Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Heliyon ; 10(19): e38105, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39386832

RESUMEN

A series of novel N,2-diphenyl-6-(aryl/heteroaryl)quinoline-4-carboxamide derivatives were designed and synthesized using the Suzuki coupling reaction and evaluated them for their anticancer activity. These compounds were screened for anti-colon cancer activity through in-silico studies by molecular docking and molecular dynamics studies. Furthermore, the density functional theory was used to determine the molecule's electrical properties. The molecular electrostatic potential map is used to evaluate the charge distribution on the molecule surface. Unveiling that the compound 7a (binding energy of -10.2 kcal/mol) has good inhibition activity compared to other synthesized compounds (7b-7j) as well as the standard drug Gefitinib. The stability of the compound 7a with the 1OKY protein was confirmed through molecular dynamics simulation studies, indicating potential anti-colon cancer activity against phosphoinositide dependent protein kinase-1 (PDK1). The in-silico ADMET pharmacokinetic properties indicate adherence to Lipinski's rule of five for favorable safety profiles and the compound falls within the optimal range for physicochemical and pharmacokinetic properties, which is comparable to that of the standard medication drug Gefitinib. The synthesized library of compounds was further evaluated for their in-vitro anticancer potency against colon, pancreatic and breast cancer cells. The results demonstrated that the compounds effectively suppressed the proliferative potential of the screened cells in a concentration-dependent manner, as revealed by MTT assay. The anticancer potential of these molecules was further evaluated by acridine orange/PI, and Hoechst/PI which demonstrates the potential of molecules to induce apoptosis in cancer cells. Further investigations and optimization of these derivatives could lead to the development of effective anticancer strategies.

2.
BMC Cancer ; 24(1): 1213, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350056

RESUMEN

BACKGROUND: The main challenge in treating ovarian cancer is chemotherapy resistance. Previous studies have shown that PAK2 is highly expressed in various cancers. This research investigates whether increased PAK2 expression contributes to chemo-resistance and poor prognosis in ovarian cancer. METHODS: Initially, bioinformatics analysis was used to assess the importance of PAK2 mRNA up-regulation in ovarian cancer. This was then validated using tissue microarray to confirm PAK2 protein expression and localization in clinical samples. Univariate and multivariate logistic regression analyses were carried out to identify potential risk factors for chemo-resistance in serous epithelial ovarian cancer (EOC), while multivariate Cox regression and Kaplan-Meier analysis were conducted to ascertain prognostic factors for overall survival (OS) and disease-free survival (DFS) in patients with serous EOC. In vitro experiments were conducted to verify if inhibiting PAK2 expression could increase A2780/Taxol cells' sensitivity to paclitaxel, as shown by evaluating cell proliferation, apoptosis, transwell, and clone formation. Additionally, the interaction between PAK2, lnc-SNHG1, and miR-216b-5p was verified using RIP and luciferase reporter assays. Rescue experiments were undertaken to examine the influence of the lnc-SNHG1/miR-216b-5p/PAK2 axis on the development of paclitaxel resistance in A2780/Taxol cells. RESULTS: The bioinformatics analysis indicated a notable increase in PAK2 expression in ovarian malignant tumors compared to adjacent tissues, particularly in patients with stage III-IV disease compared to those with stage I-II disease (P = 0.0056). Elevated levels of PAK2 were linked to reduced OS in ovarian cancer patients, although no significant association was observed with DFS. Immunohistochemistry findings further supported these results, showing positive PAK2 protein expression in chemo-resistant serous EOC tissues, predominantly localized in the cytoplasm, which correlated with poorer OS and DFS outcomes. In vitro experiments demonstrated that the downregulation of PAK2 in A2780/Taxol cells led to a reduction in colony formation, an increase in apoptosis, and a diminished capacity for cell invasion. Subsequent analysis confirmed that lnc-SNHG1 functions as a competitive endogenous RNA (ceRNA) by interacting with miR-216b-5p and regulating PAK2 expression. Rescue experiments demonstrated that lnc-SNHG1 induces resistance to paclitaxel in A2780/Taxol cells by modulating the miR-216b-5p/PAK2 axis. CONCLUSIONS: PAK2 shows promise as a predictor of chemotherapy resistance and poor outcomes in ovarian cancer, indicating its potential use as a treatment target to overcome this resistance.


Asunto(s)
Carcinoma Epitelial de Ovario , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , MicroARNs , Neoplasias Ováricas , Paclitaxel , Quinasas p21 Activadas , Humanos , Quinasas p21 Activadas/metabolismo , Quinasas p21 Activadas/genética , Femenino , Resistencia a Antineoplásicos/genética , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/mortalidad , Pronóstico , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/patología , Carcinoma Epitelial de Ovario/mortalidad , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Persona de Mediana Edad , Proliferación Celular , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Apoptosis/efectos de los fármacos , Regulación hacia Arriba
3.
Transl Oncol ; 49: 102082, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39126936

RESUMEN

BACKGROUND: The mechanisms by which SLC2A1 enhances chemo-resistance of taxanes to non-small cell lung cancer (NSCLC) remains enigmatic. METHODS: An investigation into the SLC2A1 expression pattern and prognosis across diverse datasets, as well as our internally collected samples, was undertaken. Additionally, the biological function of SLC2A1 was further delved into through in vitro experiments. The study also examined the chemo-resistance of NSCLC to taxanes using CCK-8, Annexin-V, and caspase-3 assays. Furthermore, the impact of taxanes on SLC2A1 expression was determined via western blot analysis. The effects of SLC2A1 on the formation of CSCs was examined via flow cytometry and metabolomics techniques. Finally, the impact of SLC2A1 on the tumor microenvironment was analyzed using single-cell sequencing and cellchat. RESULTS: In the present investigation, it was observed that there was an elevated expression of SLC2A1 in NSCLC tumor tissues, which exhibited a significant association with a poorer prognosis. SLC2A1 overexpression in vitro promoted NSCLC cell proliferation, invasion, migration, chemo-resistance, and the formation of CD90+ and EpCAM+ CSCs. NSCLC cells were categorized based on SLC2A1 and EpCAM expression. SLC2A1highEpCAM+ CSCs were more chemo-resistance to taxanes. NSCLC patients with high SLC2A1 and EpCAM expression had poorer prognosis. Mechanically, SLC2A1 promoted the formation of CD90+ and EpCAM+ CSCs via activating glycolysis. Finally, SLC2A1low tumor cells promoted CD8+T cell function via HLA-A, B, C, and suppressed NK cell function via HLA-E. CONCLUSION: Together, SLC2A1 plays an important role in enhancing chemo-resistance of taxanes to NSCLC.

4.
J Exp Clin Cancer Res ; 43(1): 222, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39123206

RESUMEN

BACKGROUND: The mechanisms enabling dynamic shifts between drug-resistant and drug-sensitive states in cancer cells are still underexplored. This study investigated the role of targeted autophagic protein degradation in regulating ovarian cancer stem cell (CSC) fate decisions and chemo-resistance. METHODS: Autophagy levels were compared between CSC-enriched side population (SP) and non-SP cells (NSP) in multiple ovarian cancer cell lines using immunoblotting, immunofluorescence, and transmission electron microscopy. The impact of autophagy modulation on CSC markers and differentiation was assessed by flow cytometry, immunoblotting and qRT-PCR. In silico modeling and co-immunoprecipitation identified ID1 interacting proteins. Pharmacological and genetic approaches along with Annexin-PI assay, ChIP assay, western blotting, qRT-PCR and ICP-MS were used to evaluate effects on cisplatin sensitivity, apoptosis, SLC31A1 expression, promoter binding, and intracellular platinum accumulation in ID1 depleted backdrop. Patient-derived tumor spheroids were analyzed for autophagy and SLC31A1 levels. RESULTS: Ovarian CSCs exhibited increased basal autophagy compared to non-CSCs. Further autophagy stimulation by serum-starvation and chemical modes triggered proteolysis of the stemness regulator ID1, driving the differentiation of chemo-resistant CSCs into chemo-sensitive non-CSCs. In silico modeling predicted TCF12 as a potent ID1 interactor, which was validated by co-immunoprecipitation. ID1 depletion freed TCF12 to transactivate the cisplatin influx transporter SLC31A1, increasing intracellular cisplatin levels and cytotoxicity. Patient-derived tumor spheroids exhibited a functional association between autophagy, ID1, SLC31A1, and platinum sensitivity. CONCLUSIONS: This study reveals a novel autophagy-ID1-TCF12-SLC31A1 axis where targeted autophagic degradation of ID1 enables rapid remodeling of CSCs to reverse chemo-resistance. Modulating this pathway could counter drug resistance in ovarian cancer.


Asunto(s)
Autofagia , Resistencia a Antineoplásicos , Proteína 1 Inhibidora de la Diferenciación , Células Madre Neoplásicas , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Proteína 1 Inhibidora de la Diferenciación/genética , Línea Celular Tumoral , Cisplatino/farmacología
5.
Acta Med Philipp ; 58(11): 90-98, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006993

RESUMEN

This is the first reported case of the use of immunotherapy in chemo-resistant Gestational Trophoblastic Neoplasia (GTN) in the country. A 41-year-old, Gravida 4 Para 3 (3013) with a diagnosis of GTN, Stage III: WHO risk score of 13 (Choriocarcinoma) was initially managed with 10 cycles of multiple agent Etoposide, Methotrexate, Actinomycin D-Cyclophosphomide and Vincristine (EMACO) and 19 cycles of Etoposide, Cisplatin-Etoposide Methotrexate and Actinomycin D (EP-EMA). With continuous rise in beta human chorionic gonadotropin (ßhCG) levels, the patient was referred to a Trophoblastic Disease Center where there was note of tumor progression to the brain. She was started on third-line salvage chemotherapy of Paclitaxel and Carboplatin (PC) with concomitant whole brain irradiation completing three cycles after which chemoresistance was again diagnosed with increasing hCG titers and increase in the number and size of the pulmonary masses which were deemed unresectable. Immunotherapy was started with Pembrolizumab showing a good response with marked fall in ßhCG levels. The onset of immune-related adverse events (irAEs) caused a marked delay in subsequent cycles of immunotherapy. With management of the irAEs, two more cycles of Pembrolizumab with fifty percent dose reduction were given with corresponding drop in ßhCG levels. However, the patient subsequently developed gram-negative septicemia with possible hematologic malignancy and finally succumbed to massive pulmonary embolism. The case highlights the importance of prompt diagnosis and referral to a Trophoblastic Disease Center and the use of immunotherapy in chemo-resistant GTN.

6.
Biomaterials ; 311: 122708, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39047538

RESUMEN

The resistance of glioblastoma multiforme (GBM) to standard chemotherapy is primarily attributed to the existence of tumor-associated macrophages (TAMs) in the GBM microenvironment, particularly the anti-inflammatory M2 phenotype. Targeted modulation of M2-TAMs is emerging as a promising strategy to enhance chemotherapeutic efficacy. However, combination TAM-targeted therapy with chemotherapy faces substantial challenges, notably in terms of delivery efficiency and targeting specificity. In this study, we designed a pH-responsive hierarchical brain-targeting micelleplex loaded with temozolomide (TMZ) and resiquimod (R848) for combination chemo-immunotherapy against GBM. This delivery system, termed PCPA&PPM@TR, features a primary Angiopep-2 decoration on the outer layer via a pH-cleavable linker and a secondary mannose analogue (MAN) on the middle layer. This pH-responsive hierarchical targeting strategy enables effective BBB permeability while simultaneous GBM- and TAMs-targeting delivery. GBM-targeted delivery of TMZ induces alkylation and triggers an anti-GBM immune response. Concurrently, TAM-targeted delivery of R848 reprograms their phenotype from M2 to pro-inflammatory M1, thereby diminishing GBM resistance to TMZ and amplifying the immune response. In vivo studies demonstrated that targeted modulation of TAMs using PCPA&PPM@TR significantly enhanced anti-GBM efficacy. In summary, this study proposes a promising brain-targeting delivery system for the targeted modulation of TAMs to combat GBM.


Asunto(s)
Resistencia a Antineoplásicos , Glioblastoma , Inmunoterapia , Temozolomida , Macrófagos Asociados a Tumores , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/terapia , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Temozolomida/farmacología , Temozolomida/uso terapéutico , Animales , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Inmunoterapia/métodos , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Ratones , Imidazoles/farmacología , Imidazoles/química , Sistemas de Liberación de Medicamentos , Reprogramación Celular/efectos de los fármacos , Micelas , Microambiente Tumoral/efectos de los fármacos , Concentración de Iones de Hidrógeno
7.
Mol Brain ; 17(1): 42, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956588

RESUMEN

Glioblastoma (GBM) is an aggressive nervous system tumor with a poor prognosis. Although, surgery, radiation therapy, and chemotherapy are the current standard protocol for GBM patients, there is still a poor prognosis in these patients. Temozolomide (TMZ) as a first-line therapeutic agent in GBM can easily cross from the blood-brain barrier to inhibit tumor cell proliferation. However, there is a high rate of TMZ resistance in GBM patients. Since, there are limited therapeutic choices for GBM patients who develop TMZ resistance; it is required to clarify the molecular mechanisms of chemo resistance to introduce the novel therapeutic targets. MicroRNAs (miRNAs) regulate chemo resistance through regulation of drug metabolism, absorption, DNA repair, apoptosis, and cell cycle. In the present review we discussed the role of miRNAs in TMZ response of GBM cells. It has been reported that miRNAs mainly induced TMZ sensitivity by regulation of signaling pathways and autophagy in GBM cells. Therefore, miRNAs can be used as the reliable diagnostic/prognostic markers in GBM patients. They can also be used as the therapeutic targets to improve the TMZ response in GBM cells.


Asunto(s)
Neoplasias Encefálicas , Resistencia a Antineoplásicos , Glioblastoma , MicroARNs , Temozolomida , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , MicroARNs/genética , MicroARNs/metabolismo , Resistencia a Antineoplásicos/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Animales , Dacarbazina/análogos & derivados , Dacarbazina/uso terapéutico , Dacarbazina/farmacología , Autofagia/efectos de los fármacos , Autofagia/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
8.
Cancer Lett ; 595: 216987, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-38815798

RESUMEN

Triple-negative breast cancer (TNBC) is a highly lethal malignancy with limited therapy options. Aberrant metabolism, a key hallmark of human cancers, plays a crucial role in tumor progression, therapeutic responses and TNBC-related death. However, the underlying mechanisms are not fully understood. In this study, we delineate a previously unrecognized role of aberrant glucose metabolism in regulating the turnover of Snail1, which is a key transcriptional factor of epithelial-mesenchymal transition (EMT) and critically contributes to the acquisition of stemness, metastasis and chemo-resistance. Mechanistically, we demonstrate that AMP-activated protein kinase (AMPK), when activated in response to glucose deprivation, directly phosphorylates Snail1 at Ser11. Such a phosphorylation modification of Snail1 facilitates its recruitment of the E3 ligase FBXO11 and promotes its degradation, thereby suppressing stemness, metastasis and increasing cellular sensitivity to chemotherapies in vitro and in vivo. Clinically, histological analyses reveal a negative correlation between p-AMPKα and Snail1 in TNBC specimens. Taken together, our findings establish a novel mechanism and functional significance of AMPK in linking glucose status to Snail1-dependent malignancies and underscore the potential of AMPK agonists as a promising therapeutic strategy in the management of TNBC.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Transición Epitelial-Mesenquimal , Factores de Transcripción de la Familia Snail , Neoplasias de la Mama Triple Negativas , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Humanos , Fosforilación , Proteínas Quinasas Activadas por AMP/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Femenino , Línea Celular Tumoral , Ratones , Glucosa/metabolismo , Estabilidad Proteica , Metabolismo Energético/efectos de los fármacos , Resistencia a Antineoplásicos , Proteínas F-Box/metabolismo , Proteínas F-Box/genética
9.
Pathol Res Pract ; 257: 155275, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643552

RESUMEN

Activation of autophagy, a process of cellular stress response, leads to the breakdown of proteins, organelles, and other parts of the cell in lysosomes, and can be linked to several ailments, such as cancer, neurological diseases, and rare hereditary syndromes. Thus, its regulation is very carefully monitored. Transcriptional and post-translational mechanisms domestically or in whole organisms utilized to control the autophagic activity, have been heavily researched. In modern times, microRNAs (miRNAs) are being considered to have a part in post-translational orchestration of the autophagic activity, with miR-21 as one of the best studied miRNAs, it is often more than expressed in cancer cells. This regulatory RNA is thought to play a major role in a plethora of processes and illnesses including growth, cancer, cardiovascular disease, and inflammation. Different studies have suggested that a few autophagy-oriented genes, such as PTEN, Rab11a, Atg12, SIPA1L2, and ATG5, are all targeted by miR-21, indicating its essential role in the regulation.


Asunto(s)
Autofagia , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Autofagia/genética , Autofagia/fisiología , Animales , Transducción de Señal/genética , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo
10.
Oncol Rep ; 51(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38606514

RESUMEN

Following the publication of the above article, a concerned reader drew to the Editor's attention that certain of the cell migration and invasion assay data featured in Figs. 2B, 5C, 6B and C were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had either already been submitted elsewhere prior to the submission of this paper to Oncology Reports, or were under consideration for publication at around the same time (one of which has been retracted). In view of the fact that certain of these data had already apparently been submitted for publication prior to the submission of this article to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they agreed with the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 39: 967­976, 2018; DOI: 10.3892/or.2018.6204].

11.
Med Oncol ; 41(5): 108, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592406

RESUMEN

Oral squamous cell carcinoma (OSCC) is a cancer type with a high rate of recurrence and a poor prognosis. Tumor chemo-resistance remains an issue for OSCC patients despite the availability of multimodal therapy options, which causes an increase in tumor invasiveness. Vacuolar ATPase (V-ATPase), appears to be one of the most significant molecules implicated in MDR in tumors like OSCC. It is primarily responsible for controlling the acidity in the solid tumors' microenvironment, which interferes with the absorption of chemotherapeutic medications. However, the exact cellular and molecular mechanisms V-ATPase plays in OSCC chemo-resistance have not been understood. Uncovering these mechanisms can contribute to combating OSCC chemo-resistance and poor prognosis. Hence, in this review, we suggest that one of these underlying mechanisms is autophagy induced by V-ATPase which can potentially contribute to OSCC chemo-resistance. Finally, specialized autophagy and V-ATPase inhibitors may be beneficial as an approach to reduce drug resistance to anticancer therapies in addition to serving as coadjuvants in antitumor treatments. Also, V-ATPase could be a prognostic factor for OSCC patients. However, in the future, more investigations are required to demonstrate these suggestions and hypotheses.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , ATPasas de Translocación de Protón Vacuolares , Humanos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de la Boca/tratamiento farmacológico , Autofagia , Microambiente Tumoral
12.
Mol Cell Biochem ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427166

RESUMEN

The Yes-associated protein (YAP) oncoprotein has been linked to both metastases and resistance to targeted therapy of lung cancer cells. We aimed to investigate the effect of YAP pharmacological inhibition, using YAP/TEA domain (TEAD) transcription factor interaction inhibitors in chemo-resistant lung cancer cells. YAP subcellular localization, as a readout for YAP activation, cell migration, and TEAD transcription factor functional transcriptional activity were investigated in cancer cell lines with up-regulated YAP, with and without YAP/TEAD interaction inhibitors. Parental (A549) and paclitaxel-resistant (A549R) cell transcriptomes were analyzed. The half-maximal inhibitory concentration (IC50) of paclitaxel or trametinib, which are Mitogen-Activated protein kinase and Erk Kinase (MEK) inhibitors, combined with a YAP/TEAD inhibitor (IV#6), was determined. A three-dimensional (3D) microfluidic culture device enabled us to study the effect of IV#6/paclitaxel combination on cancer cells isolated from fresh resected lung cancer samples. YAP activity was significantly higher in paclitaxel-resistant cell lines. The YAP/TEAD inhibitor induced a decreased YAP activity in A549, PC9, and H2052 cells, with reduced YAP nuclear staining. Wound healing assays upon YAP inhibition revealed impaired cell motility of lung cancer A549 and mesothelioma H2052 cells. Combining YAP pharmacological inhibition with trametinib in K-Ras mutated A549 cells recapitulated synthetic lethality, thereby sensitizing these cells to MEK inhibition. The YAP/TEAD inhibitor lowered the IC50 of paclitaxel in A549R cells. Differential transcriptomic analysis of parental and A549R cells revealed an increased YAP/TEAD transcriptomic signature in resistant cells, downregulated upon YAP inhibition. The YAP/TEAD inhibitor restored paclitaxel sensitivity of A549R cells cultured in a 3D microfluidic system, with lung cancer cells from a fresh tumor efficiently killed by YAP/TEAD inhibitor/paclitaxel doublet. Evidence of the YAP/TEAD transcriptional program's role in chemotherapy resistance paves the way for YAP therapeutic targeting.

13.
J Biomol Struct Dyn ; : 1-19, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38356135

RESUMEN

Cytochrome P450 1B1, a tumor-specific overexpressed enzyme, significantly impairs the pharmacokinetics of several commonly used anticancer drugs including docetaxel, paclitaxel and cisplatin, leading to the problem of resistance to these drugs. Currently, there is no CYP1B1 inhibition-based adjuvant therapy available to treat this resistance problem. Hence, in the current study, exhaustive in-silico studies including scaffold hopping followed by molecular docking, three-dimensional quantitative structure-activity relationships (3D-QSAR), molecular dynamics and free energy perturbation studies were carried out to identify potent and selective CYP1B1 inhibitors. Initially, scaffold hopping analysis was performed against a well-reported potent and selective CYP1B1 inhibitor (i.e. compound 3n). A total of 200 scaffolds were identified along with their shape and field similarity scores. The top three scaffolds were further selected on the basis of these scores and their synthesis feasibility to design some potent and selective CYP1B1 inhibitors using the aforementioned in-silico techniques. Designed molecules were further synthesized to evaluate their CYP1B1 inhibitory activity and docetaxel resistance reversal potential against CYP1B1 overexpressed drug resistance MCF-7 cell line. In-vitro results indicated that compounds 2a, 2c and 2d manifested IC50 values for CYP1B1 ranging from 0.075, 0.092 to 0.088 µM with at least 10-fold selectivity. At low micromolar concentrations, compounds 1e, 1f, 2a and 2d exhibited promising cytotoxic effects in the docetaxel-resistant CYP1B1 overexpressed MCF-7 cell line. In particular, compound 2a is most effective in reversing the resistance with IC50 of 29.0 ± 3.6 µM. All of these discoveries could pave the way for the development of adjuvant therapy capable of overcoming CYP1B1-mediated resistance.Communicated by Ramaswamy H. Sarma.

14.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396679

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is the most frequent infiltrating type of pancreatic cancer. The poor prognosis associated with this cancer is due to the absence of specific biomarkers, aggressiveness, and treatment resistance. PDAC is a deadly malignancy bearing distinct genetic alterations, the most common being those that result in cancer-causing versions of the KRAS gene. Cannabigerol (CBG) is a non-psychomimetic cannabinoid with anti-inflammatory properties. Regarding the anticancer effect of CBG, up to now, there is only limited evidence in human cancers. To fill this gap, we investigated the effects of CBG on the PDAC cell lines, PANC-1 and MIAPaCa-2. The effect of CBG activity on cell viability, cell death, and EGFR-RAS-associated signaling was investigated. Moreover, the potential synergistic effect of CBG in combination with gemcitabine (GEM) and paclitaxel (PTX) was investigated. MTT was applied to investigate the effect of CBG on PDAC cell line viabilities. Annexin-V and Acridine orange staining, followed by cytofluorimetric analysis and Western blotting, were used to evaluate CBG's effect on cell death. The modulation of EGFR-RAS-associated pathways was determined by Western blot analysis and a Milliplex multiplex assay. Moreover, by employing the MTT data and SynergyFinder Plus software analysis, the effect of the combination of CBG and chemotherapeutic drugs was determined.


Asunto(s)
Muerte Celular Autofágica , Cannabinoides , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Apoptosis , Muerte Celular Autofágica/efectos de los fármacos , Cannabinoides/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores
15.
Phytother Res ; 38(4): 1830-1837, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38353369

RESUMEN

CD44+ cancer stem cells (CSCs) are believed to account for drug resistance and tumour recurrence due to their potential to self-renew and differentiate into heterogeneous lineages. Therefore, efficient treatment strategies targeting and eliminating these CSCs are required. The flavonolignan, Silibinin, has gained immense attention in targeting CD44+ CSCs as it alters functional properties like cell cycle arrest, apoptosis, inhibition of invasion and metastasis and also inhibits a range of molecular pathways. However, its limited bioavailability is a major hurdle in asserting Silibinin as a translational therapeutic agent. Combinatorial therapy of Silibinin with conventional chemotherapeutic drugs is an alternative approach in targeting CD44+ CSCs as it increases the efficacy and reduces the cytotoxicity of chemotherapeutic drugs, thus preventing drug resistance. Certain Silibinin-conjugated nano-formulations have also been successfully developed, through which there is improved absorptivity/bioavailability of Silibinin and a decrease in the concentration of therapeutic drugs leading to reduced cytotoxicity. In this review, we summarise the effectiveness of the synergistic therapeutic approach for Silibinin in targeting the molecular mechanisms of CD44+ CSCs and emphasise the potential role of Silibinin as a novel therapeutic agent.


Asunto(s)
Neoplasias , Humanos , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/uso terapéutico , Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas , Silibina/farmacología
16.
Sci Total Environ ; 914: 169727, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38163613

RESUMEN

Pancreatic cancer is lethal due to poor prognosis with 5-year survival rate lesser than 5 %. Gemcitabine is currently used to treat pancreatic cancer and development of chemoresistance is a major obstacle to overcome pancreatic cancer. Nicotine is a known inducer of drug resistance in pancreatic tumor micro-environment. Present study evaluates chemoresistance triggered by nicotine while treating with gemcitabine and chemosensitization using Embelin. Embelin is a naturally occurring benzoquinone from Embelia ribes possessing therapeutic potency. To develop nicotine-induced chemo-resistance, pancreatic cancer cells PANC-1 and MIA PaCa-2 were continuously treated with nicotine followed by exposure to gemcitabine. Gemcitabine sensitivity assay and immunoblotting was performed to assess the chemo-resistance. Antiproliferative assays such as migration assay, clonogenic assay, Mitochondrial Membrane Potential (MMP) assay, dual staining assay, comet assay, Reactive Oxygen Species (ROS) assay, cell cycle analysis and immunoblotting assays were performed to witness the protein expression involved in chemoresistance and chemosensitization. Epithelial to mesenchymal transition was observed in nicotine induced chemoresistant cells. Gemcitabine sensitivity assay revealed that relative resistance was increased to 6.26 (p < 0.0001) and 6.45 (p < 0.0001) folds in resistant PANC-1 and MIA PaCa-2 compared to parental cells. Protein expression studies confirmed resistance markers like hENT1 and dCK were downregulated with subsequent increase in RRM1 expression in resistant cells. Embelin considerably decreased the cell viability with an IC50 value of 4.03 ± 0.08 µM in resistant PANC-1 and 2.11 ± 0.04 µM in resistant MIA PaCa-2. Cell cycle analysis showed Embelin treatment caused cell cycle arrest at S phase in resistant PANC-1 cells; in resistant MIA PaCa-2 cells there was an escalation in the Sub G1. Embelin upregulated Bax, γH2AX, p53, ERK1/2 and hENT1 expression with concomitant down regulation of Bcl-2 and RRM1. Bioactive molecule embelin, its combination with gemcitabine could provide new vistas to overcome chemo resistance in pancreatic cancer.


Asunto(s)
Gemcitabina , Neoplasias Pancreáticas , Humanos , Nicotina/farmacología , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Transición Epitelial-Mesenquimal , Resistencia a Antineoplásicos , Benzoquinonas/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Línea Celular Tumoral , Apoptosis , Microambiente Tumoral , Ribonucleósido Difosfato Reductasa/farmacología
17.
J Biomed Sci ; 31(1): 6, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216921

RESUMEN

The developments of antibodies for cancer therapeutics have made remarkable success in recent years. There are multiple factors contributing to the success of the biological molecule including origin of the antibody, isotype, affinity, avidity and mechanism of action. With better understanding of mechanism of cancer progression and immune manipulation, recombinant formats of antibodies are used to develop therapeutic modalities for manipulating the immune cells of patients by targeting specific molecules to control the disease. These molecules have been successful in minimizing the side effects instead caused by small molecules or systemic chemotherapy but because of the developing therapeutic resistance against these antibodies, combination therapy is thought to be the best bet for patient care. Here, in this review, we have discussed different aspects of antibodies in cancer therapy affecting their efficacy and mechanism of resistance with some relevant examples of the most studied molecules approved by the US FDA.


Asunto(s)
Inmunoconjugados , Neoplasias , Humanos , Neoplasias/prevención & control , Neoplasias/tratamiento farmacológico , Factores Inmunológicos/uso terapéutico
18.
Curr Med Chem ; 31(32): 5222-5254, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38288813

RESUMEN

Cervical cancer (CaCx) poses a significant global health challenge, ranking as the fourth most common cancer among women worldwide. Despite the emergence of advanced treatment strategies, recurrence remains a bottleneck in favorable treatment outcomes and contributes to poor prognosis. The chemo- or radio-therapy resistance coupled with frequent relapse of more aggressive tumors are some key components that contribute to CaCx-related mortality. The onset of therapy resistance and relapse are attributed to a small subset of, slow-proliferating Cancer Stem Cells (CSC). These CSCs possess the properties of tumorigenesis, self-renewal, and multi-lineage differentiation potential. Because of slow cycling, these cells maintain themselves in a semi-quiescent stage and protect themselves from different anti-proliferative anti-cancer drugs. Keeping in view recent advances in their phenotypic and functional characterization, the feasibility of targeting CSC and associated stem cell signaling bears a strong translational value. The presence of CSC has been reported in CaCx (CCSC) which remains a forefront area of research. However, we have yet to identify clinically useful leads that can target CCSC. There is compelling evidence that phytochemicals, because of their advantages over synthetic anticancer drugs, could emerge as potential therapeutic leads to target these CCSCs. The present article examined the potential of phytochemicals with reported anti-CSC properties and evaluated their future in preclinical and clinical applications against CaCx.


Asunto(s)
Células Madre Neoplásicas , Fitoquímicos , Neoplasias del Cuello Uterino , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/uso terapéutico , Femenino , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/uso terapéutico , Animales
19.
Biomed Pharmacother ; 170: 115973, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38064969

RESUMEN

The resistance of cancer cells to chemotherapy, also known as chemo-resistance, poses a significant obstacle to cancer treatment and can ultimately result in patient mortality. Epithelial-mesenchymal transition (EMT) is one of the many factors and processes responsible for chemo-resistance. Studies have shown that targeting EMT can help overcome chemo-resistance, and nanotechnology and nanomedicine have emerged as promising approaches to achieve this goal. This article discusses the potential of nanotechnology in inhibiting EMT and proposes a viable strategy to combat chemo-resistance in various solid tumors, including breast cancer, lung cancer, pancreatic cancer, glioblastoma, ovarian cancer, gastric cancer, and hepatocellular carcinoma. While nanotechnology has shown promising results in targeting EMT, further research is necessary to explore its full potential in overcoming chemo-resistance and discovering more effective methods in the future.


Asunto(s)
Neoplasias de la Mama , Neoplasias Hepáticas , Humanos , Femenino , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Neoplasias de la Mama/tratamiento farmacológico , Nanotecnología , Línea Celular Tumoral
20.
Cancer Metastasis Rev ; 43(1): 87-113, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37789138

RESUMEN

Cancer cell plasticity plays a crucial role in tumor initiation, progression, and metastasis and is implicated in the multiple cancer defense mechanisms associated with therapy resistance and therapy evasion. Cancer resistance represents one of the significant obstacles in the clinical management of cancer. Some reversal chemosensitizing agents have been developed to resolve this serious clinical problem, but they have not yet been proven applicable in oncological practice. Activated nuclear factor kappa B (NF-κB) is a frequently observed biomarker in chemoresistant breast cancer (BC). Therefore, it denotes an attractive cellular target to mitigate cancer resistance. We summarize that flavonoids represent an essential class of phytochemicals that act as significant regulators of NF-κB signaling and negatively affect the fundamental cellular processes contributing to acquired cell plasticity and drug resistance. In this regard, flavokawain A, icariin, alpinetin, genistein, wogonin, apigenin, oroxylin A, xanthohumol, EGCG, hesperidin, naringenin, orientin, luteolin, delphinidin, fisetin, norwogonin, curcumin, cardamonin, methyl gallate and catechin-3-O-gallate, ampelopsin, puerarin, hyperoside, baicalein, paratocarpin E, and kaempferol and also synthetic flavonoids such as LFG-500 and 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone have been reported to specifically interfere with the NF-κB pathway with complex signaling consequences in BC cells and could be potentially crucial in re-sensitizing unresponsive BC cases. The targeting NF-κB by above-mentioned flavonoids includes the modification of tumor microenvironment and epithelial-mesenchymal transition, growth factor receptor regulations, and modulations of specific pathways such as PI3K/AKT, MAP kinase/ERK, and Janus kinase/signal transduction in BC cells. Besides that, NF-κB signaling in BC cells modulated by flavonoids has also involved the regulation of ATP-binding cassette transporters, apoptosis, autophagy, cell cycle, and changes in the activity of cancer stem cells, oncogenes, or controlling of gene repair. The evaluation of conventional therapies in combination with plasticity-regulating/sensitizing agents offers new opportunities to make significant progress towards a complete cure for cancer.


Asunto(s)
Neoplasias de la Mama , FN-kappa B , Humanos , Femenino , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Plasticidad de la Célula , Transducción de Señal , Flavonoides/farmacología , Flavonoides/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA