Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1383624, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135796

RESUMEN

Background: An accumulating body of research indicates that the pons is related to the occurrence of depression. Si-Ni-San (SNS) is a well-known Chinese herbal formula that is used to treat depression. Chinese herbal formulae have multiple therapeutic characteristics. Although it has been proven that SNS can exert antidepressant effects by improving changes in the limbic system, it is currently unclear whether SNS has therapeutic targets in the pons. This study aimed to explore the therapeutic targets of SNS in the pons for depression treatment. Materials and methods: Two experiments were conducted. In Experiment 1, 32 rats were divided into four groups: (1) a Control (C) group that received distilled water as a vehicle; (2) a Model (M) group that received the chronic unpredictable mild stress (CUMS) procedure and was administered distilled water; (3) a Stress + SNS (MS) group that received the CUMS procedure and was administered SNS dissolved in distilled water; and (4) a Stress + Fluoxetine (MF) group that received the CUMS procedure and was administered fluoxetine dissolved in distilled water. The open field test (OFT), the sucrose preference test (SPT), and the novel object recognition test (NOR) were performed to test the antidepressant effects of SNS. High-throughput mRNA sequencing (RNA-seq) was used to explore possible gene targets of SNS in the pons, and quantitative real-time PCR was performed to verify the results. High-performance liquid chromatography was used to detect neurotransmitters. Finally, correlation analyses were conducted between behaviors, genes expression, and neurotransmitters. In Experiment 2, 18 rats were divided into the same three groups as in Experiment 1: (1) C, (2) M, and (3) MS. fMRI was used to confirm whether SNS altered the pons in a rat model of depression. Results: SNS significantly improved sucrose preference in the SPT and TN-TO in the NOR compared to the M group (P < 0.05). RNA-seq filtered 49 differentially expressed genes(DEGs) that SNS could reverse in the pons of the CUMS depression model. Real-time PCR detected six genes, including Complexin2 (Cplx2), Serpinf1, Neuregulin1 (Nrg1), Annexin A1 (Anxa1), ß-arrestin 1 (Arrb1) and presenilin 1 (Psen1). SNS significantly reversed changes in the expression of Anxa1, Nrg1, and Psen1 caused by CUMS (P < 0.05), which is consistent with the DEGs results. Additionally, SNS significantly reversed norepinephrine (NE) changes in the pons. There were 18 noteworthy correlations between behavior, genes, and neurotransmitters (P < 0.05). fMRI showed that SNS can decrease the amplitude of low-frequency fluctuations (ALFF) in the pons of living depressed rats. Conclusion: The pons is an important target brain region for SNS to exert its antidepressant effects. SNS may improve pontine NE levels by regulating the Anxa1, Nrg1, and Psen1 genes, thereby exerting antidepressant effects and improving cognitive function.

2.
Heliyon ; 10(15): e35363, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39166014

RESUMEN

Due to the diversity of postpartum depression (PPD) patients and the complexity of associated pathophysiological changes, most current animal models cannot accurately simulate PPD-like symptoms. In this study, we established a reliable animal model for PPD by inducing chronic unpredictable mild stress (CUMS) at different stages (pre-pregnancy, pregnancy, or postnatal) in female mice, followed by maternal separation (MS) from day 2-21 after delivery. The results for female mice subjected to pre-pregnancy stress were not statistically significant due to a lower conception rate. However, female mice exposed to CUMS during either the gestational or postnatal stage, followed by MS, successfully exhibited PPD-like symptoms. The models were deemed effective based on observed behavioral abnormalities, impaired hippocampal neuron functioning, and reduced serum concentrations of neurotransmitters (5-HT, GABA, and NE). Additionally, mice that underwent gestational CUMS followed by MS displayed a more dysfunctional hypothalamic-pituitary-adrenal (HPA) axis and more severe uterine inflammation. The study also investigated the impact of PPD on the behavior and neurodevelopment of adolescent offspring through behavioral tests, enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin (HE) staining, and western blotting (WB). The results indicated that adolescent offspring of mothers with PPD exhibited behavioral and neurodevelopmental disorders, with male offspring being more susceptible than females. Female mice exposed to both CUMS and MS during the postnatal period had more severe adverse effects on their offspring compared to the other model groups.

3.
Brain Res ; 1843: 149123, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39025397

RESUMEN

Depression is a complicated neuropsychiatric condition with an incompletely understoodetiology, making the discovery of effective therapies challenging. Animal models have been crucial in improving our understanding of depression and enabling antidepressant medication development. The CUMS model has significant face validity since it induces fundamental depression symptoms in humans, such as anhedonia, behavioral despair, anxiety, cognitive impairments, and changes in sleep, food, and social behavior. Its construct validity is demonstrated by the dysregulation of neurobiological systems involved in depression, including monoaminergic neurotransmission, the hypothalamic-pituitary-adrenal axis, neuroinflammatory processes, and structural brain alterations. Critically, the model's predictive validity is demonstrated by the reversal of CUMS-induced deficits following treatment with clinically effective antidepressants such as selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, tricyclic antidepressants, and monoamine oxidase inhibitors. This review comprehensivelyassesses the multifarious depressive-like phenotypes in the CUMS model using behavioral paradigms like sucrose preference, forced swim, tail suspension, elevated plus maze, and novel object recognition tests. It investigates the neurobiological mechanisms that underlie CUMS-induced behaviors, including signaling pathways involving tumor necrosis factor-alpha, brain-derived neurotrophic factor and its receptor TrkB, cyclooxygenase-2, glycogen synthase kinase-3 beta, and the kynurenine pathway. This review emphasizes the CUMS model's importance as a translationally relevant tool for unraveling the complex mechanisms underlying depression and facilitating the development of improved and targeted interventions for this debilitating neuropsychiatric disorder by providing a comprehensive overview of its validity, behavioral assessments, and neurobiological underpinnings.


Asunto(s)
Depresión , Modelos Animales de Enfermedad , Estrés Psicológico , Animales , Estrés Psicológico/metabolismo , Estrés Psicológico/tratamiento farmacológico , Depresión/tratamiento farmacológico , Depresión/metabolismo , Humanos , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/metabolismo , Trastorno Depresivo/fisiopatología , Investigación Biomédica Traslacional/métodos , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos
4.
Neurosci Lett ; 836: 137870, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-38852764

RESUMEN

Depression is considered a crucial psychiatric disease correlated with neuronal-dysfunctions induced by stress-stimuli. This study aimed to investigate effect of Fluoxetine (FL) on chronic unpredictable mild stress (CUMS) and explore the associated mechanisms. CUMS rat model was established by treating with lots of stresses. CUMS rats were administered FL, SB216763 (SB), Wortmannin (WT) alone or in combination. CUMS rats were administered 1 % sugar water to conduct sugar water consumption experiment. Acet-Tub, Tyr-Tub, tau46, p-tau-Ser199/202, p-tau-Ser396, p-tau-Ser231, expression was examined using immunohistochemical assay and western blotassay. Interaction between tau and tubulin was evaluated with immunoprecipitation assay. Double immunohistochemical assay was used to identify interaction between Nestin and Tau. The results indicated that FL treatment only increased sugar consumption of CUMS rats (P < 0.05), but also strengthened effects of SB and WT. FL significantly treatment decreased tau phosphorylation (p-tau) in hippocampal tissues of rats compared to those of rats in CUMS group (P < 0.05). FL treatment markedly decreased Acet-Tub and increased Tyr-Tub expression in hippocampal tissues of rats compared to those of rats in CUMS group (P < 0.05). The effects of FL treatment on p-tau down-regulation and tubulin modulation in hippocampal tissues were independent from PI3K and GSK-3 signaling pathways. FL treatment could also enhance proliferation and total tau of newborn neurons of CUMS rats. FL treatment strengthened interaction between tau and botulin in hippocampal tissues of CUMS rats. In conclusion, Fluoxetin suppressed phosphorylation of tau and modulated the interaction between tau and tubulin in hippocampus of adult CUMS rats.


Asunto(s)
Hipocampo , Ratas Sprague-Dawley , Estrés Psicológico , Tubulina (Proteína) , Proteínas tau , Animales , Proteínas tau/metabolismo , Tubulina (Proteína)/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Masculino , Estrés Psicológico/metabolismo , Estrés Psicológico/tratamiento farmacológico , Ratas
5.
Asian J Psychiatr ; 97: 104092, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823081

RESUMEN

BACKGROUND: Early life stress (ELS) significantly increases the risk of mood disorders and affects the neurodevelopment of the primary cortex. HYPOTHESIS: Modulating the primary cortex through neural intervention can ameliorate the impact of ELS on brain development and consequently alleviate its effects on mood disorders. METHOD: We induced the chronic unpredictable mild stress (CUMS) model in adolescent rats, followed by applying repetitive transcranial magnetic stimulation (rTMS) to their primary cortex in early adulthood. To assess the applicability of primary cortex rTMS in humans, we recruited individuals aged 17-25 with mood disorders who had experienced ELS and performed primary cortex rTMS on them. Functional magnetic resonance imaging (fMRI) and depression-related behavioral and clinical symptoms were conducted in both rats and human subjects before and after the rTMS. RESULTS: In animals, fMRI analysis revealed increased activation in the primary cortex of CUMS rats and decrease subcortical activation. Following the intervention of primary cortex rTMS, the abnormal functional activity was reversed. Similarly, in mood disorders patients with ELS, increased activation in the primary cortex and decreased activation in the frontal cortex were observed. During rTMS intervention, similar neuroimaging improvements were noted, particularly decreased activation in the primary cortex. This suggests that targeted rTMS in the primary cortex can reverse the abnormal neuroimaging. CONCLUSION: This cross-species translational study has identified the primary cortex as a key region in mood disorders patients with ELS. Targeting the primary cortex with rTMS can correct abnormal functional activity while improving symptoms. Our study provides translational evidence for therapeutics targeting the ELS factor of mood disorders patients.


Asunto(s)
Modelos Animales de Enfermedad , Imagen por Resonancia Magnética , Trastornos del Humor , Estrés Psicológico , Estimulación Magnética Transcraneal , Animales , Estimulación Magnética Transcraneal/métodos , Ratas , Estrés Psicológico/terapia , Estrés Psicológico/fisiopatología , Adulto , Masculino , Humanos , Adulto Joven , Adolescente , Trastornos del Humor/terapia , Trastornos del Humor/fisiopatología , Femenino , Ratas Sprague-Dawley , Corteza Cerebral/fisiopatología , Corteza Cerebral/diagnóstico por imagen
6.
Front Pharmacol ; 15: 1393874, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855745

RESUMEN

Introduction: The prevalence of major depressive disorder (MDD) has gradually increased and has attracted widespread attention. The aim of this study was to investigate the effect of a probiotic compound consisting of Bacillus coagulans and Clostridium butyricum, on a mouse depression model. Methods: Mice were subjected to chronic unpredictable mild stress (CUMS) and then treated with the probiotics at different concentrations. And mice received behavior test such as forced swimming test and tail suspension test. After that, all mice were sacrificed and the samples were collected for analysis. Moreover, prefrontal cortex (PFC) gene expression and the gut microbiota among different groups were also analyzed. Results: Probiotics improved depressive-like behavior in CUMS mice, as indicated by decreased immobility time (p < 0.05) in the forced swimming test and tail suspension test. probiotics intervention also increased the level of 5-hydroxytryptamine (5-HT) in the prefrontal cortex and decreased the adrenocorticotropic hormone (ACTH) level in serum. In addition, by comparing the PFC gene expression among different groups, we found that the genes upregulated by probiotics were enriched in the PI3K-Akt signaling pathway in the prefrontal cortex. Moreover, we found that downregulated genes in prefrontal cortex of CUMS group such as Sfrp5 and Angpt2, which were correlated with depression, were reversed by the probiotics. Furthermore, the probiotics altered the structure of the gut microbiota, and reversed the reduction of cob(II)yrinate a,c-diamide biosynthesis I pathway in CUMS group. Several species like Bacteroides caecimuris and Parabacteroides distasoni, whose abundance was significantly decreased in the CUMS group but reversed after the probiotics intervention, showed significantly positive correlation with depression associated genes such as Tbxas1 and Cldn2. Discussion: These findings suggested that CUMS-induced depression-like behavior can be alleviated by the probiotics, possibly through alterations in the PFC gene expression and gut microbiota.

7.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791125

RESUMEN

The brain is the central organ of adaptation to stress because it perceives and determines threats that induce behavioral, physiological, and molecular responses. In humans, chronic stress manifests as an enduring consistent feeling of pressure and being overwhelmed for an extended duration. This can result in a persistent proinflammatory response in the peripheral and central nervous system (CNS), resulting in cellular, physiological, and behavioral effects. Compounding stressors may increase the risk of chronic-stress-induced inflammation, which can yield serious health consequences, including mental health disorders. This review summarizes the current knowledge surrounding the neuroinflammatory response in rodent models of chronic stress-a relationship that is continually being defined. Many studies investigating the effects of chronic stress on neuroinflammation in rodent models have identified significant changes in inflammatory modulators, including nuclear factor-κB (NF-κB) and toll-like receptors (TLRs), and cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, and IL-6. This suggests that these are key inflammatory factors in the chronic stress response, which may contribute to the establishment of anxiety and depression-like symptoms. The behavioral and neurological effects of modulating inflammatory factors through gene knockdown (KD) and knockout (KO), and conventional and alternative medicine approaches, are discussed.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Neuroinflamatorias , Estrés Psicológico , Animales , Humanos , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/etiología , Estrés Psicológico/metabolismo , Roedores , Enfermedad Crónica , Citocinas/metabolismo , FN-kappa B/metabolismo , Inflamación/metabolismo
8.
Biochem Biophys Res Commun ; 721: 150128, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38776831

RESUMEN

PURPOSE: Chronic stress is a significant risk factor for mood disorders such as depression, where synaptic plasticity plays a central role in pathogenesis. Transient Receptor Potential Vanilloid Type-2 (TRPV2) Ion Channels are implicated in hypothalamic-pituitary-adrenal axis disorders. Previous proteomic analysis indicated a reduction in TRPV2 levels in the chronic unpredictable mild stress (CUMS) rat model, yet its role in synaptic plasticity during depression remains to be elucidated. This study aims to investigate TRPV2's role in depression and its underlying mechanisms. METHODS: In vivo and in vitro experiments were conducted using the TRPV2-specific agonist probenecid and ERK1/2 inhibitors SCH772984. In vivo, rats underwent six weeks of CUMS before probenecid administration. Depressive-like behaviors were assessed through behavioral tests. ELISA kits measured 5-HT, DA, NE levels in rat hippocampal tissues. Hippocampal morphology was examined via Nissl staining. In vitro, rat hippocampal neuron cell lines were treated with ERK1/2 inhibitors SCH772984 and probenecid. Western blot, immunofluorescence, immunohistochemical staining, and RT-qPCR assessed TRPV2 expression, neurogenesis-related proteins, synaptic markers, and ERK1/2-CREB-BDNF signaling proteins. RESULTS: Decreased hippocampal TRPV2 levels were observed in CUMS rats. Probenecid treatment mitigated depressive-like behavior and enhanced hippocampal 5-HT, NE, and DA levels in CUMS rats. TRPV2 activation countered CUMS-induced synaptic plasticity inhibition. Probenecid activated the ERK1/2-CREB-BDNF pathway, suggesting TRPV2's involvement in this pathway via ERK1/2. CONCLUSION: These findings indicate that TRPV2 activation offers protective effects against depressive-like behaviors and enhances hippocampal synaptic plasticity in CUMS rats via the ERK1/2-CREB-BDNF pathway. TRPV2 emerges as a potential therapeutic target for depression.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Hipocampo , Sistema de Señalización de MAP Quinasas , Plasticidad Neuronal , Ratas Sprague-Dawley , Estrés Psicológico , Canales Catiónicos TRPV , Animales , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Plasticidad Neuronal/efectos de los fármacos , Masculino , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Ratas , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Depresión/metabolismo , Depresión/tratamiento farmacológico , Enfermedad Crónica , Probenecid/farmacología
9.
Behav Brain Res ; 468: 115039, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38718877

RESUMEN

Chronic unpredictable mild stress (CUMS) method has been introduced as a rodent model of depression. On the other hand, olanzapine, as an antipsychotic, can induce antidepressant and antipsychotic effects. Also, olanzapine may improve cognitive functions. Both CUMS and olanzapine can also affect the expression level of brain-derived neurotrophic factor (BDNF) and synaptophysin, the molecular factors involved in synaptic function, and learning and memory. In this study, we investigated the effect of olanzapine on locomotor activity (using open field test), pain threshold (using hot plate), depressive-like behavior (using forced swim test), spatial learning and memory (using Morris water maze), and BDNF and synaptophysin hippocampal expression (using real-time PCR) in both male and female CUMS rats. CUMS was performed for three consecutive weeks. Olanzapine was also injected intraperitoneally at the dose of 5 mg/kg. Our data showed that olanzapine can reverse the effects of CUMS on behavioral functions and BDNF and synaptophysin expression levels in the hippocampus of both males and females. It was also shown that olanzapine effects on spatial memory, pain perception, and BDNF and synaptophysin level were stronger in females than males. In conclusion, we suggested that the therapeutic effects of olanzapine in CUMS rats may be closely related to the function of BDNF and synaptophysin. Also, the therapeutic effects of olanzapine may be stronger in females. Therefore, and for the first time, we showed that there may be a sex difference in the effects of olanzapine on behavioral and molecular changes following CUMS.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Depresión , Modelos Animales de Enfermedad , Hipocampo , Olanzapina , Percepción del Dolor , Memoria Espacial , Estrés Psicológico , Sinaptofisina , Animales , Femenino , Masculino , Ratas , Antipsicóticos/farmacología , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Depresión/tratamiento farmacológico , Depresión/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Olanzapina/farmacología , Percepción del Dolor/efectos de los fármacos , Percepción del Dolor/fisiología , Memoria Espacial/efectos de los fármacos , Estrés Psicológico/metabolismo , Estrés Psicológico/tratamiento farmacológico , Sinaptofisina/metabolismo , Ratas Wistar
10.
Psychoneuroendocrinology ; 165: 107046, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38626557

RESUMEN

Previous research has shown a decrease in serum testosterone levels in male patients with depression. In recent years, the results of testosterone replacement therapy (TRT) to improve depression have been mixed. Using the classic CUMS model, we induced depressive-like behaviors in rats and observed a decrease in their serum testosterone levels along with an increase in androgen receptor expression in the hippocampus. We then performed castration and sham surgery on male rats and found that testosterone deprivation led to the manifestation of depressive-like behavior that could be ameliorated by TRT. Through a repeated measures experiment consisting of five blocks over a period of 25 days, we discovered that the reduction in depressive-like behavior in testosterone-deprived rats began 22 days after drug administration (0.5 and 0.25 mg/rat). Furthermore, rats in 0.5mgT group showed the most significant improvements. Subsequently, this dose was used in CUMS rats and reduced the occurrence of depressive-like behaviors. Our study has demonstrated the complex interplay between depression and testosterone, as well as the intricate dose-response relationship between TRT and reduction in depression. Our research supports the use of TRT to alleviate depression, but dosage and duration of treatment are critical factors in determining efficacy.


Asunto(s)
Conducta Animal , Depresión , Orquiectomía , Testosterona , Animales , Masculino , Testosterona/farmacología , Testosterona/administración & dosificación , Testosterona/metabolismo , Ratas , Depresión/tratamiento farmacológico , Depresión/metabolismo , Conducta Animal/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Relación Dosis-Respuesta a Droga , Terapia de Reemplazo de Hormonas/métodos , Receptores Androgénicos/metabolismo , Receptores Androgénicos/efectos de los fármacos
11.
CNS Neurosci Ther ; 30(4): e14724, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38615365

RESUMEN

BACKGROUND: Depression is a serious mental disorder and the most prevalent cause of disability and suicide worldwide. Chronic unpredictable mild stress (CUMS) can lead to a significant acceleration of depression development. Quercetin (Que) is a flavonoid compound with a wide range of pharmacological effects. Recent studies have shown that quercetin can improve CUMS-induced depression-like behavior, but the mechanism of its improvement is still unclear. α2δ-1 is a regulatory subunit of voltage-gated calcium channel, which can interact with N-methyl-D-aspartate receptor (NMDAR) to form a complex. OBJECTIVE: In this study, we found that Que could inhibit the increase of α2δ-1 and NMDAR expression in rat hypothalamus induced by CUMS. In pain, chronic hypertension and other studies have shown that α2δ-1 interacts with the NMDAR to form a complex, which subsequently affects the expression level of NMDAR. Consequently, the present study aimed to investigate the antidepressant effect of Que in vivo and in vitro and to explore its mechanism of action in terms of the interaction between α2δ-1 and NMDAR. METHODS: Rats were randomly exposed to two stressors every day for 4 weeks to establish a CUMS rat model, then sucrose preference test (SPT), forced swimming test (FST), tail suspension test (TST), and open field test (OFT) were performed to detect the behavior of CUMS rats, so as to evaluate whether the CUMS rat model was successfully established and the improvement effect of Que on CUMS-induced depression-like behavior in rats. Experimental techniques such as serum enzyme-linked immunosorbent assay (ELISA), immunofluorescence, Western blot, and co-immunoprecipitation, as well as in vitro experiments, were used to investigate the mechanisms by which Que exerts its antidepressant effects. RESULTS: Behavioral and ELISA test results showed that Que could produce a reduction in the excitability of the hypothalamic-pituitary-adrenal (HPA) axis in CUMS rats and lead to significant improvements in their depressive behavior. Western blot, immunofluorescence, and co-immunoprecipitation experiments showed that Que produced a decrease in NMDAR1 and α2δ-1 expression levels and interfered with α2δ-1 and NMDAR1 binding. In addition, the neural regulation mechanism of Que on antidepressant effect in PC12 cells knocked out α2δ-1 gene was further verified. Cellular experiments demonstrated that Que led to a reversal of up-regulation of NMDAR1 and α2δ-1 expression levels in corticosterone-injured PC12 cells, while Que had no effects on NMDAR1 expression in PC12 cells with the α2δ-1 gene knockout. CONCLUSIONS: Que has a good antidepressant effect and can significantly improve the depression-like behavior caused by CUMS. It exerts antidepressant effects by inhibiting the expression level of α2δ-1, interfering with the interaction between α2δ-1 and NMDAR, and then reducing the excitability of the HPA axis.


Asunto(s)
Quercetina , Receptores de N-Metil-D-Aspartato , Humanos , Animales , Ratas , Quercetina/farmacología , Quercetina/uso terapéutico , Depresión/tratamiento farmacológico , Depresión/etiología , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Antidepresivos/farmacología , Antidepresivos/uso terapéutico
12.
Heliyon ; 10(7): e28582, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38586416

RESUMEN

The combination of Chaidangbo (CDB) is an antidepressant traditional Chinese medicine (TCM) prescription simplified by Xiaoyaosan (a classic antidepressant TCM prescription) through dismantling research, which has the effect of dispersing stagnated liver qi and nourishing blood in TCM theory. Although the antidepressant effect of CBD has been confirmed in animal studies, the material basis and possible molecular mechanism for antidepressant activity in CBD have not been clearly elucidated. Herein, we investigated the effects and potential mechanisms of CDB antidepressant fraction (petroleum ether fraction of CDB, PEFC) on chronic unpredictable mild stress (CUMS)-induced depression-like behavior in mice using network pharmacology and metabolomics. First, a UPLC-QE/MS was employed to identify the components of PEFC. To extract active ingredients, SwissADME screening was used to the real PEFC components that were found. Potential PEFC antidepressant targets were predicted based on a network pharmacology approach, and a pathway enrichment analysis was performed for the predicted targets. Afterward, a CUMS mouse depression model was established and LC-MS-based untargeted hippocampal metabolomics was performed to identify differential metabolites, and related metabolic pathways. Finally, the protein expressions in mouse hippocampi were determined by Western blot to validate the network pharmacology and metabolomics deduction. A total of 16 active compounds were screened in SwissADME that acted on 73 core targets of depression, including STAT3, MAPKs, and NR3C1; KEGG enrichment analysis showed that PEFC modulated signaling pathways such as PI3K-Akt signaling pathway, endocrine resistance, and MAPK to exert antidepressant effects. PEFC significantly reversed abnormalities of hippocampus metabolites in CUMS mice, mainly affecting the synthesis and metabolism of glycine, serine, and threonine, impacting catecholamine transfer and cholinergic synapses and regulating the activity of the mTOR signaling pathway. Furthermore, Western blot analysis confirmed that PEFC significantly influenced the main protein levels of the PI3K/Akt/mTOR signaling pathways in the hippocampus of mice subjected to CUMS. This study integrated metabolomics, network pharmacology and biological verification to explore the potential mechanism of PEFC in treating depression, which is related to the regulation of amino acid metabolism dysfunction and the activation of PI3K/Akt/mTOR signaling pathways in the hippocampus. The comprehensive strategy also provided a reasonable way for unveiling the pharmacodynamic mechanisms of multi-components, multi-targets, and multi-pathways in TCM with antidepressant effect.

13.
Int. j. morphol ; 42(2): 470-478, abr. 2024. ilus
Artículo en Inglés | LILACS | ID: biblio-1558149

RESUMEN

SUMMARY: We evaluated the role and mechanism of acteoside in the regulation of memory impairment induced by chronic unpredictable mild stress (CUMS). CUMS was used to induce depression in rats and the successful establishment of CUMS model were verified by forced swimming test and sucrose preference test. The Y-maze test and novel object recognition test assessed memory functions. The structural changes in the cortex and hippocampus were observed by hematoxylin and eosin (HE) staining. Immunofluorescence staining and western blotting determined the protein levels. Y-maze test and novel object recognition test showed that there was memory performance impairment in rats of CUMS group, which was improved by the acteoside treatment. HE staining showed that CUMS exposure damaged the structure in the cortex and hippocampus, while the acteoside treatment alleviated the structural changes. Compared with the control group, the levels of BNDF and CREB in the cortex and hippocampus of the CUMS group were significantly decreased. Acteoside significantly reversed the expressions of these proteins in CUMS rats. Meanwhile, compared with the control group, the levels of p-mTOR and p- P70S6K in the cortex and hippocampus of the CUMS group were significantly increased, and these changes were significantly reversed by acteoside. Nevertheless, the effect of acteoside on mTOR signaling was markedly blocked by rapamycin, a specific inhibitor of mTOR signaling. Acteoside can attenuate memory impairment and ameliorate neuronal damage and synaptic plasticity in depression rats probably via inhibiting the mTOR signaling pathway. Acteoside may serve as a novel reagent for the prevention of depression.


Evaluamos el papel y el mecanismo del acteoside en la regulación del deterioro de la memoria inducido por estrés leve crónico impredecible (ELCI). Se utilizó ELCI para inducir depresión en ratas y el establecimiento exitoso del modelo ELCI se verificó mediante una prueba de natación forzada y una prueba de preferencia de sacarosa. La prueba del laberinto en Y y la prueba de reconocimiento de objetos novedosos evaluaron las funciones de la memoria. Los cambios estructurales en la corteza y el hipocampo se observaron mediante tinción con hematoxilina y eosina (HE). La tinción por inmunofluorescencia y la transferencia Western determinaron los niveles de proteína. La prueba del laberinto en Y y la prueba de reconocimiento de objetos novedosos mostraron que había un deterioro del rendimiento de la memoria en ratas del grupo ELCI, que mejoró con el tratamiento con acteósidos. La tinción con HE mostró que la exposición a ELCI dañó la estructura de la corteza y el hipocampo, mientras que el tratamiento con actósidos alivió los cambios estructurales. En comparación con el grupo de control, los niveles de BNDF y CREB en la corteza y el hipocampo del grupo ELCI disminuyeron significativamente. Acteoside revirtió significativamente las expresiones de estas proteínas en ratas ELCI. Mientras tanto, en comparación con el grupo control, los niveles de p-mTOR y p-P70S6K en la corteza y el hipocampo del grupo ELCI aumentaron significativamente, y estos cambios fueron revertidos significativamente ELCI por el acteoside. Sin embargo, el efecto del acteoside sobre la señalización de mTOR fue notablemente bloqueado por la rapamicina, un inhibidor específico de la señalización de mTOR. El acteoside puede atenuar el deterioro de la memoria y mejorar el daño neuronal y la plasticidad sináptica en ratas con depresión, probablemente mediante la inhibición de la vía de señalización mTOR. Acteoside puede servir como un reactivo novedoso para la prevención de la depresión.


Asunto(s)
Animales , Ratas , Depresión/tratamiento farmacológico , Polifenoles/administración & dosificación , Glucósidos/administración & dosificación , Trastornos de la Memoria/tratamiento farmacológico , Estrés Psicológico/complicaciones , Western Blotting , Técnica del Anticuerpo Fluorescente , Ratas Sprague-Dawley , Aprendizaje por Laberinto , Reconocimiento en Psicología/efectos de los fármacos , Modelos Animales de Enfermedad , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Polifenoles/uso terapéutico , Escala de Evaluación de la Conducta , Inhibidores mTOR , Glucósidos/uso terapéutico , Plasticidad Neuronal/efectos de los fármacos , Neuronas
14.
Behav Brain Res ; 465: 114962, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38499157

RESUMEN

BACKGROUND: Mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in the hippocampus of patients with depression, while pharmacological inhibition of hippocampal MKP1 can mitigate depression-like behaviors in rodents. In addition, MAPK signaling regulates autophagy, and antidepressants were recently shown to target autophagic signaling pathways. We speculated that MKP1 contributes to depression by enhancing hippocampal autophagy through dephosphorylation of the MAPK isoform ERK1/2. METHODS: We established a rat depression model by exposure to chronic unpredictable mild stress (CUMS), and then examined depression-like behaviors in the sucrose preference test (SPT) and forced swimming test (FST) as well as expression changes in hippocampal MKP1, ERK1/2, phosphorylated ERK1/2, and autophagy-related proteins LC3II by Western blotting and immunostaining. These same measurements were repeated in rats exposed to CUMS following hippocampal infusion of a MKP1-targeted shRNA. Finally, the effects of MKP1 expression level on autophagy we examined in rat GMI-R1 microglia. RESULTS: CUMS-exposed rats demonstrated anhedonia in the SPT and helplessness in the FST, two core depression-like behaviors. Expression levels of MKP1 and LC3II were upregulated in the hippocampus of CUMS rats, suggesting enhanced autophagy, while pERK/ERK was downregulated. Knockdown of hippocampal MKP1 mitigated depression-like behaviors, downregulated hippocampal LC3II expression, and upregulated hippocampal pERK/ERK. Similarly, MKP1 knockdown in GMI-R1 cells upregulated pERK/ERK and reduced the number of LC3II autophagosomes, while MKP1 overexpression had the opposite effects. CONCLUSION: Enhanced hippocampal autophagy via MKP1-mediated ERK dephosphorylation may contribute to the development of depression.


Asunto(s)
Depresión , Hipocampo , Animales , Ratas , Antidepresivos/farmacología , Autofagia , Depresión/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Transducción de Señal , Estrés Psicológico/metabolismo
15.
J Ethnopharmacol ; 328: 118007, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38492791

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rosa damascena is an ancient plant with significance in both medicine and perfumery that have a variety of therapeutic properties, including antidepressant, anti-anxiety, and anti-stress effects. Rose damascena essential oil (REO) has been used to treat depression, anxiety and other neurological related disorders in Iranian traditional medicine. However, its precise mechanism of action remains elusive. AIM OF THE STUDY: The aim of this study was to investigate the impact and mechanism underlying the influence of REO on chronic unpredictable mild stress (CUMS) rats. MATERIALS AND METHODS: Gas chromatography-mass spectrometry (GC-MS) technique coupling was used to analyze of the components of REO. A CUMS rat model was replicated to assess the antidepressant effects of varying doses of REO. This assessment encompassed behavioral evaluations, biochemical index measurements, and hematoxylin-eosin staining. For a comprehensive analysis of hippocampal tissues, we employed transcriptomics and incorporated weighting coefficients by means of network pharmacology. These measures allowed us to explore differentially expressed genes and biofunctional pathways affected by REO in the context of depression treatment. Furthermore, GC-MS metabolomics was employed to assess metabolic profiles, while a joint analysis in Metscape facilitated the construction of a network elucidating the links between differentially expressed genes and metabolites, thereby elucidating potential relationships and clarifying key pathways regulated by REO. Finally, the expression of relevant proteins in the key pathways was determined through immunohistochemistry and Western blot analysis. Molecular docking was utilized to investigate the interactions between active components and key targets, thereby validating the experimental results. RESULTS: REO alleviated depressive-like behavior, significantly elevated levels of the neurotransmitter 5-hydroxytryptamine (5-HT), and reduced hippocampal neuronal damage in CUMS rats. This therapeutic effect may be associated with the modulation of the serotonergic synapse signaling pathway. Furthermore, REO rectified metabolic disturbances, primarily through the regulation of amino acid metabolic pathways. Joint analysis revealed five differentially expressed genes (EEF1A1, LOC729197, ATP8A2, NDST4, and GAD2), suggesting their potential in alleviating depressive symptoms by modulating the serotonergic synapse signaling pathway and tryptophan metabolism. REO also modulated the 5-HT2A-mediated extracellular regulated protein kinases-cAMP-response element binding protein-brain-derived neurotrophic factor (ERK-CREB-BDNF) pathway. In addition, molecular docking results indicated that citronellol, geraniol and (E,E)-farnesol in REO may serve as key active ingredients responsible for its antidepressant effects. CONCLUSIONS: This study is the first to report that REO can effectively alleviate CUMS-induced depression-like effects in rats. Additionally, the study offers a comprehensive understanding of its intricate antidepressant mechanism from a multi-omics and multi-level perspective. Our findings hold promise for the clinical application and further development of this essential oil.


Asunto(s)
Rosa , Ratas , Animales , Serotonina/metabolismo , Irán , Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Depresión/metabolismo , Transducción de Señal , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Sinapsis/metabolismo , Estrés Psicológico/tratamiento farmacológico , Hipocampo , Modelos Animales de Enfermedad
16.
J Affect Disord ; 354: 752-764, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537753

RESUMEN

BACKGROUND: Depression affects a significant portion of the global population and has emerged as one of the most debilitating conditions worldwide. Recent studies have explored the relationship between depression and the microbiota of the intestine, revealing potential avenues for effective treatment. METHODS: To evaluate the potential alleviation of depression symptoms, we employed a depression C57BL/6 mice model induced by chronic unpredictable mild stress (CUMS). We administered Lactiplantibacillus plantarum JYLP-326 and conducted various animal behavior tests, including the open-field test (OFT), sucrose preference test (SPT), and tail-suspension test (TST). Additionally, we conducted immunohistochemistry staining and analyzed the hippocampal and colon parts of the mice. RESULTS: The results of the behavior tests indicated that L. plantarum JYLP-326 alleviated spontaneous behavior associated with depression. Moreover, the treatment led to significant improvements in GFAP and Iba1, suggesting its potential neuroprotective effects. Analysis of the hippocampal region indicated that L. plantarum JYLP-326 administration upregulated p-TPH2, TPH2, and 5-HT1AR, while downregulating the expression of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α. In the colon, the treatment inhibited the TLR4-MyD88-NF-κB pathway and increased the levels of occludin and ZO-1, indicating improved intestinal barrier function. Additionally, the probiotic demonstrated a regulatory effect on the HMGB1-RAGE-TLR4 signaling pathway. CONCLUSIONS: Our findings demonstrate that L. plantarum JYLP-326 exhibits significant antidepressant-like effects in mice, suggesting its potential as a therapeutic approach for depression through the modulation of gut microbiota. However, further investigations and clinical trials are required to validate its safety and efficacy for human use.


Asunto(s)
Depresión , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Depresión/tratamiento farmacológico , Depresión/etiología , Receptor Toll-Like 4/metabolismo , Disbiosis/tratamiento farmacológico , Disbiosis/metabolismo , Ratones Endogámicos C57BL , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo , Hipocampo/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad
17.
J Cell Mol Med ; 28(8): e18178, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38553964

RESUMEN

Bergamot essential oil (BEO) is an extract of the bergamot fruit with significant neuroprotective effect. This study was to investigate the effects and the underlying mechanism of BEO in mitigating depression. GC-MS were used to identify its constituents. Antidepressive properties of BEO were evaluated by sucrose preference test (SPT), force swimming test (FST) and open field test (OFT). Nissl staining was used to determine the number of Nissl bodies in hippocampus (HIPP) of rats. Changes in HIPP dendritic length and dendritic spine density were detected by Golgi-Cox staining. Immunohistochemistry and Western blot were used to detect the postsynaptic density protein-95 (PSD-95) and synaptophysin (SYP) in the HIPP of rats. The enzyme-linked immunosorbent assay was used to determine the 5-hydroxytryptamine (5-HT), insulin-like growth factor 1 (IGF-1) and interleukin-1ß (IL-1ß) in the HIPP, serum and cerebrospinal fluid (CSF) of rats. Inhaled BEO significantly improved depressive behaviour in chronic unpredictable mild stress (CUMS) rats. BEO increased Nissl bodies, dendritic length and spine density, PSD-95 and SYP protein in the HIPP. Additionally, BEO upregulated serum 5-HT, serum and CSF IGF-1, while downregulating serum IL-1ß. Collectively, inhaled BEO mitigates depression by protecting the plasticity of hippocampal neurons, hence, providing novel insights into treatment of depression.


Asunto(s)
Depresión , Aceites Volátiles , Ratas , Animales , Depresión/tratamiento farmacológico , Depresión/etiología , Depresión/metabolismo , Aceites Volátiles/farmacología , Aceites Volátiles/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Serotonina/metabolismo , Hipocampo/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Neuronas/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/tratamiento farmacológico , Modelos Animales de Enfermedad , Conducta Animal
18.
Biomed Pharmacother ; 173: 116425, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490155

RESUMEN

Depression is a common mental health disorder, and in recent years, the incidence of various forms of depression has been on the rise. Most medications for depression are highly dependency-inducing and can lead to relapse upon discontinuation. Therefore, novel treatment modalities and therapeutic targets are urgently required. Traditional Chinese medicine (TCM) offers advantages in the treatment of depression owing to its multi-target, multi-dimensional approach that addresses the root cause of depression by regulating organ functions and balancing Yin and Yang, with minimal side effects. Cynaroside (CNS), an extract from the traditional Chinese herb honeysuckle, is a flavonoid compound with antioxidant properties. In this study, network pharmacology identified 44 potential targets of CNS associated with depression and several highly correlated inflammatory signaling pathways. CNS alleviated LPS-induced M1 polarization and the release of inflammatory factors in BV-2 cells. Transcriptomic analysis and validation revealed that CNS reduced inflammatory polarization, lipid peroxidation, and ferroptosis via the IRF1/SLC7A11/GPX4 signaling pathway. In vivo experiments showed that CNS treatment had effects similar to those of fluoxetine (FLX). It effectively ameliorated anxiety-, despair-, and anhedonia-like states in chronic unpredictable mild stress (CUMS)-induced mice and reduced microglial activation in the hippocampus. Thus, we conclude that CNS exerts its therapeutic effect on depression by inhibiting microglial cells from polarizing into the M1 phenotype and reducing inflammation and ferroptosis levels. This study provides further evidence that CNS is a potential antidepressant, offering new avenues for the treatment of depression.


Asunto(s)
Depresión , Ferroptosis , Glucósidos , Luteolina , Ratones , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Microglía/metabolismo , Hipocampo , Conducta Animal , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Estrés Psicológico/tratamiento farmacológico , Modelos Animales de Enfermedad
19.
Front Behav Neurosci ; 18: 1358964, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510829

RESUMEN

Introduction: Depressive-like behavior has been shown to be associated with liver damage. This study aimed to evaluate the impact of three different models of depression on the behavior of mice with liver injury. Methods: During the 4 weeks of methionine/choline deficiency diet (MCD), adult C57BL/6 mice were randomly divided into four groups: MCD (no stress protocol, n = 6), chronic unpredictable mild stress (CUMS, n = 9), acute and repeated forced swim stress [aFSS (n = 9) and rFSS (n = 9)]. Results: All depression protocols induced increased anhedonia and anxiety-like behavior compared to baseline and had no impact on the severity of liver damage, according to ultrasonography. However, different protocols evoked different overall behavior patterns. After the depressive-like behavior induction protocols, animals subjected to aFSS did not exhibit anxiety-like behavior differences compared to MCD animals, while mice subjected to CUMS showed additional weight loss compared to FSS animals. All tested protocols for inducing depressive-like behavior decreased the short-term memory of mice with liver damage, as assessed by the novel object recognition test (NORT). Discussion: Our results show that the use of all protocols seems to generate different levels of anxiety-like behavior, but only the depressive-like behavior induction procedures associate additional anhedonia and memory impairment in mice with liver injury.

20.
Biochem Biophys Res Commun ; 704: 149706, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38432144

RESUMEN

Glioma patients often undertake psychiatric disorders such as depression and anxiety. There are several clinical epidemiological studies on glioma-associated depression, but basic research and corresponding animal experiments are still lacking. Here, we observed that glioma-bearing mice exhibited atypical depression-like behaviors in orthotopic glioma mouse models. The concentrations of monoamine neurotransmitters were detected by enzyme-linked immunosorbent assay (ELISA), revealing a decrease in 5-hydroxytryptamine (5-HT) levels in para-glioma tissues. The related gene expression levels also altered, detected by quantitative RT-PCR. Then, we developed a glioma-depression comorbidity mouse model. Through sucrose preference test (SPT), forced swimming test (FST), tail suspension test (TST) and other tests, we found that the occurrence of glioma could lead to changes in depression-like behaviors in a chronic unpredictable mild stress (CUMS) mouse model. The results of RNA sequencing (RNA-seq) indicated that the altered expression of glutamatergic synapse related genes in the paratumor tissues might be one of the main molecular features of the comorbidity model. Our findings suggested that the presence of glioma caused and altered depression-like behaviors, which was potentially related to the 5-HT and glutamatergic synapse pathways.


Asunto(s)
Depresión , Serotonina , Humanos , Ratones , Animales , Depresión/metabolismo , Serotonina/metabolismo , Antidepresivos/farmacología , Conducta Animal , Natación , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA