Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Cell Rep Methods ; : 100877, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39406232

RESUMEN

The fragmentation patterns of cell-free DNA (cfDNA) in plasma can potentially be utilized as diagnostic biomarkers in liquid biopsy. However, our knowledge of this biological process and the information encoded in fragmentation patterns remains preliminary. Here, we investigated the cfDNA fragmentomic characteristics against nucleosome positioning patterns in hematopoietic cells. cfDNA molecules with ends located within nucleosomes were relatively shorter with altered end motif patterns, demonstrating the feasibility of enriching tumor-derived cfDNA in patients with cancer through the selection of molecules possessing such ends. We then developed three cfDNA fragmentomic metrics after end selection, which showed significant alterations in patients with cancer and enabled cancer diagnosis. By incorporating machine learning, we further built high-performance diagnostic models, which achieved an overall area under the curve of 0.95 and 85.1% sensitivity at 95% specificity. Hence, our investigations explored the end characteristics of cfDNA fragmentomics and their merits in building accurate and sensitive cancer diagnostic models.

2.
Cell Rep Methods ; : 100865, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39341201

RESUMEN

Artificial intelligence (AI) and deep learning technologies hold promise for identifying effective drugs for human diseases, including pain. Here, we present an interpretable deep-learning-based ligand image- and receptor's three-dimensional (3D)-structure-aware framework to predict compound-protein interactions (LISA-CPI). LISA-CPI integrates an unsupervised deep-learning-based molecular image representation (ImageMol) of ligands and an advanced AlphaFold2-based algorithm (Evoformer). We demonstrated that LISA-CPI achieved ∼20% improvement in the average mean absolute error (MAE) compared to state-of-the-art models on experimental CPIs connecting 104,969 ligands and 33 G-protein-coupled receptors (GPCRs). Using LISA-CPI, we prioritized potential repurposable drugs (e.g., methylergometrine) and identified candidate gut-microbiota-derived metabolites (e.g., citicoline) for potential treatment of pain via specifically targeting human GPCRs. In summary, we presented that the integration of molecular image and protein 3D structural representations using a deep learning framework offers a powerful computational drug discovery tool for treating pain and other complex diseases if broadly applied.

3.
Cell Rep Methods ; 4(9): 100859, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39255793

RESUMEN

To support PTM proteomic analysis and annotation in different species, we developed PTMoreR, a user-friendly tool that considers the surrounding amino acid sequences of PTM sites during BLAST, enabling a motif-centric analysis across species. By controlling sequence window similarity, PTMoreR can map phosphoproteomic results between any two species, perform site-level functional enrichment analysis, and generate kinase-substrate networks. We demonstrate that the majority of real P-sites in mice can be inferred from experimentally derived human P-sites with PTMoreR mapping. Furthermore, the compositions of 129 mammalian phosphoproteomes can also be predicted using PTMoreR. The method also identifies cross-species phosphorylation events that occur on proteins with an increased tendency to respond to the environmental factors. Moreover, the classic kinase motifs can be extracted across mammalian species, offering an evolutionary angle for refining current motifs. PTMoreR supports PTM proteomics in non-human species and facilitates quantitative phosphoproteomic analysis.


Asunto(s)
Mamíferos , Fosfoproteínas , Proteómica , Animales , Proteómica/métodos , Humanos , Fosfoproteínas/metabolismo , Fosfoproteínas/química , Ratones , Fosforilación , Mamíferos/metabolismo , Especificidad de la Especie , Procesamiento Proteico-Postraduccional , Secuencias de Aminoácidos , Programas Informáticos , Secuencia de Aminoácidos , Proteoma/metabolismo
4.
Cell Rep Methods ; : 100864, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39326411

RESUMEN

Many popular spatial transcriptomics techniques lack single-cell resolution. Instead, these methods measure the collective gene expression for each location from a mixture of cells, potentially containing multiple cell types. Here, we developed scResolve, a method for recovering single-cell expression profiles from spatial transcriptomics measurements at multi-cellular resolution. scResolve accurately restores expression profiles of individual cells at their locations, which is unattainable with cell type deconvolution. Applications of scResolve on human breast cancer data and human lung disease data demonstrate that scResolve enables cell-type-specific differential gene expression analysis between different tissue contexts and accurate identification of rare cell populations. The spatially resolved cellular-level expression profiles obtained through scResolve facilitate more flexible and precise spatial analysis that complements raw multi-cellular level analysis.

5.
Cell Rep Methods ; 4(8): 100832, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39111313

RESUMEN

Existing models of the human skin have aided our understanding of skin health and disease. However, they currently lack a microbial component, despite microbes' demonstrated connections to various skin diseases. Here, we present a robust, standardized model of the skin microbial community (SkinCom) to support in vitro and in vivo investigations. Our methods lead to the formation of an accurate, reproducible, and diverse community of aerobic and anaerobic bacteria. Subsequent testing of SkinCom on the dorsal skin of mice allowed for DNA and RNA recovery from both the applied SkinCom and the dorsal skin, highlighting its practicality for in vivo studies and -omics analyses. Furthermore, 66% of the responses to common cosmetic chemicals in vitro were in agreement with a human trial. Therefore, SkinCom represents a valuable, standardized tool for investigating microbe-metabolite interactions and facilitates the experimental design of in vivo studies targeting host-microbe relationships.


Asunto(s)
Bacterias , Interacciones Microbiota-Huesped , Microbiota , Modelos Biológicos , Piel , Piel/microbiología , Microbiota/efectos de los fármacos , Humanos , Animales , Ratones , Bacterias/efectos de los fármacos , Cosméticos/farmacología , Interacciones Microbiota-Huesped/efectos de los fármacos
6.
Cell Rep Methods ; 4(8): 100831, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39111312

RESUMEN

Spatial transcriptomics workflows using barcoded capture arrays are commonly used for resolving gene expression in tissues. However, existing techniques are either limited by capture array density or are cost prohibitive for large-scale atlasing. We present Nova-ST, a dense nano-patterned spatial transcriptomics technique derived from randomly barcoded Illumina sequencing flow cells. Nova-ST enables customized, low-cost, flexible, and high-resolution spatial profiling of large tissue sections. Benchmarking on mouse brain sections demonstrates significantly higher sensitivity compared to existing methods at a reduced cost.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Animales , Ratones , Perfilación de la Expresión Génica/métodos , Encéfalo/metabolismo , Nanotecnología/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
7.
Cell Rep Methods ; 4(8): 100841, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39127046

RESUMEN

Cell-type-specific domains are the anatomical domains in spatially resolved transcriptome (SRT) tissues where particular cell types are enriched coincidentally. It is challenging to use existing computational methods to detect specific domains with low-proportion cell types, which are partly overlapped with or even inside other cell-type-specific domains. Here, we propose De-spot, which synthesizes segmentation and deconvolution as an ensemble to generate cell-type patterns, detect low-proportion cell-type-specific domains, and display these domains intuitively. Experimental evaluation showed that De-spot enabled us to discover the co-localizations between cancer-associated fibroblasts and immune-related cells that indicate potential tumor microenvironment (TME) domains in given slices, which were obscured by previous computational methods. We further elucidated the identified domains and found that Srgn may be a critical TME marker in SRT slices. By deciphering T cell-specific domains in breast cancer tissues, De-spot also revealed that the proportions of exhausted T cells were significantly increased in invasive vs. ductal carcinoma.


Asunto(s)
Neoplasias de la Mama , Transcriptoma , Microambiente Tumoral , Microambiente Tumoral/inmunología , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/inmunología , Femenino , Perfilación de la Expresión Génica/métodos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ratones , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología
8.
Cell Rep Methods ; 4(8): 100838, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39127044

RESUMEN

Tissues are organized into anatomical and functional units at different scales. New technologies for high-dimensional molecular profiling in situ have enabled the characterization of structure-function relationships in increasing molecular detail. However, it remains a challenge to consistently identify key functional units across experiments, tissues, and disease contexts, a task that demands extensive manual annotation. Here, we present spatial cellular graph partitioning (SCGP), a flexible method for the unsupervised annotation of tissue structures. We further present a reference-query extension pipeline, SCGP-Extension, that generalizes reference tissue structure labels to previously unseen samples, performing data integration and tissue structure discovery. Our experiments demonstrate reliable, robust partitioning of spatial data in a wide variety of contexts and best-in-class accuracy in identifying expertly annotated structures. Downstream analysis on SCGP-identified tissue structures reveals disease-relevant insights regarding diabetic kidney disease, skin disorder, and neoplastic diseases, underscoring its potential to drive biological insight and discovery from spatial datasets.


Asunto(s)
Biología Computacional , Humanos , Animales , Biología Computacional/métodos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Ratones , Enfermedades de la Piel/genética , Enfermedades de la Piel/patología
9.
Cell Rep Methods ; 4(8): 100839, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39127042

RESUMEN

The availability of data from profiling of cancer patients with multiomics is rapidly increasing. However, integrative analysis of such data for personalized target identification is not trivial. Multiomics2Targets is a platform that enables users to upload transcriptomics, proteomics, and phosphoproteomics data matrices collected from the same cohort of cancer patients. After uploading the data, Multiomics2Targets produces a report that resembles a research publication. The uploaded matrices are processed, analyzed, and visualized using the tools Enrichr, KEA3, ChEA3, Expression2Kinases, and TargetRanger to identify and prioritize proteins, genes, and transcripts as potential targets. Figures and tables, as well as descriptions of the methods and results, are automatically generated. Reports include an abstract, introduction, methods, results, discussion, conclusions, and references and are exportable as citable PDFs and Jupyter Notebooks. Multiomics2Targets is applied to analyze version 3 of the Clinical Proteomic Tumor Analysis Consortium (CPTAC3) pan-cancer cohort, identifying potential targets for each CPTAC3 cancer subtype. Multiomics2Targets is available from https://multiomics2targets.maayanlab.cloud/.


Asunto(s)
Neoplasias , Fosfoproteínas , Proteómica , Transcriptoma , Humanos , Proteómica/métodos , Neoplasias/genética , Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Estudios de Cohortes , Perfilación de la Expresión Génica/métodos , Programas Informáticos , Biología Computacional/métodos
10.
Cell Rep Methods ; 4(7): 100813, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38971150

RESUMEN

Gene co-expression analysis of single-cell transcriptomes, aiming to define functional relationships between genes, is challenging due to excessive dropout values. Here, we developed a single-cell graphical Gaussian model (SingleCellGGM) algorithm to conduct single-cell gene co-expression network analysis. When applied to mouse single-cell datasets, SingleCellGGM constructed networks from which gene co-expression modules with highly significant functional enrichment were identified. We considered the modules as gene expression programs (GEPs). These GEPs enable direct cell-type annotation of individual cells without cell clustering, and they are enriched with genes required for the functions of the corresponding cells, sometimes at levels greater than 10-fold. The GEPs are conserved across datasets and enable universal cell-type label transfer across different studies. We also proposed a dimension-reduction method through averaging by GEPs for single-cell analysis, enhancing the interpretability of results. Thus, SingleCellGGM offers a unique GEP-based perspective to analyze single-cell transcriptomes and reveals biological insights shared by different single-cell datasets.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica , Análisis de la Célula Individual , Transcriptoma , Análisis de la Célula Individual/métodos , Animales , Ratones , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/genética
11.
Cell Rep Methods ; 4(7): 100817, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38981473

RESUMEN

Deep-learning tools that extract prognostic factors derived from multi-omics data have recently contributed to individualized predictions of survival outcomes. However, the limited size of integrated omics-imaging-clinical datasets poses challenges. Here, we propose two biologically interpretable and robust deep-learning architectures for survival prediction of non-small cell lung cancer (NSCLC) patients, learning simultaneously from computed tomography (CT) scan images, gene expression data, and clinical information. The proposed models integrate patient-specific clinical, transcriptomic, and imaging data and incorporate Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathway information, adding biological knowledge within the learning process to extract prognostic gene biomarkers and molecular pathways. While both models accurately stratify patients in high- and low-risk groups when trained on a dataset of only 130 patients, introducing a cross-attention mechanism in a sparse autoencoder significantly improves the performance, highlighting tumor regions and NSCLC-related genes as potential biomarkers and thus offering a significant methodological advancement when learning from small imaging-omics-clinical samples.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Aprendizaje Profundo , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/patología , Tomografía Computarizada por Rayos X/métodos , Biomarcadores de Tumor/genética , Pronóstico , Masculino , Femenino , Regulación Neoplásica de la Expresión Génica , Transcriptoma
12.
Cell Rep Methods ; 4(7): 100810, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38981475

RESUMEN

In single-cell RNA sequencing (scRNA-seq) studies, cell types and their marker genes are often identified by clustering and differentially expressed gene (DEG) analysis. A common practice is to select genes using surrogate criteria such as variance and deviance, then cluster them using selected genes and detect markers by DEG analysis assuming known cell types. The surrogate criteria can miss important genes or select unimportant genes, while DEG analysis has the selection-bias problem. We present Festem, a statistical method for the direct selection of cell-type markers for downstream clustering. Festem distinguishes marker genes with heterogeneous distribution across cells that are cluster informative. Simulation and scRNA-seq applications demonstrate that Festem can sensitively select markers with high precision and enables the identification of cell types often missed by other methods. In a large intrahepatic cholangiocarcinoma dataset, we identify diverse CD8+ T cell types and potential prognostic marker genes.


Asunto(s)
Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Análisis por Conglomerados , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Linfocitos T CD8-positivos/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Marcadores Genéticos/genética
13.
Cell Rep Methods ; 4(7): 100819, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38986613

RESUMEN

Cell reprogramming, which guides the conversion between cell states, is a promising technology for tissue repair and regeneration, with the ultimate goal of accelerating recovery from diseases or injuries. To accomplish this, regulators must be identified and manipulated to control cell fate. We propose Fatecode, a computational method that predicts cell fate regulators based only on single-cell RNA sequencing (scRNA-seq) data. Fatecode learns a latent representation of the scRNA-seq data using a deep learning-based classification-supervised autoencoder and then performs in silico perturbation experiments on the latent representation to predict genes that, when perturbed, would alter the original cell type distribution to increase or decrease the population size of a cell type of interest. We assessed Fatecode's performance using simulations from a mechanistic gene-regulatory network model and scRNA-seq data mapping blood and brain development of different organisms. Our results suggest that Fatecode can detect known cell fate regulators from single-cell transcriptomics datasets.


Asunto(s)
Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Animales , Redes Reguladoras de Genes , Biología Computacional/métodos , Diferenciación Celular/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma , Aprendizaje Profundo , Linaje de la Célula/genética , Ratones , Reprogramación Celular/genética , RNA-Seq/métodos
14.
Cell Rep Methods ; 4(6): 100794, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38861988

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of cellular responses to perturbations such as therapeutic interventions and vaccines. Gene relevance to such perturbations is often assessed through differential expression analysis (DEA), which offers a one-dimensional view of the transcriptomic landscape. This method potentially overlooks genes with modest expression changes but profound downstream effects and is susceptible to false positives. We present GENIX (gene expression network importance examination), a computational framework that transcends DEA by constructing gene association networks and employing a network-based comparative model to identify topological signature genes. We benchmark GENIX using both synthetic and experimental datasets, including analysis of influenza vaccine-induced immune responses in peripheral blood mononuclear cells (PBMCs) from recovered COVID-19 patients. GENIX successfully emulates key characteristics of biological networks and reveals signature genes that are missed by classical DEA, thereby broadening the scope of target gene discovery in precision medicine.


Asunto(s)
COVID-19 , Redes Reguladoras de Genes , Leucocitos Mononucleares , SARS-CoV-2 , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Humanos , Análisis de la Célula Individual/métodos , COVID-19/genética , COVID-19/inmunología , Análisis de Secuencia de ARN/métodos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Leucocitos Mononucleares/metabolismo , Perfilación de la Expresión Génica/métodos , Biología Computacional/métodos , Transcriptoma , Vacunas contra la Influenza/inmunología , Programas Informáticos
15.
Cell Rep Methods ; 4(6): 100793, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38866008

RESUMEN

Plasma cell-free DNA (cfDNA) fragmentation patterns are emerging directions in cancer liquid biopsy with high translational significance. Conventionally, the cfDNA sequencing reads are aligned to a reference genome to extract their fragmentomic features. In this study, through cfDNA fragmentomics profiling using different reference genomes on the same datasets in parallel, we report systematic biases in such conventional reference-based approaches. The biases in cfDNA fragmentomic features vary among races in a sample-dependent manner and therefore might adversely affect the performances of cancer diagnosis assays across multiple clinical centers. In addition, to circumvent the analytical biases, we develop Freefly, a reference-free approach for cfDNA fragmentomics profiling. Freefly runs ∼60-fold faster than the conventional reference-based approach while generating highly consistent results. Moreover, cfDNA fragmentomic features reported by Freefly can be directly used for cancer diagnosis. Hence, Freefly possesses translational merit toward the rapid and unbiased measurement of cfDNA fragmentomics.


Asunto(s)
Ácidos Nucleicos Libres de Células , Humanos , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/sangre , Neoplasias/genética , Neoplasias/sangre , Neoplasias/diagnóstico , Análisis de Secuencia de ADN/métodos , Biopsia Líquida/métodos , Sesgo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
16.
Cell Rep Methods ; 4(6): 100797, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38889685

RESUMEN

Cancer of unknown primary (CUP) represents metastatic cancer where the primary site remains unidentified despite standard diagnostic procedures. To determine the tumor origin in such cases, we developed BPformer, a deep learning method integrating the transformer model with prior knowledge of biological pathways. Trained on transcriptomes from 10,410 primary tumors across 32 cancer types, BPformer achieved remarkable accuracy rates of 94%, 92%, and 89% in primary tumors and primary and metastatic sites of metastatic tumors, respectively, surpassing existing methods. Additionally, BPformer was validated in a retrospective study, demonstrating consistency with tumor sites diagnosed through immunohistochemistry and histopathology. Furthermore, BPformer was able to rank pathways based on their contribution to tumor origin identification, which helped to classify oncogenic signaling pathways into those that are highly conservative among different cancers versus those that are highly variable depending on their origins.


Asunto(s)
Neoplasias Primarias Desconocidas , Humanos , Neoplasias Primarias Desconocidas/genética , Neoplasias Primarias Desconocidas/patología , Neoplasias Primarias Desconocidas/metabolismo , Neoplasias Primarias Desconocidas/diagnóstico , Transducción de Señal/genética , Transcriptoma , Aprendizaje Profundo , Estudios Retrospectivos
17.
Cell Rep Methods ; 4(6): 100799, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38889686

RESUMEN

The cellular components of tumors and their microenvironment play pivotal roles in tumor progression, patient survival, and the response to cancer treatments. Unveiling a comprehensive cellular profile within bulk tumors via single-cell RNA sequencing (scRNA-seq) data is crucial, as it unveils intrinsic tumor cellular traits that elude identification through conventional cancer subtyping methods. Our contribution, scBeacon, is a tool that derives cell-type signatures by integrating and clustering multiple scRNA-seq datasets to extract signatures for deconvolving unrelated tumor datasets on bulk samples. Through the employment of scBeacon on the The Cancer Genome Atlas (TCGA) cohort, we find cellular and molecular attributes within specific tumor categories, many with patient outcome relevance. We developed a tumor cell-type map to visually depict the relationships among TCGA samples based on the cell-type inferences.


Asunto(s)
Neoplasias , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Análisis de la Célula Individual/métodos , Neoplasias/genética , Neoplasias/patología , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Análisis por Conglomerados
18.
Cell Rep Methods ; 4(5): 100775, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38744286

RESUMEN

To address the limitation of overlooking crucial ecological interactions due to relying on single time point samples, we developed a computational approach that analyzes individual samples based on the interspecific microbial relationships. We verify, using both numerical simulations as well as real and shuffled microbial profiles from the human oral cavity, that the method can classify single samples based on their interspecific interactions. By analyzing the gut microbiome of people with autistic spectrum disorder, we found that our interaction-based method can improve the classification of individual subjects based on a single microbial sample. These results demonstrate that the underlying ecological interactions can be practically utilized to facilitate microbiome-based diagnosis and precision medicine.


Asunto(s)
Trastorno del Espectro Autista , Microbioma Gastrointestinal , Humanos , Trastorno del Espectro Autista/microbiología , Trastorno del Espectro Autista/diagnóstico , Boca/microbiología , Microbiota , Interacciones Microbianas , Simulación por Computador
19.
Cell Rep Methods ; 4(5): 100773, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38744288

RESUMEN

Predicting cellular responses to perturbations requires interpretable insights into molecular regulatory dynamics to perform reliable cell fate control, despite the confounding non-linearity of the underlying interactions. There is a growing interest in developing machine learning-based perturbation response prediction models to handle the non-linearity of perturbation data, but their interpretation in terms of molecular regulatory dynamics remains a challenge. Alternatively, for meaningful biological interpretation, logical network models such as Boolean networks are widely used in systems biology to represent intracellular molecular regulation. However, determining the appropriate regulatory logic of large-scale networks remains an obstacle due to the high-dimensional and discontinuous search space. To tackle these challenges, we present a scalable derivative-free optimizer trained by meta-reinforcement learning for Boolean network models. The logical network model optimized by the trained optimizer successfully predicts anti-cancer drug responses of cancer cell lines, while simultaneously providing insight into their underlying molecular regulatory mechanisms.


Asunto(s)
Aprendizaje Automático , Humanos , Algoritmos , Línea Celular Tumoral , Modelos Biológicos , Simulación por Computador , Biología de Sistemas
20.
Cell Rep Methods ; 4(6): 100781, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38761803

RESUMEN

We present an innovative strategy for integrating whole-genome-wide multi-omics data, which facilitates adaptive amalgamation by leveraging hidden layer features derived from high-dimensional omics data through a multi-task encoder. Empirical evaluations on eight benchmark cancer datasets substantiated that our proposed framework outstripped the comparative algorithms in cancer subtyping, delivering superior subtyping outcomes. Building upon these subtyping results, we establish a robust pipeline for identifying whole-genome-wide biomarkers, unearthing 195 significant biomarkers. Furthermore, we conduct an exhaustive analysis to assess the importance of each omic and non-coding region features at the whole-genome-wide level during cancer subtyping. Our investigation shows that both omics and non-coding region features substantially impact cancer development and survival prognosis. This study emphasizes the potential and practical implications of integrating genome-wide data in cancer research, demonstrating the potency of comprehensive genomic characterization. Additionally, our findings offer insightful perspectives for multi-omics analysis employing deep learning methodologies.


Asunto(s)
Biomarcadores de Tumor , Genómica , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/clasificación , Genómica/métodos , Biomarcadores de Tumor/genética , Algoritmos , Pronóstico , Estudio de Asociación del Genoma Completo/métodos , Biología Computacional/métodos , Genoma Humano/genética , Multiómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA