provides protection against stresses including desiccation, UV radiation, and pathogen attack. Bulliform cells form in longitudinal strips on the adaxial leaf surface, and have been implicated in the leaf rolling response observed in drought-stressed grass leaves. In this study, we show that bulliform cells of the adult maize leaf epidermis have a specialized cuticle, and we investigate its function along with that of bulliform cells themselves. Bulliform cells displayed increased shrinkage compared to other epidermal cell types during dehydration of the leaf, providing a potential mechanism to facilitate leaf rolling. Analysis of natural variation was used to relate bulliform strip patterning to leaf rolling rate, providing further evidence of a role for bulliform cells in leaf rolling. Bulliform cell cuticles showed a distinct ultrastructure with increased cuticle thickness compared to other leaf epidermal cells. Comparisons of cuticular conductance between adaxial and abaxial leaf surfaces, and between bulliform-enriched mutants versus wild-type siblings, showed a correlation between elevated water loss rates and presence or increased density of bulliform cells, suggesting that bulliform cuticles are more water-permeable. Biochemical analysis revealed altered cutin composition and increased cutin monomer content in bulliform-enriched tissues. In particular, our findings suggest that an increase in 9,10-epoxy-18-hydroxyoctadecanoic acid content, and a lower proportion of ferulate, are characteristics of bulliform cuticles. We hypothesize that elevated water permeability of the bulliform cell cuticle contributes to the differential shrinkage of these cells during leaf dehydration, thereby facilitating the function of bulliform cells in stress-induced leaf rolling observed in grasses.

5.
J R Soc Interface ; 17(169): 20200358, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32842889

RESUMEN

Within the framework of a biomimetic top-down approach, our study started with the technical question of the development of a hinge-free and compliant actuator inspired by plant movements. One meaningful biological concept generator was the opening and closing movements of the leaf halves of grasses. Functional morphological investigations were carried out on the selected model plant Sesleria nitida. The results formed the basis for further clarifying the functional movement principle with a particular focus on the role of turgor changes in bulliform cells on kinetic amplification. All findings gained from the investigations of the biological model were incorporated into a finite-element analysis, as a prerequisite for the development of a pneumatic cellular actuator. The first prototype consisted of a row of single cells positioned on a plate. The cells were designed in such a way that the entire structure bent when the pneumatic pressure applied to each individual cell was increased. The pneumatic cellular actuator thus has the potential for applications on an architectural scale. It has subsequently been integrated into the midrib of the facade shading system Flectofold in which the bending of its midrib controls the hoisting of its wings.


Asunto(s)
Biomimética , Robótica , Animales , Modelos Biológicos , Movimiento , Alas de Animales
6.
Plant Biotechnol J ; 18(12): 2559-2572, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32559019

RESUMEN

The morphology of bulliform cells located on the upper epidermis of leaves is one of the most important cell structures affecting leaf shape. Although many mechanisms regulating the development of bulliform cells have been reported, the fine regulatory mechanisms governing this process have rarely been described. To identify novel components regulating rice leaf morphology, a mutant showing a constitutively rolling phenotype from the seedling stage to flowering, known as crm1-D, was selected for further analysis. Anatomical analyses in crm1-D were attributable to the size reduction of bulliform cells. The crm1-D was controlled by a single dominant nuclear gene. Map-based cloning revealed that Roc8, an HD zipper class IV family member, was responsible for the crm1-D phenotype. Notably, the 50-bp sequence in the 3'-untranslated region (3'-UTR) of the Roc8 gene represses Roc8 at the translational level. Moreover, the roc8 knockdown lines notably increased the size of bulliform cells. A series of assays revealed that Roc8 negatively regulates the size of bulliform cells. Unexpectedly, Roc8 was also observed to positively mediate lignin biosynthesis without incurring a production penalty. The above results show that Roc8 may have a practical application in cultivating materials with high photosynthetic efficiency and low lignin content.


Asunto(s)
Oryza , Regulación de la Expresión Génica de las Plantas/genética , Lignina , Oryza/genética , Oryza/metabolismo , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Bot Stud ; 61(1): 5, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32124105

RESUMEN

BACKGROUND: Grass phytoliths are the most common phytoliths in sediments; recognizing grass phytolith types is important when using phytoliths as a tool to reconstruct paleoenvironments. Grass bulliform cells may be silicified to large size parallelepipedal or cuneiform shaped phytoliths, which were often regarded as of no taxonomic value. However, studies in eastern Asia had identified several forms of grass bulliform phytoliths, including rice bulliform phytolith, a phytolith type frequently used to track the history of rice domestication. Identification with a higher level of taxonomic resolution is possible, yet a systematic investigation on morphology of Poaceae bulliform phytoliths is lacking. We aimed at providing a morphological description of bulliform phytoliths of Poaceae from Taiwan based on morphometric measurements in anatomical aspect. The results are important references for paleo-ecological studies. RESULT: The morphology of grass bulliform phytoliths is usually consistent within a subfamily; the end profile is relatively rectangular in Panicoideae and Micrairoideae, whereas cuneiform to nearly circular in Oryzoideae, Bambusoideae, Arundinoideae, and Chloridoideae. Bulliform phytoliths were seldom observed in Pooideae. Certain morphotypes are limited to plants growing in specific environments. For example, large, thin, and pointed bulliform phytoliths are associated with wet habitat; Chloridoideae types are mostly from C4 plants occupying open arid places. CONCLUSION: Grass bulliform phytoliths can be identified at least to the subfamily level, and several forms were distinguished within large subfamilies. Previously un-reported silicified cell types, i.e., arm cells and fusoids, and two special trichome phytolith types associated with bulliform phytoliths, were described. Morphometric methods were great tools for delimiting morphotypes; with refined morphological classification the association between forms and habit/habitats was revealed. The knowledge provides new ways to interpret phytolith assemblage data, and it is especially useful when the sediments are enriched in large blocky phytoliths.

8.
Plant Sci ; 285: 248-257, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31203890

RESUMEN

Halophytic Oryza coarctata is a good model system to examine mechanisms of salinity tolerance in rice. O. coarctata leaves show the presence of microhairs in adaxial leaf surface furrows that secrete salt under salinity. However, detailed molecular and physiological studies of O. coarctata microhairs are limited due to their relative inaccessibility. This work presents a detailed characterization of O. coarctata leaf features. O. coarctata has two types of microhairs on the adaxial leaf surface: longer microhairs (three morphotypes) lining epidermal furrow walls and shorter microhairs (reported first time) arising from bulliform cells. Microhair morphotypes include (i) finger-like, tubular structures, (ii) tubular hairs with bilobed and flattened heads and (iii) bi-or trifurcated hairs. The unicellular nature of microhairs was confirmed by propidium iodide (PI) staining. An efficient method for the isolation and enrichment of O. coarctata microhairs is presented (yield averaging ˜2 × 105/g leaf tissue). The robustness of the microhair isolation procedure was confirmed by subsequent viability staining (PI), total RNA isolation and RT-PCR amplification of O. coarctata trichome-specific WUSCHEL-related homeobox 3B (OcWox3B) and transporter gene-specific cDNA sequences. The present microhair isolation work from O. coarctata paves the way for examining genes involved in ion secretion in this halophytic wild rice model.


Asunto(s)
Oryza/anatomía & histología , Hojas de la Planta/anatomía & histología , Plantas Tolerantes a la Sal/anatomía & histología , Microscopía Confocal , Oryza/fisiología , Hojas de la Planta/citología , Hojas de la Planta/fisiología , Hojas de la Planta/ultraestructura , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantas Tolerantes a la Sal/fisiología , Tricomas/anatomía & histología , Tricomas/fisiología , Tricomas/ultraestructura
9.
Front Plant Sci ; 9: 1528, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30405666

RESUMEN

Yield is majorly affected by photosynthetic efficiency. Leaves are essential structure for photosynthesis and their morphology especially size and shape in a plant canopy can affect the rate of transpiration, carbon fixation and photosynthesis. Leaf rolling and size are considered key agronomic traits in plant architecture that can subsidize yield parameters. In last era, a number of genes controlling leaf morphology have been molecularly characterized. Despite of several findings, our understanding toward molecular mechanism of leaf rolling and size are under-developed. Here, we proposed a model to apprehend the physiological basis of different genes organized in a complex fashion and govern the final phenotype of leaf morphology. According to this leaf rolling is mainly controlled by regulation of bulliform cells by SRL1, ROC5, OsRRK1, SLL2, CLD1, OsZHD1/2, and NRL1, structure and processes of sclerenchyma cells by SLL1 and SRL2, leaf polarity by ADL1, RFS and cuticle formation by CFL1, and CLD1. Many of above mentioned and several other genes interact in a complex manner in order to sustain cellular integrity and homeostasis for optimum leaf rolling. While, leaf size is synchronized by multifarious interaction of PLA1, PLA2, OsGASR1, and OsEXPA8 in cell division, NAL1, NAL9, NRL1, NRL2 in regulation of number of veins, OsCOW1, OsPIN1, OsARF19, OsOFP2, D1 and GID in regulation of phytohormones and HDT702 in epigenetic aspects. In this review, we curtailed recent advances engrossing regulation and functions of those genes that directly or indirectly can distress leaf rolling or size by encoding different types of proteins and genic expression. Moreover, this effort could be used further to develop comprehensive learning and directing our molecular breeding of rice.

10.
BMC Genet ; 19(1): 57, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30092756

RESUMEN

BACKGROUND: Rolling of leaves (RL) is a phenomenon commonly found in grasses. Morphology of the leaf is an important agronomic trait in field crops especially in rice; therefore, majority of the rice breeders are interested in RL. There are only few studies with respect to RL of wheat and barley; however, the information regarding the genetic base of RL with respect to the shape of leaf in rye is lacking. To the best of our knowledge, this is the first study on the localization of loci controlling RL on high density consensus genetic map of rye. RESULTS: Genotypic analysis led to the identification of 43 quantitative trait loci (QTLs) for RL, grouped into 28 intervals, which confirms the multigenic base of the trait stated for wheat and rice. Four stable QTLs were located on chromosomes 3R, 5R, and 7R. Co-localization of QTL for RL and for different morphological, biochemical and physiological traits may suggests pleiotropic effects of some QTLs. QTLs for RL were associated with QTLs for such morphological traits as: grain number and weight, spike number per plant, compactness of spike, and plant height. Two QTLs for RL were found to coincide with QTLs for drought tolerance (4R, 7R), two with QTLs for heading earliness (2R, 7R), one with α-amylase activity QTL (7R) and three for pre-harvest sprouting QTL (1R, 4R, 7R). The set of molecular markers strongly linked to RL was selected, and the putative candidate genes controlling the process of RL were identified. Twelve QTLs are considered as linked to candidate genes on the base of DArT sequences alignment, which is a new information for rye. CONCLUSIONS: Our results expand the knowledge about the network of QTLs for different morphological, biochemical and physiological traits and can be a starting point to studies on particular genes controlling RL and other important agronomic traits (yield, earliness, pre-harvest sprouting, reaction to water deficit) and to appoint markers useful in marker assisted selection (MAS). A better knowledge of the rye genome and genes could both facilitate rye improvement itself and increase the efficiency of utilizing rye genes in wheat breeding.


Asunto(s)
Organogénesis de las Plantas/genética , Hojas de la Planta/genética , Proteínas de Plantas/fisiología , Sitios de Carácter Cuantitativo , Secale/genética , Genoma de Planta , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Secale/crecimiento & desarrollo , Secale/metabolismo
11.
Rice (N Y) ; 9(1): 37, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27473144

RESUMEN

BACKGROUND: Rice leaves are important energy source for the whole plant. An optimal structure will be beneficial for rice leaves to capture light energy and exchange gas, thus increasing the yield of rice. Moderate leaf rolling and relatively erect plant architecture may contribute to high yield of rice, but the relevant molecular mechanism remains unclear. RESULTS: In this study, we identified and characterized a rolling and erect leaf mutant in rice and named it as rel2. Histological analysis showed that the rel2 mutant has increased number of bulliform cells and reduced size of middle bulliform cells. We firstly mapped REL2 to a 35-kb physical region of chromosome 10 by map-based cloning strategy. Further analysis revealed that REL2 encodes a protein containing DUF630 and DUF632 domains. In rel2 mutant, the mutation of two nucleotide substitutions in DUF630 domain led to the loss-of-function of REL2 locus and the function of REL2 could be confirmed by complementary expression of REL2 in rel2 mutant. Further studies showed that REL2 protein is mainly distributed along the plasma membrane of cells and the REL2 gene is relatively higher expressed in younger leaves of rice. The results from quantitative RT-PCR analysis indicated that REL2 functioning in the leaf shape formation might have functional linkage with many genes associated with the bulliform cells development, auxin synthesis and transport, etc. CONCLUSIONS: REL2 is the DUF domains contained protein which involves in the control of leaf rolling in rice. It is the plasma membrane localization and its functions in the control of leaf morphology might involve in multiple biological processes such as bulliform cell development and auxin synthesis and transport.

12.
Am J Bot ; 100(10): 1957-68, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24061213

RESUMEN

PREMISE OF THE STUDY: Phenotypes of two Andropogon gerardii subspecies, big bluestem and sand bluestem, vary throughout the prairie ecosystem of North America. This study sought to determine the role of genetics and environment in driving adaptive variation of leaf structure in big bluestem and sand bluestem. • METHODS: Four populations of big bluestem and one population of sand bluestem were planted in common gardens at four sites across a precipitation gradient from western Kansas to southern Illinois. Internal leaf structure and trichome density of A. gerardii were examined by light microscopy to separate genetic and environmentally controlled traits. Leaf thickness, midrib thickness, bulliform cells, interveinal distance, vein size, and trichome density were quantified. • KEY RESULTS: At all planting sites, sand bluestem and the xeric population of A. gerardii had thicker leaves and fewer bulliform cells compared with mesic populations. Environment and genetic source population were both influential for leaf anatomy. Leaves from plants grown in mesic sites (Carbondale, Illinois and Manhattan, Kansas) had thicker midribs, larger veins, fewer trichomes, and a greater proportion of bulliform cells compared to plants grown in drier sites (Colby and Hays, Kansas). • CONCLUSIONS: Water availability has driven adaptive variation in leaf structure in populations of A. gerardii, particularly between sand bluestem and big bluestem. Genetically based differences in leaves of A. gerardii indicate adaptive variation and evolutionary forces differentiating sand bluestem from big bluestem. Environmental responses of A. gerardii leaves suggest an ability to adjust to drought, even in populations adapted to mesic home environments.


Asunto(s)
Andropogon/anatomía & histología , Andropogon/genética , Ambiente , Variación Genética , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Lluvia , Geografía , Illinois , Kansas , Análisis de los Mínimos Cuadrados , Hojas de la Planta/citología , Haz Vascular de Plantas/anatomía & histología , Semillas/anatomía & histología , Semillas/crecimiento & desarrollo
13.
Braz. arch. biol. technol ; 51(1): 113-119, Jan.-Feb. 2008. ilus
Artículo en Inglés | LILACS | ID: lil-482060

RESUMEN

This work reports anatomic and ultrastructural characteristics of bulliform cells in Loudetiopsis chrysothrix (Nees) Conert and Tristachya leiostachya Nees. Both the species presented leaf rolling under water stress. The main characteristics observed in these cells were: periclinal wall thinner than the adjacent epidermal wall; abundance of pectic substances in cuticular layer; sinuous anticlinal walls with ramified plasmodesmata; vacuome formed by a developed vacuole or innumerous small vacuoles; abundance of phenolic substances and oil drops. These characteristics suggested the involvement of bulliform cells in the mechanism of foliar involution in the studied species.


Este trabalho relata as características anatômicas e ultra-estruturais das células buliformes em Loudetiopsis chrysothrix (Nees) Conert e Tristachya leiostachya Nees. Ambas as espécies apresentam enrolamento foliar em condições de estresse hídrico. As principais características observadas nessas células foram: paredes periclinais mais delgadas que as epidérmicas adjacentes; abundância de substâncias pécticas na camada cuticular; paredes anticlinais sinuosas com plasmodesmas ramificados; vacuoma formado por um vacúolo desenvolvido ou inúmeros vacúolos pequenos; abundância de substâncias fenólicas e gotas de óleo dispersas. As características observadas sugerem o envolvimento das células buliformes no mecanismo de involução foliar nas espécies estudadas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA