Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Food Chem Toxicol ; 186: 114559, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432436

RESUMEN

Norflurazon, an inhibitor of carotenoid synthesis, is a pre-emergent herbicide that prevents growth of weeds. The norflurazon is known to hamper embryo development in non-mammals. However, specific toxic effects of norflurazon on mammalian maternal and fetal cells have not been elucidated. Thus, the hypothesis of this study is that norflurazon may influence the toxic effects between maternal and fetal cells during early pregnancy in pigs. We aimed to examine the toxic effects of norflurazon in porcine trophectoderm (Tr) and uterine luminal epithelium (LE) cells. Norflurazon, administered at 0, 20, 50 or 100 µM for 48 h was used to determine its effects on cell proliferation and cell-cycle arrest. For both uterine LE and Tr cell lines, norflurazone caused mitochondrial dysfunction by inhibiting mitochondrial respiration and ATP production, and down-regulated expression of mRNAs of mitochondrial complex genes. Norflurazon increased cell death by increasing intracellular calcium and regulating PI3K and MAPK cell signaling pathways, as well as endoplasmic reticulum (ER) stress, ER-mitochondrial contact, and autophagy-related target proteins. Norflurazone also inhibited expression of genes required for implantation of blastocysts, including SMAD2, SMAD4, and SPP1. These findings indicate that norflurazon may induce implantation failure in pigs and other mammals through adverse effects on both Tr and uterine LE cells.


Asunto(s)
Implantación del Embrión , Piridazinas , Útero , Embarazo , Femenino , Porcinos , Animales , Útero/metabolismo , Muerte Celular , Células Epiteliales , Endometrio/metabolismo , Mamíferos
2.
Nutrition ; 115: 112117, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37531790

RESUMEN

OBJECTIVES: During musculoskeletal development, the vitamin D endocrine system is crucial, because vitamin D-dependent calcium absorption is a major regulator of bone growth. Because exercise regimens depend on bone mass, the direct action of active vitamin D (1,25-dihydroxyvitamin D3 [1,25(OH)2D3]) on musculoskeletal performance should be determined. METHODS: To evaluate the effect of 1,25(OH)2D3 on muscle tissue, the vitamin D receptor (Vdr) gene was genetically inactivated in mouse skeletal muscle and the role of 1,25(OH)2D3-VDR signaling on locomotor function was assessed. The direct action of 1,25(OH)2D3 on muscle development was determined using cultured C2C12 cells with myogenic differentiation. RESULTS: The lack of Vdr activity in skeletal muscle decreased spontaneous locomotor activity, suggesting that the skeletal muscle performance depended on 1,25(OH)2D3-VDR signaling. Bone phenotypes, reduced femoral bone mineral density, and accelerated osteoclast bone resorption were confirmed in mice lacking skeletal muscle Vdr activity. In vitro study revealed that the treatment with 1,25(OH)2D3 decreased the cellular adenosine triphosphate (ATP)-to-adenosine monophosphate ratio without reducing ATP production. Remarkably, protein expressions of connexin 43, an ATP releaser to extracellular space, and ATP metabolizing enzyme ectonucleotide pyrophosphatase phosphodiesterase 1 were increased responding to 1,25(OH)2D3 treatment. Furthermore, the concentration of pyrophosphate in the culture medium, which inhibits tissue calcification, was increased with 1,25(OH)2D3 treatment. In the presence of 1,25(OH)2D3-VDR signaling, calcium accumulation was suppressed in both muscle samples isolated from mice and in cultured C2C12 cells. CONCLUSIONS: This study dissected the physiological functions of 1,25(OH)2D3-VDR signaling in muscle and revealed that regulation of ATP dynamics is involved in sustaining locomotor function.

3.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35743111

RESUMEN

For the industrial-scale production of useful enzymes by microorganisms, technological development is required for overcoming a technical bottleneck represented by poor efficiency in the induction of enzyme gene expression and secretion. In this study, we evaluated the potential of a non-thermal atmospheric pressure plasma jet to improve the production efficiency of cellulolytic enzymes in Neurospora crassa, a filamentous fungus. The total activity of cellulolytic enzymes and protein concentration were significantly increased (1.1~1.2 times) in media containing Avicel 24-72 h after 2 and 5 min of plasma treatment. The mRNA levels of four cellulolytic enzymes in fungal hyphae grown in media with Avicel were significantly increased (1.3~17 times) 2-4 h after a 5 min of plasma treatment. The levels of intracellular NO and Ca2+ were increased in plasma-treated fungal hyphae grown in Avicel media after 48 h, and the removal of intracellular NO decreased the activity of cellulolytic enzymes in media and the level of vesicles in fungal hyphae. Our data suggest that plasma treatment can promote the transcription and secretion of cellulolytic enzymes into the culture media in the presence of Avicel (induction condition) by enhancing the intracellular level of NO and Ca2+.


Asunto(s)
Celulasa , Neurospora crassa , Celulasa/metabolismo , Celulosa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Neurospora crassa/genética
4.
J Appl Glycosci (1999) ; 67(3): 67-72, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34354531

RESUMEN

Phosphoryl oligosaccharides of calcium (POs-Ca) is a calcium salt of phosphoryl maltooligosaccharides made from potato starch. POs-Ca is highly water-soluble and can supply both the calcium ion and acidic oligosaccharides in an aqueous solution. In this study, we investigated the effects of POs-Ca on the mycelial growth and fruiting body yield of Pleurotus ostreatus , which is one of the most widely cultivated edible mushrooms in the world. We cultivated the mushroom using both potato dextrose agar (PDA) medium and sawdust-based medium, with added calcium salts. The addition of POs-Ca into the PDA medium with a calcium concentration of 10 mg increased mycelial growth significantly ( p < 0.05, vs . control). POs-Ca addition to the sawdust-based medium at concentrations of 1.0 to 3.0 g/100 g medium increased the amount of calcium in the fruiting bodies but did not affect the length of the cultivation period or the weight of the fruiting body. The calcium content in the fruiting body increased 12-fold when compared to the control. On the other hand, neither the CaHPO 4 ï½¥2H 2 O group nor the CaHPO 4 ï½¥2H 2 O with oligosaccharides group showed changes in the calcium content of the fruiting bodies. Our results indicate that the use of POs-Ca in mushroom cultivation allows for the possibility of developing new functional foods like calcium-enriched edible mushrooms. This is the first report describing the effects of POs-Ca on mushroom cultivation.

5.
Environ Sci Pollut Res Int ; 25(34): 34753-34764, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30324375

RESUMEN

A field study was conducted along a fluorine gradient of soil pollution in Tunisia from Gabes, the most polluted site, to Smara, the reference site. Variations of fluoride (F) concentrations in soils were detected over 1 year in Gabes, Skhira, and Smara. F concentrations in the aerial part of two native plant species, i.e., Erodium glaucophyllum and Rhanterium suaveolens, were above the usual background concentrations. Bioaccumulation factors ranged from 0.08 to 1.3. With F concentrations in aerial parts up to 355 mg kg-1, both species may be described as F accumulators. Both species showed an earlier vegetative growth in Gabes than in Smara. However, some difference between their strategies could be observed, i.e., E. glaucophyllum shortening the period of its vegetative growth with an escape strategy and R. suaveolens decreasing its ratio of alive/dead parts potentially lowering the F toxicity by storage in dead cells. However, at a tissue level, mechanisms of tolerance were similar. Leaf section micrographs of both species showed a higher calcium accumulation in leaf midveins at Gabes than at Smara, confirming the role of calcium in plant F tolerance strategies.


Asunto(s)
Asteraceae/efectos de los fármacos , Fluoruros/análisis , Flúor/toxicidad , Geraniaceae/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Asteraceae/metabolismo , Calcio/metabolismo , Microanálisis por Sonda Electrónica , Fluoruros/farmacocinética , Flúor/análisis , Flúor/farmacocinética , Geraniaceae/metabolismo , Región Mediterránea , Microscopía Electrónica de Rastreo , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/farmacocinética , Túnez
6.
Plant Cell Environ ; 41(3): 605-619, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29314084

RESUMEN

Plants allocate nutrients to specific leaf cell types; eudicots are thought to predominantly allocate phosphorus (P) to epidermal/bundle sheath cells. However, three Proteaceae species have been shown to preferentially allocate P to mesophyll cells instead. These Proteaceae species are highly adapted to P-impoverished habitats, with exceptionally high photosynthetic P-use efficiencies (PPUE). We hypothesized that preferential allocation of P to photosynthetic mesophyll cells is an important trait in species adapted to extremely P-impoverished habitats, contributing to their high PPUE. We used elemental X-ray mapping to determine leaf cell-specific nutrient concentrations for 12 Proteaceae species, from habitats of strongly contrasting soil P concentrations, in Australia, Brazil, and Chile. We found that only species from extremely P-impoverished habitats preferentially allocated P to photosynthetic mesophyll cells, suggesting it has evolved as an adaptation to their extremely P-impoverished habitat and that it is not a family-wide trait. Our results highlight the possible role of soil P in driving the evolution of ecologically relevant nutrient allocation patterns and that these patterns cannot be generalized across families. Furthermore, preferential allocation of P to photosynthetic cells may provide new and exciting strategies to improve PPUE in crop species.


Asunto(s)
Adaptación Fisiológica , Calcio/metabolismo , Fósforo/metabolismo , Proteaceae/fisiología , Australia , Brasil , Chile , Ecosistema , Células del Mesófilo/metabolismo , Fósforo/análisis , Fósforo/farmacocinética , Fotosíntesis , Hojas de la Planta/anatomía & histología , Hojas de la Planta/metabolismo , Transpiración de Plantas , Proteaceae/citología , Suelo/química
7.
Methods Mol Biol ; 1377: 157-60, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26695030

RESUMEN

The SERCA isoform 1a is constructed to transport 2 Ca(2+) ions across the sarcoplasmic reticulum membrane coupled to the hydrolysis of one molecule of MgATP. However, observed coupling ratios for Ca(2+) transported/ATP hydrolzyed are usually less than 2:1, since part of the Ca(2+) accumulated at high intravesicular concentrations by the active transport of Ca(2+) leaks out of the vesicles because of Ca(2+)-induced Ca(2+) exchange. However, in the presence of a high concentration of oxalate (5 mM) Ca(2+) will precipitate as Ca-oxalate inside the vesicles and thereby be prevented from leaking out and, in addition, this treatment will reduce the intravesicular free concentration of Ca(2+) to a level where optimal coupling ratios of 2:1 can be achieved.


Asunto(s)
Adenosina Trifosfato/química , Calcio/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Adenosina Trifosfato/metabolismo , Animales , Oxalato de Calcio/química , Señalización del Calcio , Hidrólisis , Retículo Sarcoplasmático/química , Retículo Sarcoplasmático/enzimología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA