Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 759
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2406377, 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39370574

RESUMEN

The production of bacterial toxins and excessive accumulation of reactive oxygen species (ROS) can induce localized oxidative stress, triggering an exaggerated immune response that impedes wound healing and culminates in chronic wounds. To address this issue, a microneedle (MN) system loaded with copper-manganese oxide (CMO) is developed to modulate the hyperimmune response in wounds. CMO@MN exhibits excellent antimicrobial and anti-inflammatory properties by effectively killing bacteria, scavenging ROS, and modulating macrophage polarization through their multiple enzymatic activities and photothermal properties. RNA sequencing revealed that CMO@MN improved the therapeutic effect on the infected skin of mice by balancing the ratio of M1/M2 macrophages and promoting cell migration and angiogenesis through the regulation of relevant pathways. Overall, this CMO@MN patch skillfully balances the complex issues between the immune response and wound healing and has potential applications in the treatment of other serious bacterial infections.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39367927

RESUMEN

PURPOSE: Chronic wounds caused by infections impose a considerable global healthcare burden. The microbial features of these infections and possible correlations between bacteria and fungi may influence wound healing. However, metagenomic next-generation sequencing (mNGS) analyses of these features remain sparse. Therefore, we performed mNGS on chronic wound infection samples to investigate features and correlations between the bacteriome and mycobiome in 66 patients (28: chronic wounds; 38: non-chronic wounds). METHODS: Microbial community characteristics in patients with wound infections, microbiome-systemic inflammation associations, and bacteria-fungi correlations were analyzed. RESULTS: Infections constituted the primary cause of wounds in this study. Nontuberculous mycobacteria (23%) and Mycobacterium tuberculosis (13%) were the most common pathogens associated with chronic wounds, whereas Staphylococcus aureus (15%) was the most prevalent in non-chronic wound infections. Patients with chronic wound infections had a higher abundance of Pseudomonas aeruginosa than those without chronic wounds. Microbes with a high relative abundance in chronic wound infections were less significantly associated with plasma inflammatory factors than those in non-chronic wound infections. Additionally, a positive correlation between Candida glabrata and P. aeruginosa and an association between Malassezia restricta and anaerobic species were detected in patients with chronic wound infections. CONCLUSION: Our results further support the hypothesis that P. aeruginosa is a microbial biomarker of chronic wound infection regardless of the causative pathogens. Moreover, we propose a positive correlation between C. glabrata and P. aeruginosa in chronic wound infections, which advances the current understanding of fungi-bacteria correlations in patients with chronic wound infections.

3.
Eur J Pharm Biopharm ; : 114533, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39414092

RESUMEN

Chronic wounds represent a significant global health burden, characterized by delayed skin healing and associated comorbidities. The present study aimed to develop nanostructured lipid carriers (NLCs) as a topical delivery system for the co-administration of simvastatin and adenosine to address chronic wound management. The rationale behind the co-delivery approach was to mitigate the cytotoxicity associated with high-dose simvastatin, while preserving its therapeutic benefits through a potential synergistic or additive effect. A significant challenge in the development of these NLCs was the encapsulation of the highly hydrophilic adenosine within the hydrophobic lipid matrix. The NLCs were prepared using a hot homogenization-sonication method with a double emulsion technique and optimized through a series of formulation trials, employing various surfactants, solid and liquid lipids, to achieve efficient drug encapsulation, particularly for the hydrophilic adenosine. Optimized formulations F5- and F10-S/A 0.6 %/2 % (containing 0.6 % simvastatin and 2 % adenosine), exhibited promising physicochemical properties. The main difference was the liquid lipid used: F5 containing Miglyol 810 N, while F10 Capmul MCM C-8. Both formulations displayed a mean particle size below 230 nm, a polydispersity index (PDI) of approximately 0.2, and a zeta potential of around -22 mV. While simvastatin association efficiency (AE) was nearly 100 %, adenosine AE was higher for F10 (24 %), compared to F5 (13.5 %). F5 demonstrated superior stability compared to F10, maintaining consistent particle size and PDI over a 60-day period. Formulation F5 also demonstrated superior cell-based in vitro performance compared to F10, with higher cell viability (MTT assay), greater cell proliferation induction (SRB assay), and enhanced cell proliferation and migration in the wound-scratch assay. While F10 displayed higher adenosine AE, F5 excelled in terms of stability and biological activity. The slightly increase in intracellular reactive oxygen species levels observed with F5 may contribute to its enhanced proliferative effects. In-depth characterization revealed that F5 comprised spherical nanoparticles, and thermal analysis indicated no significant changes in the nanocarrier structure upon drug encapsulation. Additionally, ex vivo permeability study demonstrated superior skin retention of both simvastatin and adenosine for F5 compared to an emulsion control. Overall, the F5 nanocarrier demonstrated suitable physicochemical properties, cellular biocompatibility, induction of cell proliferation and migration events, and drug retention capacity in the skin layers, indicating its potential as a promising topical treatment for difficult-to-heal wounds.

4.
BMC Microbiol ; 24(1): 406, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394082

RESUMEN

BACKGROUND: Staphylococcus aureus is the predominant pathogen isolated in diabetic foot infections. Recently, the skin commensal bacterium, Helcococcus kunzii, was found to modulate the virulence of this pathogen in an in vivo model. This study aims to elucidate the molecular mechanisms underlying the interaction between these two bacterial species, using a proteomic approach. RESULTS: Our results reveal that H. kunzii can coexist and proliferate alongside S. aureus in a Chronic Wound Media (CWM), thereby mimicking an in vitro chronic wound environment. We noted that the secreted proteome of H. kunzii induced a transcriptional effect on S. aureus virulence, resulting in a decrease in the expression level of agrA, a gene involved in quorum sensing. The observed effect could be ascribed to specific proteins secreted by H. kunzii including polysaccharide deacetylase, peptidoglycan DD-metalloendopeptidase, glyceraldehyde-3-phosphate dehydrogenase, trypsin-like peptidase, and an extracellular solute-binding protein. These proteins potentially interact with the agr system, influencing S. aureus virulence. Additionally, the virulence of S. aureus was notably affected by modifications in iron-related pathways and components of cell wall architecture in the presence of H. kunzii. Furthermore, the overall metabolism of S. aureus was reduced when cocultured with H. kunzii. CONCLUSION: Future research will focus on elucidating the role of these excreted factors in modulating virulence.


Asunto(s)
Proteínas Bacterianas , Staphylococcus aureus , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Virulencia , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteómica , Infecciones Estafilocócicas/microbiología , Percepción de Quorum , Regulación Bacteriana de la Expresión Génica , Humanos , Simbiosis , Transactivadores/metabolismo , Transactivadores/genética , Interacciones Microbianas , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Proteoma , Pared Celular/metabolismo
5.
Int Wound J ; 21(10): e70055, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39353602

RESUMEN

Diabetic foot ulcers (DFUs) are a growing public health problem, paralleling the increasing incidence of diabetes. While prevention is most effective treatment for DFUs, challenge remains on selecting the optimal treatment in cases with DFUs. Health sciences have greatly benefited from the integration of artificial intelligence (AI) applications across various fields. Regarding amputations in DFUs, both literature and clinical practice have mainly focused on strategies to prevent amputation and identify avoidable risk factor. However, there are very limited data on assistive parameters/tools that can be used to determine the level of amputation. This study investigated how well ChatGPT, with its lately released version 4o, matches the amputation level selection of an experienced team in this field. For this purpose, clinical photographs from patients who underwent amputations due to diabetic foot ulcers between May 2023 and May 2024 were submitted to the ChatGPT-4o program. The AI was tasked with recommending an appropriate amputation level based on these clinical photographs. Data from a total of 60 patients were analysed, with a median age of 64.5 years (range: 41-91). According to the Wagner Classification, 32 patients (53.3%) had grade 4 ulcers, 16 patients (26.6%) had grade 5 ulcers, 10 patients (16.6%) had grade 3 ulcers and 2 patients (3.3%) had grade 2 ulcers. A one-to-one correspondence between the AI tool's recommended amputation level and the level actually performed was observed in 50 out of 60 cases (83.3%). In the remaining 10 cases, discrepancies were noted, with the AI consistently recommending a more proximal level of amputation than what was performed. The inter-rater agreement analysis between the actual surgeries and the AI tool's recommendations yielded a Cohen's kappa coefficient of 0.808 (SD: 0.055, 95% CI: 0.701-0.916), indicating substantial agreement. Relying solely on clinical photographs, ChatGPT-4.0 demonstrates decisions that are largely consistent with those of an experienced team in determining the optimal level of amputation for DFUs, with the exception of hindfoot amputations.


Asunto(s)
Amputación Quirúrgica , Inteligencia Artificial , Pie Diabético , Humanos , Pie Diabético/cirugía , Amputación Quirúrgica/métodos , Amputación Quirúrgica/estadística & datos numéricos , Anciano , Masculino , Femenino , Persona de Mediana Edad , Anciano de 80 o más Años , Adulto
6.
Burns Trauma ; 12: tkae040, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39328366

RESUMEN

The cutaneous lymphatic system regulates tissue inflammation, fluid balance and immunological responses. Lymphangiogenesis or lymphatic dysfunction may lead to lymphedema, immune deficiency, chronic inflammation etc. Tissue regeneration and healing depend on angiogenesis and lymphangiogenesis during wound healing. Tissue oedema and chronic inflammation can slow wound healing due to impaired lymphangiogenesis or lymphatic dysfunction. For example, impaired lymphangiogenesis or lymphatic dysfunction has been detected in nonhealing wounds such as diabetic ulcers, venous ulcers and bedsores. This review summarizes the structure and function of the cutaneous lymphatic vessel system and lymphangiogenesis in wounds. Furthermore, we review wound lymphangiogenesis processes and remodelling, especially the influence of the inflammatory phase. Finally, we outline how to control lymphangiogenesis to promote wound healing, assess the possibility of targeting lymphangiogenesis as a novel treatment strategy for chronic wounds and provide an analysis of the possible problems that need to be addressed.

7.
Biomaterials ; 314: 122848, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39342917

RESUMEN

Chronic wound healing often encounters challenges characterized by prolonged inflammation and impaired angiogenesis. While the immune response plays a pivotal role in orchestrating the intricate process of wound healing, excessive inflammation can hinder tissue repair. In this study, a bilayer alginate hydrogel system encapsulating polyelectrolyte complex nanoparticles (PCNs) loaded with anti-inflammatory cytokines and angiogenic growth factors is developed to address the challenges of chronic wound healing. The alginate hydrogel is designed using two distinct crosslinking methods to achieve differential degradation, thereby enabling precise spatial and temporal controlled release of PCNs. Initially, interleukin-10 (IL-10) is released to mitigate inflammation, while unsaturated PCNs bind and remove accumulated pro-inflammatory cytokines at the wound site. Subsequently, angiogenic growth factors, including vascular endothelial growth factor and platelet-derived growth factor, are released to promote vascularization and vessel maturation. Our results demonstrate that the bilayer hydrogel exhibits distinct degradation kinetics between the two layers, facilitating the staged release of multiple signaling molecules. In vitro experiments reveal that IL-10 can activate the Jak1/STAT3 pathway, thereby suppressing pro-inflammatory cytokines and chemokines while down-regulating inflammation-related genes. In vivo studies demonstrate that application of the hydrogel in chronic wounds using diabetic murine model promotes healing by positively modulating multiple integral reparative mechanisms. These include reducing inflammation, promoting macrophage polarization towards a pro-regenerative phenotype, enhancing keratinocyte migration, stimulating angiogenesis, and expediting wound closure. In conclusion, our hydrogel system effectively mitigates inflammatory responses and provides essential physiological cues by inducing a synergistic angiogenic effect, thus offering a promising approach for the treatment of chronic wounds.

8.
Micromachines (Basel) ; 15(9)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39337764

RESUMEN

To investigate the impact of electrode structure on Electrical Stimulation Therapy (EST) for chronic wound healing, this study designed three variants of flexible microelectrodes (FMs) with Ag-Cu coverings (ACCs), each exhibiting distinct geometrical configurations: hexagonal, cross-shaped, and serpentine. These were integrated with PPY/PDA/PANI (3/6) (full name: polypyrrole/polydopamine/polyaniline 3/6). Hydrogel dressing comprehensive animal studies, coupled with detailed electrical and mechanical modeling and simulations, were conducted to assess their performance. Results indicated that the serpentine-shaped FM outperformed its counterparts in terms of flexibility and safety, exhibiting minimal thermal effects and a reduced risk of burns. Notably, FMs with metal coverings under 3% demonstrated promising potential for optoelectronic self-powering capabilities. Additionally, simulation data highlighted the significant influence of hydrogel non-uniformity on the distribution of electrical properties across the skin surface, providing critical insights for optimizing EST protocols when employing hydrogel dressings.

9.
Int J Biol Macromol ; : 135708, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39349331

RESUMEN

The treatment of diabetic foot ulcers remains a significant challenge, as their morbidity is increasing while current therapies are expensive and often ineffective. The dried mucus from the snail Achatina fulica promotes diabetic wound healing. Herein, to develop a more controllable and stable wound dressing for diabetic wound treatment, the AFG/StarPEG hydrogel mimicking snail mucus was prepared by covalently coupling of sulfated glycosaminoglycan from A. fulica (AFG) with star-shaped polyethylene glycol (StarPEG) amine. The AFG/StarPEG hydrogel reduced excessive inflammation in wound tissues by decreasing pro-inflammatory cytokines (IL-6, IL-1ß, and TNF-α) and increasing anti-inflammatory cytokines (IL-4 and IL-10). Moreover, it promoted the polarization of macrophages to M2 anti-inflammatory type in diabetic wound. By improving transition of diabetic chronic wound from inflammatory phase to proliferative phase, it promoted angiogenesis, collagen deposition and re-epithelialization, and thus tissue regeneration for wound healing. This work provides a convenient and effective dressing for treating chronic diabetic wound.

10.
Wound Repair Regen ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225112

RESUMEN

Chronic wounds are characterised by an imbalance between pro and anti-inflammatory signals, which result in permanent inflammation and delayed re-epithelialization, consequently hindering wound healing. They are associated with bacterial infections, tissue hypoxia, local ischemia, reduced vascularization, and MMP-9 upregulation. The global prevalence of chronic wounds has been estimated at 40 million in the adult population, with an alarming annual growth rate of 6.6%, making it an increasingly significant clinical problem. Sericin is a natural hydrophilic protein obtained from the silkworm cocoon. Due to its biocompatibility, biodegradability, non-immunogenicity, and oxidation resistance, coupled with its excellent affinity for target biomolecules, it holds great potential in wound healing applications. The silk industry discards 50,000 tonnes of sericin annually, making it a readily available material. Sericin increases cell union sites and promotes cell proliferation in fibroblasts and keratinocytes, thanks to its cytoprotective and mitogenic effects. Additionally, it stimulates macrophages to release more therapeutic cytokines, thus improving vascularization. This review focuses on the biological properties of sericin that contribute towards enhanced wound healing process and its mechanism of interaction with important biological targets involved in wound healing. Emphasis is placed on diverse wound dressing products that are sericin based and the utilisation of nanotechnology to design sericin nanoparticles that aid in chronic wound management.

11.
ACS Appl Bio Mater ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271646

RESUMEN

Chronic wound management using biomaterial-based dressings has significantly impacted the standard and efficiency of wound healing. However, various available wound healing aids are ineffective in treating deep open injuries and chronic wounds such as diabetic wounds. Herein, we developed a 3D bilayered multifunctional sponge, which addresses the structural and functional issues faced by biomaterial dressings in treating deep and chronic wounds. The 3D bilayered sponge consists of a hydrogel base functionalized with wound healing peptide (Tylotoin)-carrying nanoparticles and topped with a nanofiber layer functionalized with an antimicrobial peptide (LLKKK18). The 3D bilayered sponge, with its highly porous, elastic, and enhanced fluid absorption ability, makes it a suitable wound treatment aid. The developed multifunctional 3D sponge shows antibacterial action and promotes a microenvironment similar to the extracellular matrix (ECM) in regulating dermal cell survival and migration. Study in a full-thickness skin defect diabetic mouse model has shown that the developed 3D bilayered sponge accelerated wound closure and promoted functional skin regeneration through reduced inflammation, faster granulation tissue formation, re-epithelialization, neovascularization, and skin appendage restoration, which make the developed 3D bilayered multifunctional sponge an efficient and advanced chronic wound management aid with potential for future clinical application.

12.
Polymers (Basel) ; 16(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274089

RESUMEN

Chronic wounds, such as diabetic foot ulcers, pressure ulcers, and venous ulcers, pose significant clinical challenges and burden healthcare systems worldwide. The advent of 3D bioprinting technologies offers innovative solutions for enhancing chronic wound care. This scoping review evaluates the applications, methodologies, and effectiveness of 3D-printed bioinks in chronic wound healing, focusing on bioinks incorporating living cells to facilitate wound closure and tissue regeneration. Relevant studies were identified through comprehensive searches in databases, including PubMed, Scopus, and Web of Science databases, following strict inclusion criteria. These studies employ various 3D bioprinting techniques, predominantly extrusion-based, to create bioinks from natural or synthetic polymers. These bioinks are designed to support cell viability, promote angiogenesis, and provide structural integrity to the wound site. Despite these promising results, further research is necessary to optimize bioink formulations and printing parameters for clinical application. Overall, 3D-printed bioinks offer a transformative approach to chronic wound care, providing tailored and efficient solutions. Continued development and refinement of these technologies hold significant promise for improving chronic wound management and patient outcomes.

13.
ACS Appl Mater Interfaces ; 16(38): 50321-50334, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39264683

RESUMEN

The sophisticated environment of chronic wounds, characterized by prolonged exudation and recurrent bacterial infections, poses significant challenges to wound recovery. Recent advancements in multifunctional wound dressings fall short of providing comprehensive, accurate, and comfortable treatment. To address these issues, a battery-free and multifunctional microfluidic Janus wound dressing (MM-JWD) capable of three functions, including exudate management, antibacterial properties, and multiple indications of wound infection detection, has been developed. During the treatment, the fully soft microfluidic Janus membrane not only demonstrated stable unidirectional fluid transport capabilities under various skin deformations for a longer period but also provided antibacterial effects through surface treatment with chitosan quaternary ammonium salts and poly(vinyl alcohol). Furthermore, integrating multiple colorimetric sensors within the Janus membrane's microchannels and a dual-layer structure enabled simultaneous monitoring of the wound's pH, uric acid, and temperature. The monitoring was facilitated by smartphone recognition of color changes in the sensors. In vivo and in vitro tests confirmed the exudate management, antibacterial, and sensing capabilities of the MM-JWD, proving its efficacy in monitoring and promoting the healing of wounds. Overall, this study provides a valuable method for the design of multifunctional wound dressings for chronic wound care.


Asunto(s)
Antibacterianos , Vendajes , Cicatrización de Heridas , Antibacterianos/farmacología , Antibacterianos/química , Animales , Cicatrización de Heridas/efectos de los fármacos , Quitosano/química , Quitosano/farmacología , Alcohol Polivinílico/química , Staphylococcus aureus/efectos de los fármacos , Humanos , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Concentración de Iones de Hidrógeno , Ratones , Ácido Úrico/química , Colorimetría
14.
J Control Release ; 375: 155-177, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39242033

RESUMEN

Chronic wound management is affected by three primary challenges: bacterial infection, oxidative stress and inflammation, and impaired regenerative capacity. Conventional treatment methods typically fail to deliver optimal outcomes, thus highlighting the urgency to develop innovative materials that can address these issues and improve efficacy. Recent advances in DNA nanotechnology have garnered significant interest, particularly in the field of functional nucleic acid (FNA) nanomaterials, owing to their exceptional biocompatibility, programmability, and therapeutic potential. Among them, FNAs with unique nanostructures have garnered considerable attention. First, they inherit the biological properties of FNAs, including biocompatibility, reactive oxygen species (ROS)-scavenging capabilities, and modulation of cellular functions. Second, based on a precise design, these nanostructures exhibit superior physical properties, stability, and cellular uptake. Third, by leveraging the programmability of DNA strands, FNA nanostructures can be customized to accommodate therapeutic nucleic acids, peptides, and small-molecule drugs, thereby enabling a stable and controlled drug delivery system. These unique characteristics enable the use of FNA nanostructures to effectively address the major challenges in chronic wound management. This review focuses on various FNA nanostructures, including tetrahedral framework nucleic acids (tFNAs), DNA hydrogels, DNA origami, and rolling-circle amplification (RCA) DNA assembly. Additionally, a summary of recent advancements in their design and application for chronic wound management as well as insights for future research in this field are provided.


Asunto(s)
ADN , Nanoestructuras , Nanotecnología , Cicatrización de Heridas , Nanoestructuras/química , Humanos , ADN/administración & dosificación , Animales , Nanotecnología/métodos , Cicatrización de Heridas/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Ácidos Nucleicos/administración & dosificación , Enfermedad Crónica
15.
Acta Biomater ; 188: 169-183, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39299622

RESUMEN

Biofilm infection and impaired healing of chronic wounds are posing tremendous challenges in clinical practice. In this study, we presented a versatile antimicrobial hydrogel capable of delivering nitric oxide (NO) in a controllable manner to dissipate biofilms, eliminate microorganisms, and promote the healing of chronic wounds. This hydrogel was constructed by Schiff-base crosslinking of oxidized dextran and antimicrobial peptide ε-poly-lysine, further encapsulating photothermal nanoparticles bearing NO donor. This hydrogel could continuously and slowly release NO, effectively dissipating biofilms, and promoting the proliferation of mouse fibroblasts and the migration of endothelial cells. Upon exposure to NIR laser irradiation, the hydrogel generated hyperthermia and rapidly released NO, resulting in the efficient elimination of a broad spectrum of drug-resistant Gram-positive/negative bacterial and fungal biofilms through the synergistic effects of NO, photothermal therapy, and the antibacterial peptide. Notably, the hydrogel demonstrated exceptional in vivo therapeutic outcomes in accelerating the healing process of mice diabetic wounds infected with methicillin-resistant Staphylococcus aureus by successfully eliminating biofilm infection, regulating inflammation, and facilitating angiogenesis and collagen deposition. Overall, this proposed hydrogel shows great promise in accommodating the various demands of the complex repair process of chronic wounds infected with biofilms. STATEMENT OF SIGNIFICANCE: The presence of biofilm infections and underlying dysfunctions in the healing process made chronic wound become stuck in the inflammation stage and difficult to heal. This work developed a NIR laser-modulated three-stage NO-releasing versatile antimicrobial hydrogel (DEPN) exhibiting good therapeutic efficacy for chronic wound. This DEPN hydrogel could inherently and slowly released NO to disperse biofilm. Upon NIR laser irradiation, the DEPN hydrogel generated hyperthermia and induced a rapid burst release of NO effectively eliminating a broad spectrum of drug-resistant bacterial and fungal biofilms. Subsequently, the DEPN hydrogel continually release NO slowly to promote the tissue remolding. This DEPN hydrogel displays great potential in treatment of chronic wounds infected with biofilm.


Asunto(s)
Biopelículas , Hidrogeles , Óxido Nítrico , Cicatrización de Heridas , Animales , Biopelículas/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Ratones , Óxido Nítrico/farmacología , Óxido Nítrico/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Masculino , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/patología , Infección de Heridas/terapia , Infección de Heridas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/terapia , Infecciones Estafilocócicas/patología , Enfermedad Crónica
16.
ACS Biomater Sci Eng ; 10(10): 5995-6016, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39228365

RESUMEN

The integration of hydrogel-based bioinks with 3D bioprinting technologies presents an innovative approach to chronic wound management, which is particularly challenging to treat because of its multifactorial nature and high risk of complications. Using precise deposition techniques, 3D bioprinting significantly alters traditional wound care paradigms by enabling the fabrication of patient-specific wound dressings that imitate natural tissue properties. Hydrogels are notably beneficial for these applications because of their abundant water content and mechanical properties, which promote cell viability and pathophysiological processes of wound healing, such as re-epithelialization and angiogenesis. This article reviews key 3D printing technologies and their significance in enhancing the structural and functional outcomes of wound-care solutions. Challenges in bioink viscosity, cell viability, and printability are addressed, along with discussions on the cross-linking and mechanical stability of the constructs. The potential of 3D bioprinting to revolutionize chronic wound management rests on its capacity to generate remedies that expedite healing and minimize infection risks. Nevertheless, further studies and clinical trials are necessary to advance these therapies from laboratory to clinical use.


Asunto(s)
Bioimpresión , Hidrogeles , Impresión Tridimensional , Cicatrización de Heridas , Hidrogeles/química , Hidrogeles/uso terapéutico , Humanos , Bioimpresión/métodos , Animales , Ingeniería de Tejidos/métodos
17.
Inflammopharmacology ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39312099

RESUMEN

Chronic wound is a major clinical challenge that complicates wound healing, mainly associated with bacterial biofilms. Bacterial burden damages tissue and persists inflammation, failing to granulate, leading to morbidity and mortality. Various therapeutic strategies and approaches have been developed for chronic wound healing in clinical practice. As treating biofilm infection is crucial in chronic wounds, a potent antibiofilm agent, essential oils have been explored extensively for their therapeutic properties and as a replacement for antibiotic therapy. Currently, several studies on essential oils and their active compounds in therapeutics, such as adjunctive therapies, nanotechnology-based treatment and their drug delivery systems, help heal chronic wounds. The antimicrobial, anti-inflammatory and antioxidant properties of essential oils make them distinct and are renowned as natural remedies to improve the healing of infected chronic wounds. Consequently, it accelerates wound closure by reducing inflammation, increasing angiogenesis and tissue regeneration. This review focuses on different essential oils and their active compounds that are exploited for the treatment of biofilm infection, chronic inflammation and wound healing. Thus, an effective novel treatment can be developed to improve the current treatment strategy to overcome multidrug resistance bacteria or antibiotic resistance in various chronic wound infections that support wound healing.

18.
Indian J Microbiol ; 64(3): 1075-1083, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39282204

RESUMEN

Bacterial resistance has led to the spread of bacterial infections such as chronic wound infections. Finding solutions for combating resistant bacteria in chronic wounds such as Staphylococcus aureus and Pseudomonas aeruginosa became an attractive theme among researchers. P. aeruginosa is a gram negative opportunistic human pathogenic bacterium that is difficult to treat due to its high resistance to antibiotics. S. aureus (gram negative bacterium) also has a high antibiotic resistance, so that it is resistant to vancomycin (VRSA), tetracycline, fluoroquinolones and beta-lactam antibiotics including penicillin and methicillin (MRSA). In particular, S. aureus and P. aeruginosa have intrinsic and acquired antibiotic resistance, making the clinical management of infection a real challenge, especially in patients with comorbidities. aPDT can be proposed as a new method in the treatment of multi-drug resistant bacteria in chronic wound infection conditions. In this study, the effect of saponin (100 µg/mL) on photodynamic inactivation on planktonic and biofilm forms of P. aeruginosa (ATCC 27853) and S. aureus (ATCC 25923) strains and on Human Dermal Fibroblast (HDF) cells was investigated. Methylene blue (MB) was used as photosensitizer (0, 10, 50, 100 µg/mL). The light source was a red LED source (660 nm; power density: 20 mW/cm2) which is related to the maximum absorption of MB. The results showed that the use of saponin in combination with MB-aPDT (Methylene Blue-antibacterial photodynamic therapy) reduces the phototoxic activity of MB due to decreasing the monomer form of MB. This result was obtained by spectrophotometric study. Also, the result of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay showed that 8 min of irradiation (660 nm) at 10 µg/mL concentration of alone MB had the lowest phototoxic effect on HDF cells. Due to reduced phototoxic properties of MB in this method, detergents containing saponins not recommended to applied at the same time with MB-aPDT in wound infection area.

19.
J Wound Care ; 33(9): 702-707, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39287037

RESUMEN

OBJECTIVE: The effect of continuous topical oxygen therapy (cTOT) on Pseudomonas aeruginosa biofilm gene transcription profiles following inoculation onto porcine skin, using a customised molecular assay was determined. METHOD: Sterilised porcine skin explants were inoculated with Pseudomonas aeruginosa in triplicate: 0 hours as negative control; 24 hours cTOT device on; 24 hours cTOT device off. The oxygen delivery system of the cTOT device was applied to the inoculated tissue and covered with a semi-occlusive dressing. All samples were incubated at 37±2°C for 24 hours, with the 0 hours negative control inoculated porcine skin samples recovered immediately. Planktonic suspensions and porcine skin biopsy samples were taken at 0 hours and 24 hours. Samples were processed and quantifiably assessed using gene specific reverse transcription-quantitative polymerase chain reaction assays for a panel of eight Pseudomonas aeruginosa genes (16S, pelA, pslA, rsaL, pcrV, pscQ, acpP, cbrA) associated with biofilm formation, quorum sensing, protein secretion/translocation and metabolism. RESULTS: Transcriptional upregulation of pelA, pcrV and acpP, responsible for intracellular adhesion, needletip protein production for type-3 secretion systems and fatty acid synthesis during proliferation, respectively, was observed when the cTOT device was switched on compared to when the device was switched off. Data suggest increased metabolic activity within bacterial cells following cTOT treatment. CONCLUSION: cTOT is an adjunctive therapy that supports faster healing and pain reduction in non-healing hypoxic wounds. Oxygen has previously been shown to increase susceptibility of biofilms to antibiotics through enhancing metabolism. Observed gene expression changes highlighted the impact of cTOT on biofilms, potentially influencing antimicrobial treatment success in wounds. Further in vitro and clinical investigations are warranted.


Asunto(s)
Biopelículas , Oxígeno , Pseudomonas aeruginosa , Animales , Biopelículas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Porcinos , Oxígeno/metabolismo , Modelos Animales de Enfermedad , Infecciones por Pseudomonas/terapia , Piel/metabolismo , Piel/microbiología , Infección de Heridas/terapia , Administración Tópica , Cicatrización de Heridas
20.
Cureus ; 16(8): e67545, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39310614

RESUMEN

Oral ulcers are a very frequent complaint of patients reporting to dental professionals, of which traumatic ulcers are the most common They are very painful and troublesome while the patient speaks, masticates, or brushes. Various treatment modalities, such as topical analgesics and topical or systemic antibiotics, are used conventionally. However, long-term non-healing painful conditions and drug resistance have boosted the rapid raising of an alternative wound healing method. In the presented cases, low-dose biophotonics, also called photobiomodulation (PBM) therapy by low-level laser, was used with the aim of alleviating pain and inflammation, modulating the immune response, and promoting wound healing and tissue regeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA