Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
EJHaem ; 5(4): 855-858, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39157609

RESUMEN

A 26-year-old man was diagnosed with B/T-type mixed-phenotype acute leukemia (MPAL-B/T) based on blasts being positive for CD19, cytoplasmic CD3, and cyCD79a, but negative for myeloperoxidase. Acute lymphoblastic leukemia-based chemotherapy was started, but the leukemia was refractory. He underwent cord blood transplantation with the conditioning regimen of total body irradiation plus cyclophosphamide and cytarabine with granulocyte-colony stimulating factor priming. Prophylaxis for graft versus host disease was performed with short-term methotrexate and cyclosporin. The leukemia relapsed in bone marrow 20 months later. At that time, he was treated with inotuzumab ozogamicin because the blasts expressed CD22 (75.4%), but this was ineffective. He was next administered blinatumomab with dexamethasone pretreatment, resulting in a complete remission (CR). He subsequently underwent human leukocyte antigen-haploidentical peripheral blood stem cell transplantation. He has still maintained a CR for 12 months. Blinatumomab might be a promising treatment and a bridge to stem cell transplantation even in relapsed/refractory CD19-expressing MPAL-B/T.

2.
Br J Haematol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960449

RESUMEN

Chimeric antigen receptor T cell (CAR-T) therapy has shown remarkable efficacy in treating advanced B-cell malignancies by targeting CD19, but antigen-negative relapses and immune responses triggered by murine-derived antibodies remain significant challenges, necessitating the development of novel humanized multitarget CAR-T therapies. Here, we engineered a second-generation 4-1BB-CD3ζ-based CAR construct incorporating humanized CD19 single-chain variable fragments (scFvs) and BAFFR single-variable domains on heavy chains (VHHs), also known as nanobodies. The resultant CAR-T cells, with different constructs, were functionally compared both in vitro and in vivo. We found that the optimal tandem and bicistronic (BI) structures retained respective antigen-binding abilities, and both demonstrated specific activation when stimulated with target cells. At the same time, BI CAR-T cells (BI CARs) exhibited stronger tumour-killing ability and better secretion of interleukin-2 and tumour necrosis factor-alpha than single-target CAR-T cells. Additionally, BI CARs showed less exhaustion phenotype upon repeated antigen stimulation and demonstrated more potent and persistent antitumor effects in mouse xenograft models. Overall, we developed a novel humanized CD19/BAFFR bicistronic CAR (BI CAR) based on a combination of scFv and VHH, which showed potent and sustained antitumor ability both in vitro and in vivo, including against tumours with CD19 or BAFFR deficiencies.

3.
Biotechnol Bioeng ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963234

RESUMEN

Bringing effective cancer therapy in the form of chimeric antigen receptor technology to untapped markets faces numerous challenges, including a global shortage of therapeutic lentiviral or retroviral vectors on which all current clinical therapies using genetically modified T cells are based. Production of these lentiviral vectors in academic settings in principle opens the way to local production of therapeutic cells, which is the only economically viable approach to make this therapy available to patients in developing countries. The conditions for obtaining and concentrating lentiviral vectors have been optimized and described. The calcium phosphate precipitation method was found to be suitable for transfecting high cell-density cultures, a prerequisite for high titers. We describe protocols for gradually increasing production from 6-well plates to P100 plates, T-175 flasks, and 5-layer stacks while maintaining high titers, >108 transducing units. Concentration experiments using ultracentrifugation revealed the advantage of lower centrifugation speeds compared to competing protocols. The resulting batches of lentiviral vectors had a titer of 1010 infectious particles and were used to transduce primary human T lymphocytes generating chimeric antigen receptor T cells, the quality of which was checked and found potential applicability for treatment.

4.
Heliyon ; 10(12): e33145, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022044

RESUMEN

CD19 is a surface antigen on B cells that regulates B cell activation and proliferation, participating in B cell signaling. It is expressed in all B cell lineage tumor diseases, making CD19 a significant marker for detecting B cell tumor diseases and an important target for related immunotherapies. In recent years, with the deepening research on canine and feline diseases and the establishment of animal models, the demand for cat CD19 monoclonal antibodies (mAbs) has been steadily increasing. We successfully prepared cat CD19-specific monoclonal antibodies using a KLH-conjugated cat CD19 peptide as an antigen and optimized the antibody production method. The obtained monoclonal antibodies' molecular and cellular affinities were identified using CD19 peptides, eukaryotic overexpressed proteins, and peripheral blood mononuclear cells (PBMCs). The results indicate that the CD19-3H9 and CD19-8A7 monoclonal antibodies prepared in this study specifically bind to the CD19 molecule, demonstrating their suitability for use in ELISA, Western blot, and cell assays. This study successfully produced cat CD19 monoclonal antibodies with specificity and optimized the antibody preparation method, laying the foundation for the diagnosis and targeted drug combination therapy of B cell tumor diseases in both humans and pets.

5.
Cell ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39013470

RESUMEN

Allogeneic chimeric antigen receptor (CAR)-T cells hold great promise for expanding the accessibility of CAR-T therapy, whereas the risks of allograft rejection have hampered its application. Here, we genetically engineered healthy-donor-derived, CD19-targeting CAR-T cells using CRISPR-Cas9 to address the issue of immune rejection and treated one patient with refractory immune-mediated necrotizing myopathy and two patients with diffuse cutaneous systemic sclerosis with these cells. This study was registered at ClinicalTrials.gov (NCT05859997). The infused cells persisted for over 3 months, achieving complete B cell depletion within 2 weeks of treatment. During the 6-month follow-up, we observed deep remission without cytokine release syndrome or other serious adverse events in all three patients, primarily shown by the significant improvement in the clinical response index scores for the two diseases, respectively, and supported by the observations of reversal of inflammation and fibrosis. Our results demonstrate the high safety and promising immune modulatory effect of the off-the-shelf CAR-T cells in treating severe refractory autoimmune diseases.

6.
Front Oncol ; 14: 1376490, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983927

RESUMEN

Background and aims: Patients with relapsed/refractory aggressive B-cell lymphoma(r/r aBCL)who progressed after CD19-specific chimeric antigen receptor T-cell therapy (CD19CART) had a poor prognosis. Application of CAR T-cells targeting a second different antigen (CD20) expressed on the surface of B-cell lymphoma as subsequent anti-cancer salvage therapy (CD20-SD-CART) is also an option. This study aimed to evaluate the survival outcome of CD20-SD-CART as a salvage therapy for CD19 CART treatment failure. Methods: This retrospective cohort study enrolled patients with aBCL after the failure of CD19 CART treatment at Beijing Gobroad Boren Hospital from December 2019 to May 2022. Patients were subsequently treated with CD20CART therapy or non-CART therapy (polatuzumab or non-polatuzumab). Results: A total of 93 patients were included in the study, with 54 patients receiving CD20-SD-CART therapy. After a median follow-up of 18.54 months, the CD20-SD-CART group demonstrated significantly longer median progression-free survival (4.04 months vs. 2.27 months, p=0.0032) and median overall survival (8.15 months vs. 3.02 months, p<0.0001) compared to the non-CART group. The complete response rate in the CD20-SD-CART group (15/54, 27.8%) was also significantly higher than the non-CART group (3/38, 7.9%, p=0.03). Multivariate analysis further confirmed that CD20CART treatment was independently associated with improved overall survival (HR, 0.28; 95% CI, 0.16-0.51; p<0.0001) and progression-free survival (HR, 0.46; 95% CI, 0.27-0.8; p=0.005). Conclusion: CD20-SD-CART could serve as an effective therapeutic option for patients with relapsed or refractory aggressive B-cell lymphoma after CD19CART treatment failure.

7.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000458

RESUMEN

Despite advances in the genomic classification of breast cancer, current clinical tests and treatment decisions are commonly based on protein-level information. Nowadays breast cancer clinical treatment selection is based on the immunohistochemical (IHC) determination of four protein biomarkers: Estrogen Receptor 1 (ESR1), Progesterone Receptor (PGR), Human Epidermal Growth Factor Receptor 2 (HER2), and proliferation marker Ki-67. The prognostic correlation of tumor-infiltrating T cells has been widely studied in breast cancer, but tumor-infiltrating B cells have not received so much attention. We aimed to find a correlation between immunohistochemical results and a proteomic approach in measuring the expression of proteins isolated from B-cell lymphocytes in peripheral blood samples. Shotgun proteomic analysis was chosen for its key advantage over other proteomic methods, which is its comprehensive and untargeted approach to analyzing proteins. This approach facilitates better characterization of disease-associated changes at the protein level. We identified 18 proteins in B cell lymphocytes with a significant fold change of more than 2, which have promising potential to serve as breast cancer biomarkers in the future.


Asunto(s)
Linfocitos B , Biomarcadores de Tumor , Neoplasias de la Mama , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/diagnóstico , Femenino , Biomarcadores de Tumor/metabolismo , Linfocitos B/metabolismo , Linfocitos B/inmunología , Proteómica/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Persona de Mediana Edad
8.
Cancers (Basel) ; 16(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39061136

RESUMEN

CAR-T cell-based therapies have demonstrated remarkable efficacy in treating malignant cancers, especially liquid tumors, and are increasingly being evaluated in clinical trials for solid tumors. With the FDA's initiative to advance alternative methods for drug discovery and development, full human ex vivo assays are increasingly essential for precision CAR-T development. However, prevailing ex vivo CAR-T cell-mediated cytotoxicity assays are limited by their use of radioactive materials, lack of real-time measurement, low throughput, and inability to automate, among others. To address these limitations, we optimized the assay using multimodality imaging methods, including bioluminescence, impedance tracking, phase contrast, and fluorescence, to track CAR-T cells co-cultured with CD19, CD20, and HER2 luciferase reporter cancer cells in real-time. Additionally, we varied the ratio of CAR-T cells to cancer cells to determine optimal cytotoxicity readouts. Our findings demonstrated that the CAR-T cell group effectively attacked cancer cells, and the optimized assay provided superior temporal and spatial precision measurements of ex vivo CAR-T killing of cancer cells, confirming the reliability, consistency, and high throughput of the optimized assay.

9.
Mol Ther Oncol ; 32(3): 200837, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39050989

RESUMEN

CD19 chimeric antigen receptor T (CD19CAR-T) cells have achieved promising outcomes in relapsed/refractory B cell malignancies. However, recurrences occur due to the loss of CAR-T cell persistence. We developed dual T/B cell co-stimulatory molecules (CD28 and CD40) in CAR-T cells to enhance intense tumoricidal activity and persistence. CD19.28.40z CAR-T cells promoted pNF-κB and pRelB downstream signaling while diminishing NFAT signaling upon antigen exposure. CD19.28.40z CAR-T cells demonstrated greater proliferation, which translated into effective anti-tumor cytotoxicity in long-term co-culture assay. Repetitive weekly antigen stimulation unveiled continuous CAR-T cell expansion while preserving central memory T cell subset and lower expression of exhaustion phenotypes. The intrinsic genes underlying CD19.28.40z CAR-T cell responses were compared with conventional CARs and demonstrated the up-regulated genes associated with T cell proliferation and memory as well as down-regulated genes related to apoptosis, exhaustion, and glycolysis pathway. Enrichment of genes toward T cell stemness, particularly SELL, IL-7r, TCF7, and KLF2, was observed. Effective and continuing anti-tumor cytotoxicity in vivo was exhibited in both B cell lymphoblastic leukemia and B cell non-Hodgkin lymphoma xenograft models while demonstrating persistent T cell memory signatures. The functional enhancement of CD37.28.40z CAR-T cell activities against CD37+ tumor cells was further validated. The modification of dual T/B cell signaling molecules remarkably maximized the efficacy of CAR-T cell therapy.

10.
Allergy ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39003594

RESUMEN

BACKGROUND: SARS-CoV-2 has triggered a pandemic and contributes to long-lasting morbidity. Several studies have investigated immediate cellular and humoral immune responses during acute infection. However, little is known about long-term effects of COVID-19 on the immune system. METHODS: We performed a longitudinal investigation of cellular and humoral immune parameters in 106 non-vaccinated subjects ten weeks (10 w) and ten months (10 m) after their first SARS-CoV-2 infection. Peripheral blood immune cells were analyzed by multiparametric flow cytometry, serum cytokines were examined by multiplex technology. Antibodies specific for the Spike protein (S), the receptor-binding domain (RBD) and the nucleocapsid protein (NC) were determined. All parameters measured 10 w and 10 m after infection were compared with those of a matched, noninfected control group (n = 98). RESULTS: Whole blood flow cytometric analyses revealed that 10 m after COVID-19, convalescent patients compared to controls had reduced absolute granulocyte, monocyte, and lymphocyte counts, involving T, B, and NK cells, in particular CD3+CD45RA+CD62L+CD31+ recent thymic emigrant T cells and non-class-switched CD19+IgD+CD27+ memory B cells. Cellular changes were associated with a reversal from Th1- to Th2-dominated serum cytokine patterns. Strong declines of NC- and S-specific antibody levels were associated with younger age (by 10.3 years, p < .01) and fewer CD3-CD56+ NK and CD19+CD27+ B memory cells. Changes of T-cell subsets at 10 m such as normalization of effector and Treg numbers, decline of RTE, and increase of central memory T cell numbers were independent of antibody decline pattern. CONCLUSIONS: COVID-19 causes long-term reduction of innate and adaptive immune cells which is associated with a Th2 serum cytokine profile. This may provide an immunological mechanism for long-term sequelae after COVID-19.

11.
J Transl Med ; 22(1): 679, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054481

RESUMEN

BACKGROUND: The immunogenicity of the antigen-recognition domains of chimeric antigen receptor (CAR)-T cells leads to immune responses that may compromise the antitumor effects of the adoptively transferred T cells. Herein, we attempt to humanize a CD19-specific VHH (named H85) using in silico techniques and investigate the impact of antigen-recognition domain humanization on CAR expression and density, cytokine secretion, and cytolytic reactivity of CAR-T cells based on the humanized VHH. METHODS: H85 was humanized (named HuH85), and then HuH85 was compared with H85 in terms of conformational structure, physicochemical properties, antigenicity and immunogenicity, solubility, flexibility, stability, and CD19-binding capacity using in silico techniques. Next, H85CAR-T cells and HuH85CAR-T cells were developed and CAR expression and surface density were assessed via flow cytometry. Ultimately, the antitumor reactivity and secreted levels of IFN-γ, IL-2, and TNF-α were assessed following the co-cultivation of the CAR-T cells with Ramos, Namalwa, and K562 cells. RESULTS: In silico findings demonstrated no negative impacts on HuH85 as a result of humanization. Ultimately, H85CAR and HuH85CAR could be surface-expressed on transduced T cells at comparable levels as assessed via mean fluorescence intensity. Moreover, H85CAR-T cells and HuH85CAR-T cells mediated comparable antitumor effects against Ramos and Namalwa cells and secreted comparable levels of IFN-γ, IL-2, and TNF-α following co-cultivation. CONCLUSION: HuH85 can be used to develop immunotherapeutics against CD19-associated hematologic malignancies. Moreover, HuH85CAR-T cells must be further investigated in vitro and in preclinical xenograft models of CD19+ leukemias and lymphomas before advancing into clinical trials.


Asunto(s)
Antígenos CD19 , Citocinas , Receptores Quiméricos de Antígenos , Anticuerpos de Dominio Único , Humanos , Anticuerpos de Dominio Único/inmunología , Citocinas/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Antígenos CD19/metabolismo , Antígenos CD19/inmunología , Línea Celular Tumoral , Unión Proteica , Inmunoterapia Adoptiva/métodos , Células K562 , Linfocitos T/inmunología , Dominios Proteicos
12.
Oncol Res ; 32(6): 1109-1118, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827326

RESUMEN

Background: Chimeric antigen receptor T (CAR-T) cell therapy has achieved marked therapeutic success in ameliorating hematological malignancies. However, there is an extant void in the clinical guidelines concerning the most effective chemotherapy regimen prior to chimeric antigen receptor T (CAR-T) cell therapy, as well as the optimal timing for CAR-T cell infusion post-chemotherapy. Materials and Methods: We employed cell-derived tumor xenograft (CDX) murine models to delineate the optimal pre-conditioning chemotherapy regimen and timing for CAR-T cell treatment. Furthermore, transcriptome sequencing was implemented to identify the therapeutic targets and elucidate the underlying mechanisms governing the treatment regimen. Results: Our preclinical in vivo evaluation determined that a combination of cyclophosphamide and fludarabine, followed by the infusion of CD19 CAR-T cells five days subsequent to the chemotherapy, exerts the most efficacious therapeutic effect in B-cell hematological malignancies. Concurrently, RNA-seq data indicated that the therapeutic efficacy predominantly perturbs tumor cell metabolism, primarily through the inhibition of key mitochondrial targets, such as C-Jun Kinase enzyme (C-JUN). Conclusion: In summary, the present study offers critical clinical guidance and serves as an authoritative reference for the deployment of CD19 CAR-T cell therapy in the treatment of B-cell hematological malignancies.


Asunto(s)
Antígenos CD19 , Ciclofosfamida , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Vidarabina , Ensayos Antitumor por Modelo de Xenoinjerto , Vidarabina/análogos & derivados , Vidarabina/farmacología , Ciclofosfamida/uso terapéutico , Ciclofosfamida/farmacología , Animales , Ratones , Humanos , Inmunoterapia Adoptiva/métodos , Antígenos CD19/inmunología , Receptores Quiméricos de Antígenos/inmunología , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/tratamiento farmacológico , Línea Celular Tumoral , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Terapia Combinada
13.
Front Immunol ; 15: 1401683, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38868778

RESUMEN

Introduction: Chimeric antigen receptor-expressing T cells (CAR T cells) have revolutionized cancer treatment, particularly in B cell malignancies. However, the use of autologous T cells for CAR T therapy presents several limitations, including high costs, variable efficacy, and adverse effects linked to cell phenotype. Methods: To overcome these challenges, we developed a strategy to generate universal and safe anti-CD19 CAR T cells with a defined memory phenotype. Our approach utilizes CRISPR/Cas9 technology to target and eliminate the B2M and TRAC genes, reducing graft-versus-host and host-versus-graft responses. Additionally, we selected less differentiated T cells to improve the stability and persistence of the universal CAR T cells. The safety of this method was assessed using our CRISPRroots transcriptome analysis pipeline, which ensures successful gene knockout and the absence of unintended off-target effects on gene expression or transcriptome sequence. Results: In vitro experiments demonstrated the successful generation of functional universal CAR T cells. These cells exhibited potent lytic activity against tumor cells and a reduced cytokine secretion profile. The CRISPRroots analysis confirmed effective gene knockout and no unintended off-target effects, validating it as a pioneering tool for on/off-target and transcriptome analysis in genome editing experiments. Discussion: Our findings establish a robust pipeline for manufacturing safe, universal CAR T cells with a favorable memory phenotype. This approach has the potential to address the current limitations of autologous CAR T cell therapy, offering a more stable and persistent treatment option with reduced adverse effects. The use of CRISPRroots enhances the reliability and safety of gene editing in the development of CAR T cell therapies. Conclusion: We have developed a potent and reliable method for producing universal CAR T cells with a defined memory phenotype, demonstrating both efficacy and safety in vitro. This innovative approach could significantly improve the therapeutic landscape for patients with B cell malignancies.


Asunto(s)
Antígenos CD19 , Sistemas CRISPR-Cas , Edición Génica , Memoria Inmunológica , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Transcriptoma , Humanos , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/efectos adversos , Antígenos CD19/inmunología , Antígenos CD19/genética , Edición Génica/métodos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Fenotipo , Línea Celular Tumoral
14.
Int J Gen Med ; 17: 2593-2612, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855424

RESUMEN

Background: The specific cytotoxic effects of anti-CD19 chimeric antigen receptor (CAR) T-cell therapy have led to impressive outcomes in individuals previously treated for B-cell malignancies. However, the specific biological role of CD19(+) target cells, which exert antitumor immunity against some solid tumors, remains to be elucidated. Methods: We collected information regarding the level of CD19 mRNA and protein expression from various databases including The Cancer Genome Atlas (TCGA), Tumor Immune Estimation Resource (TIMER), Genotype-Tissue Expression (GTEx), and Human Protein Atlas (HPA) for both tumor and normal samples. To evaluate the patient's prognosis according to CD19 expression, a Kaplan-Meier (KM) analysis and univariate Cox regression were performed. Furthermore, using the Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using the Expression Data (ESTIMATE) algorithm, we estimated the ratio of immune cells infiltrating malignant tumor tissues. Afterward, the GSCALite repository was employed to evaluate the vulnerability of tumors expressing CD19 to drugs used in chemotherapy. To validate the results in clinical samples of certain cancer types, immunohistochemistry was then performed. Results: Most tumor types exhibited CD19 expression differently, apart from colon adenocarcinoma (COAD). The early diagnostic value of CD19 has been demonstrated in 9 different tumor types, and the overexpression of CD19 has the potential to extend the survival duration of patients. Multiple tumors showed a positive correlation between CD19 expression and tumor mutation burden (TMB), microsatellite instability (MSI), and ESTIMATE score. Furthermore, a direct association was discovered between the expression of CD19 and the infiltration of immune cells, particularly in cases of breast invasive carcinoma (BRCA). Moreover, CD19 is highly sensitive to a variety of chemotherapy drugs. Conclusion: The study reveals the potential of CD19 as both a predictive biomarker and a target for different cancer immunotherapies.

15.
Future Oncol ; : 1-13, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38861283

RESUMEN

Aim: To perform a cost-effectiveness analysis comparing axicabtagene ciloleucel (axi-cel) with standard of care (SoC; salvage chemoimmunotherapy, followed by high-dose therapy with autologous stem cell rescue for responders) for second-line (2L) treatment of adults with relapsed or refractory large B-cell lymphoma (r/r LBCL) in the pivotal ZUMA-7 trial data from a Japanese payer perspective. Materials & methods: A three-state partitioned survival model was utilized using population and clinical inputs from the ZUMA-7 trial data over a lifetime horizon. Results: Axi-cel was associated with greater incremental quality-adjusted life-years (2.06) and higher incremental total costs ($48,685.59/¥6.9 million) leading to an incremental cost-effectiveness ratio of $23,590.34/¥3.3 million per quality-adjusted life-years compared with SoC. Conclusion: Axi-cel is a cost-effective treatment alternative to SoC for 2L treatment of adults with r/r LBCL.


[Box: see text].

16.
Cureus ; 16(5): e60924, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38910762

RESUMEN

A small number of drugs have been the sole stay of conventional treatment for autoimmune illnesses for the past 10 years. These medications have a number of side effects that restrict their usage and necessitate continuous administration to keep a patient in a state of remission. While many new treatments are being researched to address this problem, chimeric antigen receptor (CAR) T-cell therapy currently shows the greatest potential. Current medical guidelines do not currently advocate the use of this medicine because it is still in its early stages of development due to continuing clinical research. Therefore, the aim of this systematic review was to determine what new findings have been reported in recent studies about the safety and efficacy of CAR T-cells. From the nine studies collected in total, it was found that systemic lupus erythematosus (SLE) was the most often researched autoimmune disease. The CAR T-cell therapy had noticeable results after one to two months on average. The most frequent adverse effect was cytokine release syndrome (CRS), which was treated cautiously and infrequently necessitated extensive intervention. All serological tests showed improvement, and clinical remission was always achieved. This review concludes that, due to the one-time infusion and low adverse reaction rate, the therapy not only outperforms conventional drugs but is also more practical. There is even more cause to look forward to the full deployment of this innovative therapeutic alternative, as variations of the therapy are currently being explored.

17.
Transplant Cell Ther ; 30(8): 788.e1-788.e9, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876428

RESUMEN

CD19-targeted chimeric antigen receptor T cell (CAR-T) therapy has led to unprecedented rates of complete remission (CR) in children and adults with relapsed/refractory (r/r) B-cell acute lymphoblastic leukemia (B-ALL), yet the majority of adults relapse after initial response. One proposed method to extend the durability of remission in adults following response to CAR-T therapy is consolidation with allogeneic hematopoietic cell transplantation (alloHCT). Considering the limited published data for the utility of post CAR-T therapy consolidative alloHCT in r/r B-ALL, especially data related to patients receiving a second alloHCT, we sought to describe outcomes of patients with r/r B-ALL at our institution who received their first or second alloHCT following response to CAR-T therapy. We performed a retrospective analysis of adult patients with r/r B-ALL who responded to either investigational or standard of care (SOC) CD19-targeted CAR-T therapy and underwent consolidation with alloHCT while in CR without interim therapy. We identified 45 patients, of whom 26 (58%) and 19 (42%) received their first and second alloHCT as consolidation post CAR-T therapy, respectively. The median age was 31 years (range: 19-67) and 31 (69%) patients were Hispanic. Ph-like was the most common genetic subtype and comprised over half of cases (53%; n = 24). The median number of prior therapies pre-transplant was 5 (range: 2-7), and disease status at the time of alloHCT was CR1, CR2 or ≥CR3 in 7 (16%), 22 (49%) and 16 (35%) patients, respectively. The median time from CAR-T therapy until alloHCT was 93 (range: 42-262) days. The conditioning regimen was radiation-based myeloablative (MAC) in 22 (49%) patients. With a median follow-up of 2.47 years (range: 0.13-6.93), 2-year overall survival (OS), relapse free survival (RFS), cumulative incidence of relapse (CIR) and non-relapse mortality (NRM) were 57.3% (95% CI: 0.432-0.760), 56.2% (95% CI: 0.562-0.745), 23.3% (95% CI: 0.13-0.42), and 20.4% (95% CI: 0.109-0.384), respectively. Two-year OS (52% vs. 68%, P = .641), RFS (54% vs. 59%, P = .820), CIR (33.5% vs. 8.5%, P = .104), and NRM (12.5% vs. 32.2%, P = .120) were not significantly different between patients who underwent their first vs. second transplant, respectively. In univariate analysis, only Ph-like genotype was associated with inferior RFS (P = .03). AlloHCT post CAR-T response is associated with a relatively low early mortality rate and encouraging survival results in high-risk adults with r/r B-ALL, extending to the second alloHCT for fit and eligible patients.


Asunto(s)
Antígenos CD19 , Trasplante de Células Madre Hematopoyéticas , Inmunoterapia Adoptiva , Humanos , Adulto , Femenino , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Antígenos CD19/inmunología , Inmunoterapia Adoptiva/métodos , Adulto Joven , Trasplante Homólogo/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidad , Recurrencia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Receptores Quiméricos de Antígenos/uso terapéutico , Adolescente , Anciano
18.
Clin Chim Acta ; 561: 119758, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38848898

RESUMEN

BACKGROUND AND AIMS: Modern mass spectrometry imaging (MSI) enables single cells' metabolism exploration. Aims of this study were development of the single-cell MSI of human CD19+ lymphocytes and metabolic profiling of chronic lymphocytic leukemia (CLL). MATERIALS AND METHODS: Blood donor (BD) samples were used for the optimization of CD19+ lymphocyte isolation and single-cell matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) MSI. Independent set of 200 CD19+ lymphocytes coming from 5 CLL patients and 5 BD was used for the CD19+ lymphocytes classification assessment and the untargeted metabolic profiling. CLL vs BD lymphocyte classification was performed using partial least squares-discriminant analysis (PLS-DA) using normalized single-cell mass spectra recorded in 300-600 and 600-950 Da ranges was applied. RESULTS: Accuracy assessed by 10-fold cross-validation of CD19+ lymphocyte PLS-DA classification reached >90.0 %. Volcano plots showed 106 significantly altered m/z signals in CLL of which 9 were tentatively annotated. Among tentatively annotated m/z signals formaldehyde and glutathione metabolites and tetrahydrofolate stand out. CONCLUSION: A method for single-cell MALDI TOF MSI of CD19+ lymphocytes was successfully developed. The method confirmed the significance of oxidative stress and single-carbon metabolism, pyruvate and fatty acid metabolism and apoptosis in CLL and it provided metabolic candidates for diagnostic applications.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Análisis de la Célula Individual , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Humanos , Antígenos CD19/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/patología , Linfocitos/metabolismo , Metabolómica/métodos
19.
Front Immunol ; 15: 1380451, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765003

RESUMEN

Corticosteroid therapy is the mainstay of immune effector cell-associated neurotoxicity syndrome (ICANS) management, although its use has been associated with worse overall survival (OS) and progression-free survival (PFS) after chimeric antigen receptor T-cell (CAR-T cell) therapy. Many options are being investigated for prophylaxis and management. Accumulating evidence supports the use of intrathecal (IT) chemotherapy for the management of high-grade ICANS. Here, we describe a case of a patient with stage IV Primary mediastinal B-cell lymphoma (PMBCL) successfully treated with IT methotrexate, cytarabine, and dexamethasone as first-line therapy for CD19 CAR-T cell-associated grade IV ICANS. The stable and rapid resolution of ICANS to grade 0 allowed us to discontinue systemic corticosteroid use, avoiding CAR-T cells ablation and ensuring preservation of CAR-T cell function. The described patient achieved a complete radiologic and clinical response to CD19 CAR-T cell therapy and remains disease-free after 9 months. This case demonstrates a promising example of how IT chemotherapy could be used as first-line treatment for the management of high-grade ICANS.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Citarabina , Dexametasona , Inyecciones Espinales , Metotrexato , Humanos , Dexametasona/administración & dosificación , Dexametasona/uso terapéutico , Metotrexato/administración & dosificación , Metotrexato/uso terapéutico , Citarabina/administración & dosificación , Citarabina/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Masculino , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/diagnóstico , Persona de Mediana Edad , Resultado del Tratamiento , Inmunoterapia Adoptiva/efectos adversos , Linfoma de Células B/tratamiento farmacológico , Femenino
20.
Leuk Lymphoma ; : 1-10, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38785408

RESUMEN

Brexucabtagene autoleucel (brexu-cel) is an autologous anti-CD19 CAR T-cell therapy approved in the USA and European Union (EU) for adults with relapsed or refractory B-cell acute lymphoblastic leukemia (R/R B-ALL; aged ≥26 years in EU). Here, outcomes for patients with R/R B-ALL aged ≥26 years in ZUMA-3 treated with brexu-cel were compared with historical standard-of-care (SOC) therapy. After median follow-up of 26.8 months, the overall complete remission (CR) rate among patients treated with brexu-cel in Phase 2 (N = 43) was 72% and median overall survival (OS) was 25.4 months (95% CI, 15.9-NE). Median OS was improved in Phase 2 patients versus matched historical SOC-treated patients. Compared with aggregate historical trial data, Phase 1 and 2 patients had improved OS versus blinatumomab, inotuzumab, and chemotherapy in a matching-adjusted indirect comparison (MAIC) study. These data demonstrate clinical benefit of brexu-cel relative to SOC in patients ≥26 years with R/R B-ALL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA