Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
Más filtros

Intervalo de año de publicación
1.
Food Chem ; 463(Pt 4): 141502, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39368197

RESUMEN

Liangpingyou, a well-known Chinese pomelo (Citrus grandis L.) variety, elicits a unique and uncharacterized numbing aftertaste. To understand the molecular bases and characteristics of the pomelo-induced numbing sensation, we first determined that hydroxyl sanshools, the major Sichuan pepper chemosensates, were not responsible via silylation-GC-MS analysis. Pomelo peel juice was then subjected to solid-phase extraction to form 4 fractions, and key sensory-active substances were screened via taste dilution analysis. Three simple coumarins, meranzin hydrate, isomeranzin, and marmin, were identified to induce numbing, which has not been previously reported. Sensory studies via extensively modified half-tongue tests and verification steps revealed recognition thresholds within 0.49-1.78, 0.32-1.56, and 0.43-1.46 µmol/L for numbness, pungency, and astringency, respectively. The temporal dominance trends showed the following taste notes: Meranzin hydrate-numbing dominated, isomeranzin-numbing and pungent, and marmin-astringent and numbing. Molecular docking analysis suggested that coumarins target the receptors TRPV1, TPRA1, and KCNK3.

2.
J Neurophysiol ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39382982

RESUMEN

Obstructive sleep apnea (OSA) is highly prevalent in patients with asthma. Asthma, dose-dependently to its duration, promotes incident OSA, suggesting that asthma plays a role in OSA pathogenesis. We hypothesized that asthma-related inflammation alters breathing control mechanisms, specifically the carotid chemoreflex. Accordingly, we measured hypoxic ventilatory responses (HRV) in awake, unrestrained, ovalbumin (OVA)-sensitized Brown Norway rats and compared them with responses in sham-sensitized (SALINE) controls. To differentiate the role of allergic inflammation from bronchoconstriction, we repeated HVR after administration of formoterol, a long-acting bronchodilator. Blood and bronchoalveolar lavage (BAL) fluid were collected for quantification of inflammatory cytokines. The rise in ventilatory equivalent for O2 evoked by acute exposure to hypoxia was augmented following sensitization by OVA, whereas it remained stable after SALINE. This augmentation was driven by increased breathing frequency with no change in tidal volume. Tachypneic hyperventilation in normoxia was also observed with OVA. Neither the increased HVR nor excessive normoxic ventilation was affected by formoterol, suggesting that they were not secondary to lung mechanical constraints. Higher levels of inflammatory cytokines were observed in BAL fluid and serum of OVA vs. SALINE. In OVA, serum interleukin-5 correlated with change (baseline to post-sensitization) in ventilatory response to severe hypoxia (FIO2, 0.09). These observations are consistent with inflammation-induced enhancement of carotid chemoreflex function, i.e. increased controller gain, and they suggest a possible role for asthma-related allergic inflammation in the ventilatory instability known to promote upper airway collapse and sleep apnea in humans.

3.
Curr Opin Plant Biol ; 82: 102630, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39306957

RESUMEN

Plant cell walls are essential elements for disease resistance that pathogens need to overcome to colonise the host. Certain pathogens secrete a large battery of enzymes to hydrolyse plant cell wall polysaccharides, which leads to the release of carbohydrate-based molecules (glycans) that are perceived by plant pattern recognition receptors and activate pattern-triggered immunity and disease resistance. These released glycans are used by colonizing microorganisms as carbon source, chemoattractants to locate entry points at plant surface, and as signals triggering gene expression reprogramming. The release of wall glycans and their perception by plants and microorganisms determines plant-microbial interaction outcome. Here, we summarise and discuss the most recent advances in these less explored aspects of plant-microbe interaction.

5.
JACC Basic Transl Sci ; 9(8): 939-953, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39297140

RESUMEN

Postural hyperventilation has been implicated as a cause of postural orthostatic tachycardia syndrome (POTS), yet the precise mechanisms underlying the heightened breathing response remain unclear. This study challenges current hypotheses by revealing that exaggerated peripheral chemoreceptor activity is not the primary driver of postural hyperventilation. Instead, significant contributions from reduced stroke volume and compromised brain perfusion during orthostatic stress were identified. These findings shed light on our understanding of POTS pathophysiology, emphasizing the critical roles of systemic hemodynamic status. Further research should explore interventions targeting stroke volume and brain perfusion for more effective clinical management of POTS.

6.
J Physiol ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276118

RESUMEN

We tested the hypothesis that in human hypertension, an increased tonicity/sensitivity of the peripheral chemoreflex causes a sympathetically mediated restraint of nutritive blood flow to the exercising muscles. Fourteen patients with treated hypertension (age 69 ± 11 years, 136 ± 12/80 ± 11 mmHg; mean ± SD) were studied under conditions of intravenous 0.9% saline (control) and low-dose dopamine (2 µg kg-1 min-1) to inhibit the peripheral chemoreflex, at baseline, during isocapnic hypoxic rebreathing and during rhythmic handgrip exercise (3 min, 50% maximum voluntary contraction). At baseline, dopamine did not change mean blood pressure (95 ± 10 vs. 98 ± 10 mmHg, P = 0.155) but increased brachial artery blood flow (59 ± 20 vs. 48 ± 16 ml min-1, P = 0.030) and vascular conductance (0.565 ± 0.246 vs. 0.483 ± 0.160 ml min-1 mmHg-1; P = 0.039). Dopamine attenuated the increase in mean blood pressure (∆3 ± 4 vs. ∆8 ± 6 mmHg, P = 0.007) to isocapnic hypoxic rebreathing and reduced peripheral chemoreflex sensitivity by 28 ± 37% (P = 0.044). Rhythmic handgrip exercise induced increases in brachial artery blood flow and vascular conductance (both P < 0.05 vs. rest after 45 s) that were greater with dopamine than saline (e.g. Δ76 ± 54 vs. Δ60 ± 43 ml min-1 and Δ0.730 ± 0.440 vs. Δ0.570 ± 0.424 ml min-1 mmHg-1, respectively, at 60 s; main effect of condition both P < 0.0001). Our results indicate that the peripheral chemoreflex is tonically active at rest and restrains the blood flow and vascular conductance increases to exercise in treated human hypertension. KEY POINTS: It was hypothesised that in human hypertension, an increased tonicity/sensitivity of the peripheral chemoreflex causes a sympathetically mediated restraint of nutritive blood flow to the exercising muscles. Treated patients with hypertension (n = 14) were studied under conditions of intravenous 0.9% saline (control) and low-dose dopamine (2 µg kg-1 min-1) to inhibit the peripheral chemoreflex. Low-dose dopamine reduced resting ventilation and peripheral chemoreflex sensitivity, and while mean blood pressure was unchanged, brachial artery blood flow and vascular conductance were increased. Low-dose dopamine augmented the brachial artery blood flow and vascular conductance responses to rhythmic handgrip. These findings indicate that the peripheral chemoreflex is tonically active at rest and restrains the blood flow, and vascular conductance increases to exercise in treated human hypertension.

7.
Mol Microbiol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180229

RESUMEN

Many chemoreceptors contain a C-terminal pentapeptide at the end of a linker. In Escherichia coli, this pentapeptide forms a high-affinity binding site for CheR and phosphorylated CheB, and its removal interferes with chemoreceptor adaptation. Analysis of chemoreceptors revealed significant variation in their pentapeptide sequences, and bacteria often possess multiple chemoreceptors with differing pentapeptides. To assess whether this sequence variation alters CheR affinity and chemotaxis, we used Pectobacterium atrosepticum SCRI1043 as a model. SCRI1043 has 36 chemoreceptors, with 19 of them containing a C-terminal pentapeptide. We show that the affinity of CheR for the different pentapeptides varies up to 11-fold (KD 90 nM to 1 µM). Pentapeptides with the highest and lowest affinities differ only in a single amino acid. Deletion of the cheR gene abolishes chemotaxis. The replacement of the pentapeptide in the PacC chemoreceptor with those of the highest and lowest affinities significantly reduced chemotaxis to its cognate chemoeffector, L-Asp. Altering the PacC pentapeptide also reduced chemotaxis to L-Ser, but not to nitrate, which are responses mediated by the nontethered PacB and PacN chemoreceptors, respectively. Changes in the pentapeptide sequence thus modulate the response of the cognate receptor and that of another chemoreceptor.

8.
Parasit Vectors ; 17(1): 308, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026238

RESUMEN

BACKGROUND: Lucilia cuprina (Wiedemann, 1830) (Diptera: Calliphoridae) is the main causative agent of flystrike of sheep in Australia and New Zealand. Female flies lay eggs in an open wound or natural orifice, and the developing larvae eat the host's tissues, a condition called myiasis. To improve our understanding of host-seeking behavior, we quantified gene expression in male and female antennae based on their behavior. METHODS: A spatial olfactometer was used to evaluate the olfactory response of L. cuprina mated males and gravid females to fresh or rotting beef. Antennal RNA-Seq analysis was used to identify sensory receptors differentially expressed between groups. RESULTS: Lucilia cuprina females were more attracted to rotten compared to fresh beef (> fivefold increase). However, males and some females did not respond to either type of beef. RNA-Seq analysis was performed on antennae dissected from attracted females, non-attracted females and males. Transcripts encoding sensory receptors from 11 gene families were identified above a threshold (≥ 5 transcript per million) including 49 ATP-binding cassette transporters (ABCs), two ammonium transporters (AMTs), 37 odorant receptors (ORs), 16 ionotropic receptors (IRs), 5 gustatory receptors (GRs), 22 odorant-binding proteins (OBPs), 9 CD36-sensory neuron membrane proteins (CD36/SNMPs), 4 chemosensory proteins (CSPs), 4 myeloid lipid-recognition (ML) and Niemann-Pick C2 disease proteins (ML/NPC2), 2 pickpocket receptors (PPKs) and 3 transient receptor potential channels (TRPs). Differential expression analyses identified sex-biased sensory receptors. CONCLUSIONS: We identified sensory receptors that were differentially expressed between the antennae of both sexes and hence may be associated with host detection by female flies. The most promising for future investigations were as follows: an odorant receptor (LcupOR46) which is female-biased in L. cuprina and Cochliomyia hominivorax Coquerel, 1858; an ABC transporter (ABC G23.1) that was the sole sensory receptor upregulated in the antennae of females attracted to rotting beef compared to non-attracted females; a female-biased ammonia transporter (AMT_Rh50), which was previously associated with ammonium detection in Drosophila melanogaster Meigen, 1830. This is the first report suggesting a possible role for ABC transporters in L. cuprina olfaction and potentially in other insects.


Asunto(s)
Antenas de Artrópodos , Calliphoridae , Perfilación de la Expresión Génica , Animales , Femenino , Masculino , Antenas de Artrópodos/metabolismo , Calliphoridae/genética , Miasis/veterinaria , Miasis/parasitología , Transcriptoma , Ovinos/parasitología , Australia , Nueva Zelanda , Olfato , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
9.
Life Sci ; 351: 122853, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38889841

RESUMEN

AIMS: Activation of central respiratory chemoreceptors provides excitatory drive to both respiratory and sympathetic outputs. The enhanced respiratory-sympathetic coupling contributes to the onset and development of hypertension. However, the specific central targets and molecular mechanisms involved in this process remain elusive. This study aimed to investigate the role of acid-sensing ion channel 1 (ASIC1) in nucleus tractus solitarii (NTS) neurons in CO2-stimulated cardiorespiratory effects in spontaneously hypertensive rats (SHRs). MAIN METHODS: Respiration and blood pressure of conscious rats were recorded by whole-body plethysmography and telemetry, respectively. Western blot was used to detect the expression difference of ASIC1 protein in NTS region between Wistar-Kyoto (WKY) rats and SHRs. Excitability of NTS neurons were assessed by extracellular recordings. KEY FINDINGS: Compared to WKY rats, the enhanced CO2-stimulated cardiopulmonary effect and up-regulation of ASIC1 in the NTS were already observed in 4-week-old prehypertensive SHRs. Furthermore, specific blockade of ASIC1 effectively attenuated the CO2-stimulated increase in firing rate of NTS neurons in anesthetized adult SHRs. Intracerebroventricular injections of the ASIC1a blocker PcTx1 or knockdown Asic1 in NTS neurons significantly reduced the heightened CO2-stimulated ventilatory response, and diminished the CO2-stimulated increase in arterial pressure and heart rate in adult SHRs. SIGNIFICANCE: These findings showed that dysregulated ASIC1 signaling in the NTS contribute to the exaggerated CO2-stimulated cardiorespiratory effects observed in SHRs.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Presión Sanguínea , Dióxido de Carbono , Hipertensión , Neuronas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Núcleo Solitario , Animales , Canales Iónicos Sensibles al Ácido/metabolismo , Núcleo Solitario/metabolismo , Ratas , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Masculino , Dióxido de Carbono/metabolismo , Hipertensión/metabolismo , Hipertensión/fisiopatología , Presión Sanguínea/efectos de los fármacos , Respiración/efectos de los fármacos , Péptidos , Venenos de Araña
10.
Adv Mater ; : e2403150, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38699932

RESUMEN

In the era of artificial intelligence (AI), there is a growing interest in replicating human sensory perception. Selective and sensitive bio-inspired sensory receptors with synaptic plasticity have recently gained significant attention in developing energy-efficient AI perception. Various bio-inspired sensory receptors and their applications in AI perception are reviewed here. The critical challenges for the future development of bio-inspired sensory receptors are outlined, emphasizing the need for innovative solutions to overcome hurdles in sensor design, integration, and scalability. AI perception can revolutionize various fields, including human-machine interaction, autonomous systems, medical diagnostics, environmental monitoring, industrial optimization, and assistive technologies. As advancements in bio-inspired sensing continue to accelerate, the promise of creating more intelligent and adaptive AI systems becomes increasingly attainable, marking a significant step forward in the evolution of human-like sensory perception.

11.
Front Microbiol ; 15: 1400284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784811

RESUMEN

The foodborne pathogenic bacterium Campylobacter jejuni utilizes chemotaxis to assist in the colonization of host niches. A key to revealing the relationship among chemotaxis and pathogenicity is the discovery of signaling molecules perceived by the chemoreceptors. The C. jejuni chemoreceptor Tlp11 is encoded by the highly infective C. jejuni strains. In the present study, we report that the dCache-type ligand-binding domain (LBD) of C. jejuni ATCC 33560 Tlp11 binds directly to novel ligands methyl pyruvate, toluene, and quinoline using the same pocket. Methyl pyruvate elicits a strong chemoattractant response, while toluene and quinoline function as the antagonists without triggering chemotaxis. The sensory LBD was used to control heterologous proteins by constructing chimeras, indicating that the signal induced by methyl pyruvate is transmitted across the membrane. In addition, bioinformatics and experiments revealed that the dCache domains with methyl pyruvate-binding sites and ability are widely distributed in the order Campylobacterales. This is the first report to identify the class of dCache chemoreceptors that bind to attractant methyl pyruvate and antagonists toluene and quinoline. Our research provides a foundation for understanding the chemotaxis and virulence of C. jejuni and lays a basis for the control of this foodborne pathogen.

12.
Appl Environ Microbiol ; 90(6): e0076024, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38775579

RESUMEN

Motile plant-associated bacteria use chemotaxis and dedicated chemoreceptors to navigate gradients in their surroundings and to colonize host plant surfaces. Here, we characterize a chemoreceptor that we named Tlp2 in the soil alphaproteobacterium Azospirillum brasilense. We show that the Tlp2 ligand-binding domain is related to the 4-helix bundle family and is conserved in chemoreceptors found in the genomes of many soil- and sediment-dwelling alphaproteobacteria. The promoter of tlp2 is regulated in an NtrC- and RpoN-dependent manner and is most upregulated under conditions of nitrogen fixation or in the presence of nitrate. Using fluorescently tagged Tlp2 (Tlp2-YFP), we show that this chemoreceptor is present in low abundance in chemotaxis-signaling clusters and is prone to degradation. We also obtained evidence that the presence of ammonium rapidly disrupts Tlp2-YFP localization. Behavioral experiments using a strain lacking Tlp2 and variants of Tlp2 lacking conserved arginine residues suggest that Tlp2 mediates chemotaxis in gradients of nitrate and nitrite, with the R159 residue being essential for Tlp2 function. We also provide evidence that Tlp2 is essential for root surface colonization of some plants (teff, red clover, and cowpea) but not others (wheat, sorghum, alfalfa, and pea). These results highlight the selective role of nitrate sensing and chemotaxis in plant root surface colonization and illustrate the relative contribution of chemoreceptors to chemotaxis and root surface colonization.IMPORTANCEBacterial chemotaxis mediates host-microbe associations, including the association of beneficial bacteria with the roots of host plants. Dedicated chemoreceptors specify sensory preferences during chemotaxis. Here, we show that a chemoreceptor mediating chemotaxis to nitrate is important in the beneficial soil bacterium colonization of some but not all plant hosts tested. Nitrate is the preferred nitrogen source for plant nutrition, and plants sense and tightly control nitrate transport, resulting in varying nitrate uptake rates depending on the plant and its physiological state. Nitrate is thus a limiting nutrient in the rhizosphere. Chemotaxis and dedicated chemoreceptors for nitrate likely provide motile bacteria with a competitive advantage to access this nutrient in the rhizosphere.


Asunto(s)
Azospirillum brasilense , Proteínas Bacterianas , Quimiotaxis , Nitratos , Raíces de Plantas , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Azospirillum brasilense/fisiología , Nitratos/metabolismo , Raíces de Plantas/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
13.
Elife ; 122024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820052

RESUMEN

Bacteria of the family Enterobacteriaceae are associated with gastrointestinal (GI) bleeding and bacteremia and are a leading cause of death, from sepsis, for individuals with inflammatory bowel diseases. The bacterial behaviors and mechanisms underlying why these bacteria are prone to bloodstream entry remain poorly understood. Herein, we report that clinical isolates of non-typhoidal Salmonella enterica serovars, Escherichia coli, and Citrobacter koseri are rapidly attracted toward sources of human serum. To simulate GI bleeding, we utilized an injection-based microfluidics device and found that femtoliter volumes of human serum are sufficient to induce bacterial attraction to the serum source. This response is orchestrated through chemotaxis and the chemoattractant L-serine, an amino acid abundant in serum that is recognized through direct binding by the chemoreceptor Tsr. We report the first crystal structures of Salmonella Typhimurium Tsr in complex with L-serine and identify a conserved amino acid recognition motif for L-serine shared among Tsr orthologues. We find Tsr to be widely conserved among Enterobacteriaceae and numerous World Health Organization priority pathogens associated with bloodstream infections. Lastly, we find that Enterobacteriaceae use human serum as a source of nutrients for growth and that chemotaxis and the chemoreceptor Tsr provide a competitive advantage for migration into enterohemorrhagic lesions. We define this bacterial behavior of taxis toward serum, colonization of hemorrhagic lesions, and the consumption of serum nutrients as 'bacterial vampirism', which may relate to the proclivity of Enterobacteriaceae for bloodstream infections.


Sepsis is the leading cause of death in patients with inflammatory bowel disease. Individuals with this condition can experience recurrent episodes of intestinal bleeding, giving intestinal (or enteric) bacteria an entry point into the bloodstream. This puts patients at risk of developing fatal infections ­ particularly from infections caused by bacteria belonging to the Enterobacteriaceae family. However, it is not well understood why this family of bacteria are particularly prone to entering the bloodstream. Enteric bacteria commonly respond to chemicals (or chemical stimuli) in their environment. This process, known as chemotaxis, helps bacteria with a variety of tasks, such as monitoring their environment, moving to different areas within their environment or colonizing their host. Chemical stimuli are classed as 'attractants' or 'repellents', with attractants luring the bacteria to an area and repellents discouraging the bacteria from being in a specific place. Intestinal bleeds will release serum (the liquid part of blood) into the gut, which could serve as a source of chemical stimuli to attract Enterobacteriaceae into the bloodstream. To find out more, Glen, Gentry-Lear et al. first used a microfluidic device to simulate an intestinal bleed and tested the response of Enterobacteriaceae bacteria to serum. Using chemotaxis, bacteria were found to be attracted to the amino acid L-serine in the serum to which they were able to attach through a receptor called Tsr. They also consumed nutrients present in the human serum to help them grow. Experiments with intestinal tissue showed that chemotaxis attracted bacteria to bleeding blood vessels and the Tsr receptor helped them to infiltrate the blood vessels. Glen et al. termed this attraction to and feeding upon blood serum as 'bacterial vampirism'. These findings suggest that chemotaxis of Enterobacteriaceae towards L-serine in serum may be linked to their tendency to enter the bloodstream. Developing therapies that target chemotaxis in Enterobacteriaceae may provide a method for managing bloodstream infections.


Asunto(s)
Quimiotaxis , Suero , Humanos , Serina/metabolismo , Enterobacteriaceae , Animales , Ratones , Salmonella enterica , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
14.
Cell Rep ; 43(4): 114035, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38573859

RESUMEN

Gustatory receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors, making their structural investigation a vital step toward such applications. We present structures of Bombyx mori Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states. BmGr9 forms a tetramer similar to distantly related insect odorant receptors (ORs). Upon fructose binding, BmGr9's channel gate opens through helix S7b movements. In contrast to ORs, BmGr9's ligand-binding pocket, shaped by a kinked helix S4 and a shorter extracellular S3-S4 loop, is larger and solvent accessible in both agonist-free and fructose-bound states. Also, unlike ORs, fructose binding by BmGr9 involves helix S5 and a pocket lined with aromatic and polar residues. Structure-based sequence alignments reveal distinct patterns of ligand-binding pocket residue conservation in GR subfamilies associated with different ligand classes. These data provide insight into the molecular basis of GR ligand specificity and function.


Asunto(s)
Bombyx , Animales , Ligandos , Bombyx/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/genética , Sitios de Unión , Secuencia de Aminoácidos , Modelos Moleculares , Unión Proteica , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/química , Receptores Odorantes/metabolismo , Receptores Odorantes/química
15.
J Vet Med Sci ; 86(5): 458-462, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38508726

RESUMEN

Little is known about the neuronal structure of the vomeronasal organ (VNO), a receptor organ responsible for pheromone perception, in the alpaca (Vicugna pacos). This study was performed to determine the localization of neuronal elements, including protein gene product 9.5 (PGP 9.5), a pan-neuronal marker, olfactory marker protein (OMP), a marker of mature olfactory receptor cells, and phospholipase C beta 2 (PLC-ß2), a marker of solitary chemoreceptor cells (SCCs), in the VNO. OMP was identified in receptor cells of the vomeronasal sensory epithelium (VSE), while PGP 9.5 and PLC-ß2 were localized in both the VSE and vomeronasal non-sensory epithelium. Collectively, these results suggested that the alpaca VNO possesses SCCs and olfactory receptor cells, which recognize both harmful substances and pheromones.


Asunto(s)
Camélidos del Nuevo Mundo , Proteína Marcadora Olfativa , Órgano Vomeronasal , Animales , Órgano Vomeronasal/anatomía & histología , Órgano Vomeronasal/citología , Camélidos del Nuevo Mundo/anatomía & histología , Masculino , Proteína Marcadora Olfativa/metabolismo , Fosfolipasa C beta/metabolismo , Femenino , Neuronas Receptoras Olfatorias , Células Quimiorreceptoras , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética
16.
Insect Sci ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485691

RESUMEN

The tobacco cutworm Spodoptera litura is one of the most destructive polyphagous crop pests. Olfaction and taste play a crucial role in its host plant selection and sexual communication, but the expression profile of chemosensory genes remains unclear. In this study, we identified 185 chemosensory genes from 7 organs in S. litura by transcriptome sequencing, of which 72 genes were published for the first time, including 27 odorant receptors (ORs), 26 gustatory receptors (GRs), 1 ionotropic receptor (IR), 16 odorant-binding proteins (OBPs), and 2 chemosensory proteins (CSPs). Phylogenetic analyses revealed that ORs, IRs, OBPs, and sensory neuron membrane proteins (SNMPs) were mainly expressed in antennae and sequence-conserved among Noctuidae species. The most differentially expressed genes (DEGs) between sexes were ORs and OBPs, and no DEGs were found in GRs. GR transcripts were enriched in proboscis, and the expression of sugar receptors was the highest. Carbon dioxide receptors, sugar receptor-SliuGR6, and bitter GRs-SlituGR43 and SlituGR66 had higher sequence identities between Noctuidae species. CSPs were broadly expressed in various organs, and SlituCSP13 was a DEG in adult antennae. The functional analysis in the Drosophila OR67d expression system found that SlituOR50, a receptor highly expressed in female antennae, is selectively tuned to farnesyl acetate. The results provide a solid foundation for understanding the molecular mechanisms by which chemosensory genes operate to elicit behavioral responses in polyphagous insects.

17.
PeerJ ; 12: e16898, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38332807

RESUMEN

Agrobacterium tumefaciens is a soil-borne pathogenic bacterium that causes crown gall disease in many plants. Chemotaxis offers A. tumefaciens the ability to find its host and establish infection. Being an aerobic bacterium, A. tumefaciens possesses one chemotaxis system with multiple potential chemoreceptors. Chemoreceptors play an important role in perceiving and responding to environmental signals. However, the studies of chemoreceptors in A. tumefaciens remain relatively restricted. Here, we characterized a cytoplasmic chemoreceptor of A. tumefaciens C58 that contains an N-terminal globin domain. The chemoreceptor was designated as Atu1027. The deletion of Atu1027 not only eliminated the aerotactic response of A. tumefaciens to atmospheric air but also resulted in a weakened chemotactic response to multiple carbon sources. Subsequent site-directed mutagenesis and phenotypic analysis showed that the conserved residue His100 in Atu1027 is essential for the globin domain's function in both chemotaxis and aerotaxis. Furthermore, deleting Atu1027 impaired the biofilm formation and pathogenicity of A. tumefaciens. Collectively, our findings demonstrated that Atu1027 functions as an aerotaxis receptor that affects agrobacterial chemotaxis and the invasion of A. tumefaciens into its host.


Asunto(s)
Agrobacterium tumefaciens , Quimiotaxis , Agrobacterium tumefaciens/genética , Quimiotaxis/genética , Tumores de Planta/microbiología , Plantas , Globinas
18.
BMC Genomics ; 25(1): 147, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321385

RESUMEN

BACKGROUND: Diachasmimorpha longicaudata is a hymenopteran fruit fly endoparasitoid. Females of this species find their hosts for oviposition by using complex sensorial mechanisms in response to physical and chemical stimuli associated with the host and host habitat. Ecological and behavioral aspects related to host-seeking behavior for oviposition have been extensively studied in D. longicaudata, including the identification of volatile organic compounds acting as attractants to females. In this sense, molecular mechanisms of chemoreception have been explored in this species, including a preliminary characterization of odorant-binding proteins (OBPs), chemosensory proteins (CSPs) and odorant receptors (ORs), among other proteins. Functional assays on OBP and CSP have been conducted as a first approach to identify molecular mechanisms associated with the female host-seeking behavior for oviposition. The aims of the present study were to identify the D. longicaudata sensory gene repertoire expressed in the antenna of sexually mature and mated individuals of both sexes, and subsequently, characterize transcripts differentially expressed in the antennae of females to identify candidate genes associated with the female host-seeking behavior for oviposition. RESULTS: A total of 33,745 predicted protein-coding sequences were obtained from a de novo antennal transcriptome assembly. Ten sensory-related gene families were annotated as follows: 222 ORs, 44 ionotropic receptors (IRs), 25 gustatory receptors (GRs), 9 CSPs, 13 OBPs, 2 ammonium transporters (AMTs), 8 pickpocket (PPKs) receptors, 16 transient receptor potential (TRP) channels, 12 CD36/SNMPs and 3 Niemann-Pick type C2 like proteins (NPC2-like). The differential expression analysis revealed 237 and 151 transcripts up- and downregulated, respectively, between the female and male antennae. Ninety-seven differentially expressed transcripts corresponded to sensory-related genes including 88 transcripts being upregulated (87 ORs and one TRP) and nine downregulated (six ORs, two CSPs and one OBP) in females compared to males. CONCLUSIONS: The sensory gene repertoire of D. longicaudata was similar to that of other taxonomically related parasitoid wasps. We identified a high number of ORs upregulated in the female antenna. These results may indicate that this gene family has a central role in the chemoreception of sexually mature females during the search for hosts and host habitats for reproductive purposes.


Asunto(s)
Conducta de Búsqueda de Hospedador , Receptores Odorantes , Avispas , Humanos , Animales , Masculino , Femenino , Avispas/genética , Perfilación de la Expresión Génica , Transcriptoma , Receptores de Superficie Celular/genética , Receptores Odorantes/genética , Proteínas de Insectos/genética , Antenas de Artrópodos/metabolismo , Filogenia
19.
Respir Res ; 25(1): 61, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38281036

RESUMEN

BACKGROUND: Peripheral blood oxygen monitoring via chemoreceptors in the carotid body (CB) is an integral function of the autonomic cardiorespiratory regulation. The presence of the purinergic P2Y12 receptor (P2Y12R) has been implicated in CB; however, the exact role of the receptor in O2 sensing and signal transduction is unknown. METHODS: The presence of P2Y12R was established by immunoblotting, RT qPCR and immunohistochemistry. Primary glomus cells were used to assess P2Y12R function during hypoxia and hypercapnia, where monoamines were measured by HPLC; calcium signal was recorded utilizing OGB-1 and N-STORM Super-Resolution System. Ingravescent hypoxia model was tested in anaesthetized mice of mixed gender and cardiorespiratory parameters were recorded in control and receptor-deficient or drug-treated experimental animals. RESULTS: Initially, the expression of P2Y12R in adult murine CB was confirmed. Hypoxia induced a P2Y12R-dependent release of monoamine transmitters from isolated CB cells. Receptor activation with the endogenous ligand ADP promoted release of neurotransmitters under normoxic conditions, while blockade disrupted the amplitude and duration of the intracellular calcium concentration. In anaesthetised mice, blockade of P2Y12R expressed in the CB abrogated the initiation of compensatory cardiorespiratory changes in hypoxic environment, while centrally inhibited receptors (i.e. microglial receptors) or receptor-deficiency induced by platelet depletion had limited influence on the physiological adjustment to hypoxia. CONCLUSIONS: Peripheral P2Y12R inhibition interfere with the complex mechanisms of acute oxygen sensing by influencing the calcium signalling and the release of neurotransmitter molecules to evoke compensatory response to hypoxia. Prospectively, the irreversible blockade of glomic receptors by anti-platelet drugs targeting P2Y12Rs, propose a potential, formerly unrecognized side-effect to anti-platelet medications in patients with pulmonary morbidities.


Asunto(s)
Cuerpo Carotídeo , Humanos , Ratones , Animales , Cuerpo Carotídeo/metabolismo , Oxígeno , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo , Calcio/metabolismo , Hipoxia/metabolismo
20.
J Evol Biol ; 37(1): 62-75, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285658

RESUMEN

Associating with plant hosts is thought to have elevated the diversification of insect herbivores, which comprise the majority of global species diversity. In particular, there is considerable interest in understanding the genetic changes that allow host-plant shifts to occur in pest insects and in determining what aspects of functional genomic diversity impact host-plant breadth. Insect chemoreceptors play a central role in mediating insect-plant interactions, as they directly influence plant detection and sensory stimuli during feeding. Although chemosensory genes evolve rapidly, it is unclear how they evolve in response to host shifts and host specialization. We investigate whether selection at chemosensory genes is linked to host-plant expansion from the buffalo burr, Solanum rostratum, to potato, Solanum tuberosum, in the super-pest Colorado potato beetle (CPB), Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). First, to refine our knowledge of CPB chemosensory genes, we developed novel gene expression data for the antennae and maxillary-labial palps. We then examine patterns of selection at these loci within CPB, as well as compare whether rates of selection vary with respect to 9 closely related, non-pest Leptinotarsa species that vary in diet breadth. We find that rates of positive selection on olfactory receptors are higher in host-plant generalists, and this signal is particularly strong in CPB. These results provide strong candidates for further research on the genetic basis of variation in insect chemosensory performance and novel targets for pest control of a notorious super-pest.


Asunto(s)
Escarabajos , Solanum tuberosum , Animales , Escarabajos/genética , Solanum tuberosum/genética , Genómica , Dieta , Colorado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA