Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.412
Filtrar
Más filtros

Intervalo de año de publicación
1.
Infect Dis Model ; 10(1): 60-74, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39328988

RESUMEN

Greening, or Huanglongbing (HLB), poses a severe threat to global citrus cultivation, affecting various citrus species and compromising fruit production. Primarily transmitted by psyllids during phloem feeding, the bacterium Candidatus Liberibacter induces detrimental symptoms, including leaf yellowing and reduced fruit quality. Given the limitations of conventional control strategies, the search for innovative approaches, such as resistant genotypes and early diagnostic methods, becomes essential for the sustainability of citrus cultivation. The development of predictive models, such as the one proposed in this study, is essential as it enables the estimation of the bacterium's concentration and the vulnerability of healthy plants to infection, which will be instrumental in determining the risk of HLB. This study proposes a prediction model utilizing environmental factors, including temperature, humidity, and precipitation, which play a decisive role in greening epidemiology, influencing the complex interaction among the pathogen, vector, and host plant. In the proposed modeling, it addresses non-linear relationships through cubic smoothing splines applications and tackles imbalanced categorical predictor variables, requiring the use of a random-effects regression model, incorporating a random intercept to account for variability across different groups and mitigate the risk of biased predictions. The model's ability to predict HLB incidence under varying climatic conditions provides a significant contribution to disease management, offering a strategic tool for early intervention and potentially reducing the spread of HLB. Using climatological and environmental data, the research aims to develop a predictive model, assessing the influence of these variables on the spread of Candidatus Liberibacter asiaticus, essential for effective disease management. The proposed flexible model demonstrates robust predictions for both training and test data, identifying climatological and environmental predictors influencing the dissemination of Candidatus Liberibacter asiaticus, the vascular bacterium associated with Huanglongbing (HLB) or greening.

2.
Food Chem ; 462: 140806, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39241684

RESUMEN

Dried citrus peel (DCP), also called "Chen Pi", has edible and medicinal value. However, the specific differences among various sources remain unknown. Herein, we collected six DCP species, namely, one Citrus reticulata 'Chachi' (CZG) and five Citrus reticulata Blanco (CRB). Targeted high-performance liquid chromatography and untargeted ultra-high-performance liquid chromatography-tandem mass spectrometry were employed to comprehensively compare the phenolic compounds and metabolites in DCP. Interestingly, 13 different phenolic compounds were noted in DCP. The total phenolic compound content in all CRB samples (58.86-127.65 mg/g) was higher than that of CZG (39.47 mg/g). Untargeted metabolomic revealed 1495 compounds, with 115 differentially expressed metabolites for CRBs and CZG, particularly flavonoids (38), terpenoids (15), and phenolic acids and derivatives (9). Lastly, antioxidant assays revealed that all CRB samples exhibited higher antioxidant activities compared with CZG. Therefore, our study results provide a theoretical basis for the high-value utilization of citrus peels and their metabolites.


Asunto(s)
Antioxidantes , Citrus , Frutas , Metabolómica , Extractos Vegetales , Espectrometría de Masas en Tándem , Citrus/química , Citrus/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/análisis , Cromatografía Líquida de Alta Presión , Frutas/química , Frutas/metabolismo , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Fenoles/metabolismo , Fenoles/química , Fenoles/análisis , Flavonoides/metabolismo , Flavonoides/química , Flavonoides/análisis
3.
Plant Dis ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352504

RESUMEN

The occurrence of 'Candidatus Liberibacter' spp. and 'Ca. Phytoplasma' spp. associated with blotchy mottle symptoms poses challenges to huanglongbing (HLB) diagnosis using molecular techniques. The ability to detect multiple targets simultaneously and specifically is a key aspect met by qPCR. A set of primers and hydrolysis probes useful either in single or multiplex reactions for the detection and quantification of HLB-associated bacteria were developed. Sequences from conserved genes of the ribosomal proteins for Liberibacter and phytoplasma circumvent the lack of specificity and cross-reactivity problems related to 16S rDNA gene amplification, allowing precise and specific detection of HLB-associated bacteria in citrus and in the Liberibacter vector, Diaphorina citri. The triplex reaction exhibited high quality and precision as a robust tool for quantifying 'Ca. L. asiaticus' (CLas), 'Ca. L. americanus' (CLam) and 16SrIX phytoplasma. Triplex qPCR showed consistent results and comparable sensitivity to the RNR test, though Cq values were higher when compared to 16S rDNA qPCR. Detection tests using field samples indicate that the qPCR triplex can identify HLB-associated bacteria in samples with varying levels of symptoms, ranging from typical to asymptomatic. Assessment of field samples from growers indicated more than 78.6% had Cq lower than 35.0, below the cut-off established for qPCR reactions used in this work. qPCR triplex is a safe, specific, and sufficiently sensitive technique for detecting CLas, CLam and 16Sr IX phytoplasma simultaneously, in both citrus and D. citri samples. Its application is of importance in assisting growers in making decisions for HLB management.

4.
Food Chem ; 463(Pt 4): 141500, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39362096

RESUMEN

The starch foam displays weak barrier properties under humid storage, which limits its applications in the food industry. In this study, citrus pectin was loaded to strengthen the starch foam. Results showed that the pectin (4 wt% âˆ¼ 8 wt%) effectively modified the cell structures of the starch foam block. This was attributed to the increased viscosity of the starch melt during foaming and the enhanced cell stability during cooling, which was promoted by the formation of entanglements, hydrogen bonds, and ester bonds between pectin and starch, as confirmed by FTIR and DSC. Moreover, the pectin-starch foam displayed improved mechanical properties under wet storage conditions, mainly due to the limited moisture adsorption and water migration. The foam containing 4 wt% of pectin exhibited the highest compression-recovery ratio (76.7 %) and a reduced adsorbed moisture content (19.22 %) under 95 % RH. Overall, citrus pectin could improve the starch foaming process and the foam blocks barrier properties.

5.
Arch Pharm (Weinheim) ; : e2400530, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39363788

RESUMEN

Citrus wastewater from industries is a source of bioactive compounds whose recovery could be a useful approach to convert processing waste into potential resources to be exploited in food, pharmaceutical, and chemical companies. Citrus wastewater, obtained from the industrial processing of Citrus sinensis, was freeze-dried and qualitative/quantitative evaluated using HPLC/MS Q-TOF analysis. Antiproliferative activity was investigated on MDA-MB-231 (triple-negative breast cancer cell line), MCF-7 (breast cancer cell line), and its multidrug-resistant variant MCF-7R. Fraction 8 emerged for its cytotoxicity toward MCF-7R cells. Its main component, the polymethoxylated flavone nobiletin (80%), is likely involved in increasing the number of G1-phase MCF-7R cells without inducing cell death. Notably, fraction 8 sensitizes MCF7-R cells to the antiproliferative effects of doxorubicin, thus contributing to overcoming MCF7-R multidrug resistance. Our studies highlighted the possibility of applying a sustainable strategy for citrus wastewater recycling to recover functional compounds as useful adjuvants for the prevention and treatment of malignancies.

6.
Food Chem ; 463(Pt 4): 141535, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39388876

RESUMEN

Decay caused by Penicillium spp. is the main cause of postharvest citrus quality loss, moreover, the fungus can quickly infect entire batches of citrus fruit resulting in significant economic losses. However, effective detection of early decay remains a challenge due to the lack of distinct visual features. In this study, a Vis-NIR hyperspectral imaging system was developed to acquire full-transmittance images and an NFINDR-JMSAM algorithm was proposed to segment different image pixels. By extracting pure pixels and separating spectral features, the overall classification accuracy of 99.3 % was obtained for all tested samples. The proposed method can also effectively identify scars on the flavedo, citrus stem-end and navel, thereby eliminating their interference with the detection of decayed orange fruit. This study provided a new idea for accurately detecting the early decayed citrus fruit and visualizing the detection results for different tissues by combining hyperspectral transmittance imaging and NFINDR-JMSAM algorithm.

7.
Anaerobe ; : 102919, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39393609

RESUMEN

OBJECTIVES: Fructo-oligosaccharide (FOS) and citrus pectin (CP) are soluble fibers with different chemical composition. However, their fermentation pattern in large intestine remains unclear. METHODS: An in vitro batch fermentation using colonic digesta from pigs as inoculum was employed to investigate the fermentation dynamics of FOS and CP. The monosaccharides and SCFAs contents were assayed by High-Performance Liquid Chromatography and Gas Chromatography, respectively. And the microbiota community was assessed by 16S rRNA gene high-throughput sequencing. RESULTS: The decline of monosaccharides in both substrates after 6 h, especially to a neglected level in FOS. FOS showed higher abundances of butyrate-producing bacteria such as Eubacterium rectale, Roseburia faecis and Coprococcus comes and butyrate compared to CP. CP stimulated the growth of pectinolytic microbe Lachnospira pectinoschiza, succinate-producing bacteria Succinivibrio dextrinosolvens, succinate-utilizing bacteria Phascolarctobacterium succinatutens and the production of acetate and propionate compared to FOS. Moreover, the relative abundances of key enzymes (e.g. butyrate kinase) involving in butyrate formation via the butyrate kinase route were upregulated in the FOS group. And the key enzymes (e.g. acetyl-CoA synthetase) associated with propionate production through the succinate pathway were upregulated in the CP group. CONCLUSIONS: FOS was preferred to ferment by butyrate-producing bacteria to yield a higher level of butyrate via the butyrate kinase pathway, while CP enhanced the cross-feeding of succinate-producing and succinate-utilizing bacteria to form propionate through the succinate pathway. These findings deepen our understanding on the fermentation characteristics of the soluble fibers, and also provide guidelines for fiber choice in precisely modulating the microbial composition and metabolism in large intestine.

8.
J Biochem Mol Toxicol ; 38(11): e70003, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39392135

RESUMEN

Citrus fruits are extensively cultivated and eaten both raw and in refined forms. Citrus fruit peels are highly concentrated in polyphenolic substances. This makes them useful resources. Polymethoxyflavones (PMFs), found in citrus peels, belong to a specific subclass of flavonoids where most or all hydroxyl groups are methylated. PMFs have been documented to possess chemopreventive actions, anticancer, anti-inflammatory, and anti-atherosclerosis properties, as well as neuroprotective effects. Sudachitin, a PMF, is primarily found in Citrus sudachi. Japan's Tokushima prefecture is home to this famous fruit. In recent years, there has been a growing interest among researchers in exploring the potential health benefits of sudachitin, spurred by its presence in traditional diets and its association with various positive health outcomes. Studies conducted over the past decade have revealed promising effects of sudachitin in multiple health conditions, including cancer, skin disorders, inflammatory conditions, diabetes, obesity, and neurodegenerative disorders. Although these promising results exist, there is still a need for thorough preclinical and clinical research to confirm sudachitin's effectiveness in treating chronic conditions. This review seeks to summarize animal and cell studies exploring sudachitin's pharmacological properties and the potential molecular pathways underlying its therapeutic effects. Through this, we aim to clarify the clinical potential of sudachitin across various disorders, paving the way for future research and the development of sudachitin-based therapies.


Asunto(s)
Flavonoides , Humanos , Animales , Flavonoides/uso terapéutico , Citrus/química , Neoplasias/tratamiento farmacológico , Flavonas/uso terapéutico , Flavonas/farmacología
9.
Plant Cell Rep ; 43(11): 262, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39407042

RESUMEN

KEY MESSAGE: Abnormal expression of genes regulating anther and pollen development and insufficient accumulation of male sterility (MS)- related metabolites lead to MS in cybrid pummelo Male sterility (MS) is a major cause of seedlessness in citrus, which is an important trait for fresh fruit. Understanding the mechanism of MS is important for breeding seedless citrus cultivars. In this study, we dissected the transcriptional, metabolic and physiological mechanisms of MS in somatic cybrid of pummelo (G1 + HBP). G1 + HBP exhibited severe male sterility, manifesting as retarded anther differentiation, abnormal anther wall development (especially tapetum and endothecium), and deficient pollen wall formation. In the anthers of G1 + HBP, the expression of genes regulating anther differentiation and tapetum development was abnormal, and the expression of genes regulating endothecium secondary lignification thickening and pollen wall formation was down-regulated. The transcription of genes involved in MS-related biological processes, such as jasmonic acid (JA) signaling pathway, primary metabolism, flavonoid metabolism, and programmed cell death, was altered in G1 + HBP anthers, and the accumulation of MS-associated metabolites, including fatty acids, amino acids, sugars, ATP, flavonols and reactive oxygen species (ROS), was down-regulated in G1 + HBP anthers. In summary, abnormal expression of key genes regulating anther and pollen development, altered transcription of key genes involved in MS-related metabolic pathways, and insufficient accumulation of MS-related metabolites together lead to MS in G1 + HBP. The critical genes and the metabolism pathways identified herein provide new insights into the formation mechanism of MS in citrus and candidate genes for breeding seedless citrus.


Asunto(s)
Citrus , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas , Infertilidad Vegetal , Polen , Infertilidad Vegetal/genética , Redes y Vías Metabólicas/genética , Citrus/genética , Citrus/metabolismo , Citrus/crecimiento & desarrollo , Polen/genética , Polen/crecimiento & desarrollo , Polen/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Transcriptoma/genética , Especies Reactivas de Oxígeno/metabolismo , Perfilación de la Expresión Génica , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ciclopentanos/metabolismo
10.
Infect Drug Resist ; 17: 4291-4299, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39381078

RESUMEN

Background: Dental caries has gained momentum as one of the main public healthcare concerns worldwide. Although the occurrence of dental caries in Uganda is on the rise, little attention has been paid to promoting oral healthcare in the country. Thus, this study aimed to evaluate the citrus lemon extracts, and Mondia whitei root bark ethanolic extract as candidate alternative therapeutic agents for streptococcus mutans, the causative agent of dental caries. Methods: In this study, the citrus lemon juice, pulp citrus lemon juice, and Mondia whitei ethanolic extract were screened for phytochemicals. Furthermore, the anti-Streptococcus mutans activity of the citrus lemon juice, citrus lemon pulp juice, and Mondia whitei ethanolic extract was determined by the agar well diffusion method while the minimum inhibitory concentration and minimum bactericidal concentration were determined by serial broth dilution. Results: Phytochemical screening revealed the presence of alkaloids, flavonoids, terpenoids, and tannins in the Mondia whitei ethanolic extract and citrus lemon juices, while glycosides were only detected in lemon extracts. The zones of inhibition of Mondia whitei ethanolic extract, citrus lemon juice, citrus lemon pulp juice, and the cocktail were 13.67 ± 0.33 mm, 18.67 ± 0.33 mm, 18.33 ± 0.67 mm, and 18.00 ± 0.58 mm, respectively. The citrus lemon juice and citrus lemon pulp juice exhibited significantly lower MIC of 0.195 mg/mL, and 0.391mg/mL, respectively. The efficacy of the extract/juices increased with an increase in the concentration. Conclusion: The study findings revealed that Mondia whitei ethanolic extract and lemon extracts have potent antibacterial activity against streptococcus mutans, the main causative agent of dental caries; thus, can be further explored to formulate a herbal concoction for the prevention and treatment of oral cavity infections in resources-limited low-income communities.

11.
Food Chem ; 463(Pt 4): 141476, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39383795

RESUMEN

Citrus fruits are highly susceptible to pathogenic fungal infections after harvesting, which causes serious economic losses. Therefore, it's necessary to develop new antifungal packaging. In this study, gamma-Decanolactone (DL) was successfully encapsulated in a polycaprolactone (PCL)/ß-cyclodextrin (ß-CD) composite system using electrostatic spinning technology. PCL/ß-CD was compounded in different ratios, the ratio was screened through other indicators such as fiber morphologies and mechanical properties. Then, antifungal mats were prepared by adding different concentrations of DL to the PCL/ß-CD solution. The results showed that when the mixture ratio of PCL/ß-CD was 6:1 and loaded with 6 % DL, the antifungal felt had strong mechanical, significantly inhibiting the growth of three citrus pathogens (P. digitatum, P. italicum and G. candidum), released DL for up to 204 h and effectively reduced the morbidity rate of citrus fruits. Therefore, the antifungal pad prepared in this study has great potential in the field of citrus disease control.

12.
Sci Total Environ ; : 176891, 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39401592

RESUMEN

Microorganisms, the major decomposers of plant residues, are crucial for soil nutrient cycling. Living grass mulching effectively alters microbial community structure and promotes nutrient cycling. However, its consistency with mulching ages and growth periods remains unclear. Therefore, this study aims to clarify the dynamic characteristics of microbial communities and enzyme activities across different mulching ages. In this study, high-throughput sequencing technology was used to investigate bacterial and fungal community evolution in three mulching treatments with Vicia villosa for 8 years (VV_8), 4 years (VV_4), and clean tillage in a citrus orchard. This study covered three growth periods (citrus-grass: spring sprouting to budding period [SSBP], fruit swelling to withering period [FSWP], and fruit maturity to seeding period [FMSP]). The results showed that VV_4 and VV_8 treatments increased bacterial and fungal alpha diversity as well as the activities of nitrogen (N), carbon (C), and phosphorus cycling enzymes. C-cycling enzyme activity was the primary key factor driving changes in microbial diversity across growth periods. Under leguminous green mulching, bacteria alpha diversity increased the most during FSWP, while fungi increased the most during FMSP. Additionally, the relative abundance of Ascomycota and Basidiomycota significantly increased during the FSWP and FMSP, reaching 63.65-73.80 % and 79.73-84.51 %, respectively. With increasing mulching ages, the structural stability and synergistic effects of microorganisms were correspondingly enhanced. Furthermore, available nutrients determined microbial community evolution, with N availability being a key factor influencing microbial diversity, especially fungal diversity. In conclusion, as mulching ages increase, improved nutrient availability gradually enhances microbial diversity, synergistic interactions, and nutrient cycling functions, with copiotrophic taxa occupying a key position in the microbial network. FSWP is a critical turning point for enhancing microbial activity and C-cycling function. This study offers theoretical support for developing microbial regulation strategies to improve soil quality in orchard management practices.

13.
Plant Pathol J ; 40(5): 486-497, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39397303

RESUMEN

Mosaic is the most common viral disease affecting fig plants. Although the Fig mosaic virus is the leading cause of mosaic disease, other viruses are also involved. High-throughput sequencing was used to assess viral infections in fig plants with mosaic. The genomic DNA and total RNAseq of mosaic-symptomatic fig leaves were sequenced using the Illumina platform. The analysis revealed the presence of fig badnavirus 1 (FBV-1), grapevine badnavirus 1 (GBV-1), citrus exocortis viroid (CEVd), and apple dimple fruit viroid (ADFVd). The FBV-1 and GBV-1 sequences were 7,140 bp and 7,239 bp long, respectively. The two genomes encode one open reading frame containing five major protein domains. The viroids, CEVd and ADFVd, were 397 bp and 305 bp long. Phylogenetic analyses revealed a close relationship between FBV-1 and Iranian isolates of the same species, while GBV-1 was closely related to Russian grapevine badnavirus isolates (Tem64, Blu17, KDH48, and Pal9). CEVd was closely related to other Iraqi isolates, while ADFVd was strongly related to a Spanish isolate. A registered endogenous pararetrovirus, caulimovirus-Fca1, with a size of 7,556 bp, was found in the RNA transcripts with a low expression level. This integrant was also detected in the genomes of the two lines 'Horaishi' (a female line) and 'Caprifig 6085' (a male line). Phylogenetic analyses revealed that caulimovirus-Fca1 was distinct from two other clades of different endogenous virus genera.

14.
Artículo en Inglés | MEDLINE | ID: mdl-39400715

RESUMEN

The current study is aimed at determining the preventive effects of hesperidin against death, weight changes, cellular damage, and oxidative stress in mice induced by n-ethyl-n-nitrosourea as a chronic lymphocytic leukemia (CLL) model. Female mice were pretreated with hesperidin (20 mg/kg, intraperitoneally, daily for 30 days). Next, the animals received a single intraperitoneal injection of 80 mg/kg ENU on the 30th. Changes in weight and mortality were monitored for 120 days, and then the animals were sacrificed and parameters such as reactive oxygen species (ROS), mitochondrial dysfunction, lysosomal membrane integrity, oxidized/reduced glutathione (GSH/GSSG), and malondialdehyde (MDA) were analyzed in isolated lymphocytes. Hesperidin significantly increases the survival of mice up to 86% and delay in death time and prevents weight changes after exposure to ENU. Also, hesperidin improved cellular toxicity parameters such as ROS formation, MMP collapse, lysosomal membrane destabilization, and lipid peroxidation in isolated lymphocytes. These results promisingly showed that pretreatment with hesperidin increases delay in death time and reduces mortality cellular toxicities consistent with the carcinogenicity of alkylating compounds. This study confirms that the consumption of hesperidin and citrus most likely inhibits alkylating agents-induced carcinogenicity and toxicity.

15.
Sensors (Basel) ; 24(19)2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39409240

RESUMEN

This study explores the development and validation of an airflow model to support climate prediction for Citrus Under Protective Screens (CUPS) in California. CUPS is a permeable screen structure designed to protect a field of citrus trees from large insects including the vector that causes the devastating citrus greening disease. Because screen structures modify the environmental conditions (e.g., temperature, relative humidity, airflow), farm management and treatment strategies (e.g., pesticide spraying events) must be modified to account for these differences. Toward this end, we develop a model for predicting wind speed and direction in a commercial-scale research CUPS, using a computational fluid dynamics (CFD) model. We describe the model and validate it in two ways. In the first, we model a small-scale replica CUPS under controlled conditions and compare modeled and measured airflow in and around the replica structure. In the second, we model the full-scale CUPS and use historical measurements to "back test" the model's accuracy. In both settings, the modeled airflow values fall within statistical confidence intervals generated from the corresponding measurements of the conditions being modeled. These findings suggest that the model can aid decision support and smart agriculture solutions for farmers as they adapt their farm management practices for CUPS structures.


Asunto(s)
Citrus , Agricultura/métodos , Modelos Teóricos , Viento , Hidrodinámica
16.
Plants (Basel) ; 13(19)2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39409562

RESUMEN

The Defective in Induced Resistance 1 (DIR1) gene, a member of the lipid transferase proteins (LTPs), plays a crucial role in plant defense against pathogens. While previous transcriptomic studies have highlighted the significant expression of citrus LTPs during biotic stress, functional annotations of LTPs in the Citrus genera remain limited. In this study, we cloned the Murraya paniculata DIR1 (MpDIR1(t)) gene and overexpressed it in Arabidopsis thaliana to evaluate its stress response mechanisms against biotic stress. The transgenic Arabidopsis lines showed fewer disease symptoms in response to Pseudomonas syringae (Pst DC3000) compared to wild-type Arabidopsis. Defense and pathogenesis-responsive genes such as PR1, PR4, PR5, and WRKY12 were significantly induced, showing a 2- to 12-fold increase in all transgenic lines compared to the wild type. In addition, the Pst DC3000-infected transgenic Arabidopsis lines demonstrated elevated levels of flavonoids and salicylic acid (SA), along with higher expression of SA-related genes, compared to the wild type. Moreover, all transgenic lines possessed lower reactive oxygen species levels and higher activity of antioxidant defense enzymes such as superoxide dismutase, peroxidase, and catalase under Pst DC3000 stress compared to the wild type. The up-regulation of defense genes, activation of the SA pathway, accumulation of flavonoids, and reinforcement of antioxidant defense mechanisms in transgenic Arabidopsis lines in response to Pst DC3000 underscore the critical role of MpDIR1(t) in fortifying plant immunity. Thus, MpDIR1(t) constitutes a promising candidate gene for improving bacterial disease resistance in commercial citrus cultivars.

17.
Plants (Basel) ; 13(19)2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39409592

RESUMEN

Citrate is a major determinant of fruit flavor quality. Currently, citrus species and/or varieties with significant alterations in citrate level have greatly advanced the molecular basis of citrate accumulation in fruit. However, in-depth dissections of the molecular mechanism specific to citrate accumulation are still limited due to the lack of mutants, especially within one single variety. In this study, a fresh-sweet 'Shatangju' mutant (Citrus reticulata cv.) was obtained during a survey of citrus resources in Guangdong, China, and the phenotype, fruit morphology, and primary flavor profiles were comparatively analyzed. Unlike the wild-type 'Shatangju' (WT), the mutant (MT) material exhibited a dwarfed and multi-branched tree shape, delayed flowering and fruit ripening at maturity, a prolonged fruit tree-retention time, and a decreased single fruit weight at maturity. Dynamic measurement of the metabolite levels further suggested that the contents and fluctuation patterns of vitamin C, malate, quinate, and oxalate showed no obvious difference between MT and MT fruits, while the citrate level in MT fruits significantly decreased over various developmental stages, ranging from 0.356 to 1.91 mg g-1 FW. In addition, the accumulation patterns of the major soluble sugars (sucrose, fructose, and glucose), as well as the sugar/acid ratio, were also altered in MT fruits during development. Taken together, this study provides a novel acid-free 'Shatangju' mutant, which can serve as a powerful tool for the research of fruit flavor quality, especially for the comprehensive understanding of the molecular mechanism of citrate accumulation in fruits.

18.
Plants (Basel) ; 13(19)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39409627

RESUMEN

The excessive use of chemical fertilizers in the Guanxi honey pomelo production area has led to severe soil acidification and magnesium (Mg) deficiency, adversely affecting pomelo fruit quality. To address this issue, an integrated nutrient optimization model crucial for ensuring the sustainable and environmentally friendly development of the Guanxi honey pomelo industry has been explored. In a three-year experiment, two fertilizer treatments were implemented: a farmer fertilizer practice (FP) and an NPK reduction plus foliar Mg fertilizer (OPT + fMg). We investigated the impact of this integrated optimized fertilization measure on pomelo fruit quality from three aspects: flavor (sugars and organic acids), nutrition (vitamin C and mineral elements), and antioxidant properties (phenolics, flavonoids, and phytic acid). The results revealed that the OPT + fMg treatment improved fruit flavor by reducing acidity (titratable acid, citric acid, and quinine), while having a minimal impact on sugar components (sucrose, fructose, and glucose). Additionally, the OPT + fMg treatment increased the total phenolics, total flavonoids, and phytic acid in the fruit peel, enhancing its potential antioxidant quality. However, the OPT + fMg treatment reduced the mineral nutrient quality (excluding calcium) in the fruit. As for the fruit developmental period, the OPT + fMg treatment significantly increased the total flavonoid concentration in the peel from the mid-expansion fruit stage, followed by notable increases in phytic acid in the peel during the mid-to-late expansion fruit stage. The total phenolic concentration in the peel significantly rose only during the late fruit development stage. The most pronounced effect was observed on phytic acid in both peel and pulp. The influence of the OPT + fMg treatment on the mineral nutrients (excluding calcium) primarily occurred during the mid-to-late expansion fruit stage. Overall, the OPT + fMg treatment significantly improved the comprehensive nutritional quality of pomelo fruit, providing valuable insights for scientifically reducing fertilizer application while enhancing fruit quality.

19.
Foods ; 13(19)2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39410131

RESUMEN

Citrus reticulata 'Chachiensis' is a citrus cultivar in the Rutaceae family, and its peel is commonly utilized as a raw material for Guangchenpi. This study used flavonoid extract from the peel of immature Citrus reticulata 'Chachiensis' (CCE) as the raw material to investigate the encapsulation ability of different wall materials (plant-based proteins, including soybean protein isolation (SPI), pea protein (PP), and zein; carbohydrates, including maltodextrin (MD), Momordica charantia polysaccharide (MCP), and gum acacia (GA); and composite wall materials of both types) on CCE. The wall material with the highest encapsulation rate was selected for the preparation of CCE microcapsules. Furthermore, the physicochemical characteristics, antioxidant capacity, bioavailability, and storage stability of the CCE microcapsules were explored. The results indicated that among all wall materials, the composite wall material PPMD had the highest encapsulation rate, which was 84.44 ± 0.34%. After encapsulation, the microcapsules tended to have a yellow color and exhibited characteristics such as system stability, low moisture content, and low hygroscopicity. In vitro antioxidant assays revealed that the encapsulation of CCE significantly increased the scavenging rates of DPPH and ABTS free radicals. In vitro gastrointestinal digestion experiments indicated that the release rate of PPMD-CCE in intestinal fluid was significantly greater than that of free CCE, ultimately reaching 85.89 ± 1.53%. Storage experiments demonstrated that after 45 days under various temperature and light conditions, the retention rate of CCE in the microcapsules was significantly greater than that of free CCE. The above findings provide new possibilities for the application of PP and plant proteins and lay a foundation for the future industrial application of CCE.

20.
Foods ; 13(19)2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39410173

RESUMEN

Blood oranges are increasingly cultivated worldwide as consumers become more aware of the health benefits of their nutraceutical properties and natural antioxidants, specifically polyphenols and anthocyanins. The amounts of these compounds in the fruit mostly depend on the cultivar, rootstock, maturity stage, and environmental conditions. This work focused on the study of the qualitative features of numerous blood orange cultivars grown in three different environments in Spain and Italy. The aim of the work was to investigate the accumulation of primary and secondary metabolites, including bioactive compounds, and to characterize fruit qualitative traits at the time of harvest. Simple sugars were identified and quantified by liquid chromatography and organic acids, polyphenols, and flavonoids by spectrophotometric analysis. The antioxidant potential of the juice was assessed by ABTS, DPPH, and FRAP assays. Cultivation area affected juice color, with Moro and T. Ippolito being the varieties with the highest pigmentation. The cultivation area also determined the pattern of primary and secondary metabolite accumulation in the Tarocco lines. Furthermore, the antioxidant potential was influenced by the diverse environments. Principal Component Analysis highlighted three clusters, two overlapping clusters for the varieties grown in the two Spanish plots and a third clearly separated cluster for the genotypes grown in Italy. This study provides novel knowledge on primary and secondary metabolite accumulation in blood oranges, elucidating the role of genotype and environmental conditions on fruit quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA