Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Total Environ ; 898: 165576, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37467993

RESUMEN

Biological invasions have ecological impacts worldwide with potential massive economic costs. Among other ecosystem services such as nitrogen cycle, carbon sequestration and primary production, invasive alien species are particularly known to impact pollination. By predating honey bees (Apis mellifera), the invasive Yellow-legged hornet (Vespa velutina nigrithorax) increases the mortality risk of European bee colonies; however, little is known about its economic costs. We developed an analytic process combining large-scale field data, niche modelling techniques and agent-based models to spatially assess the ecological and economic impacts of the Yellow-legged hornet on honey bees and beekeeping in France. In particular, we estimated (i) the hornet-related risk of bee colony mortality, (ii) the economic cost of colony loss for beekeepers and (iii) the economic impact of livestock replacement compared to honey revenues at regional and national scales. We estimated an overall density of 1.08 hornet nest/km2 in France, based on the field record of 1260 nests over a searched area of 28,348 km2. However, this predator density was heterogeneously spread out across the country as well as the distribution of managed honey bee colonies. Overall, this hornet-related risk of bee colony mortality could reach up to 29.2 % of the beekeepers' livestock at national scale each year in high predation scenario. This national cost could reach as much as € 30.8 million per year due to colony loss, which represents for beekeepers an economic impact of livestock replacement of 26.6 % of honey revenues. Our results suggest non-negligible ecological and economic impacts of the invasive Yellow-legged hornet on honey bees and beekeeping activities. Moreover, this study meets the urgent need for more numerous and accurate economic estimations, necessary to calculate the impact of biological invasions on biodiversity and human goods, with a view to enhance policies of biodiversity conservation.


Asunto(s)
Abejas , Avispas , Animales , Biodiversidad , Ecosistema , Francia , Especies Introducidas
2.
Res Vet Sci ; 144: 1-10, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35032751

RESUMEN

The ectoparasitic mite Varroa destructor affects honey bee colony health and survival negatively, thus compelling beekeepers to treat their colonies every year. A broadly used mite control regimen is based on two organic molecules: formic and oxalic acids. To ensure optimal efficiency, several applications of these acids at pre-defined time points are recommended. These recommendations are mainly based on experiments conducted under controlled conditions. Studies evaluating the effectiveness under natural field conditions are lacking. We enrolled 30 beekeepers in a longitudinal study in three cantons in Switzerland and monitored the management and health of their colonies for two years. We assessed compliance with mite control recommendations and measured V. destructor infestation rates, indexes of colony productivity (brood size and honey harvest), and colony mortality in 300 colonies. We observed a 10-fold increased risk of colony death when beekeepers deviated slightly from the recommended treatment regimen compared to compliant beekeepers (odds ratio: 11.9, 95% CI: 2.6-55.2, p = 0.002). The risk of colony death increased 25-fold in apiaries with substantial deviations from the recommendations (odds ratio: 50.4, 95% CI: 9.7-262.5, p < 0.0001). The deviations led to increased levels of V. destructor infestation ahead of wintering, which was likely responsible for colony mortality. After communicating the apparent link between low compliance and poor colony survival at the end of the first year to the beekeepers, we observed better compliance and colony survival in the second year. Our results highlight the positive impact of compliance with the recommended V. destructor treatment regimen on the health of honeybee colonies and the need to better communicate the consequences of deviating from the recommendations to improve compliance. Compliance also occasionally decreased, which hints at concept implementation constraints that could be identified and possibly addressed in detail with the help of social sciences to further promote honey bee health.


Asunto(s)
Apicultura , Abejas/parasitología , Infestaciones Ectoparasitarias/prevención & control , Varroidae , Animales , Apicultura/métodos , Infestaciones Ectoparasitarias/veterinaria , Estudios Longitudinales , Estaciones del Año , Suiza , Varroidae/patogenicidad
3.
J Appl Ecol ; 58(1): 70-79, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33542585

RESUMEN

Gut microbiome disequilibrium is increasingly implicated in host fitness reductions, including for the economically important and disease-challenged western honey bee Apis mellifera. In laboratory experiments, the antibiotic tetracycline, which is used to prevent American Foulbrood Disease in countries including the US, elevates honey bee mortality by disturbing the microbiome. It is unclear, however, how elevated individual mortality affects colony-level fitness.We used an agent-based model (BEEHAVE) and empirical data to assess colony-level effects of antibiotic-induced worker bee mortality, by measuring colony size. We investigated the relationship between the duration that the antibiotic-induced mortality probability is imposed for and colony size.We found that when simulating antibiotic-induced mortality of worker bees from just 60 days per year, up to a permanent effect, the colony is reduced such that tetracycline treatment would not meet the European Food Safety Authority's (EFSA) honey bee protection goals. When antibiotic mortality was imposed for the hypothetical minimal exposure time, which assumes that antibiotics only impact the bee's fitness during the recommended treatment period of 15 days in both spring and autumn, the colony fitness reduction was only marginally under the EFSA's threshold. Synthesis and Applications. Modelling colony-level impacts of antibiotic treatment shows that individual honey bee worker mortality can lead to colony mortality. To assess the full impact, the persistence of antibiotic-induced mortality in honey bees must be determined experimentally, in vivo. We caution that as the domestication of new insect species increases, maintaining healthy gut microbiomes is of paramount importance to insect health and commercial productivity. The recommendation from this work is to limit prophylactic use of antibiotics and to not exceed recommended treatment strategies for domesticated insects. This is especially important for highly social insects as excess antibiotic use will likely decrease colony growth and an increase in colony mortality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA