Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(35): 47899-47910, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39012533

RESUMEN

The distribution coefficient (Kd) of radionuclides is a crucial parameter in assessing the safety of high-level radioactive waste (HLW) geological repository. It is determined in the laboratory through batch and column experiments. However, differences in obtained Kd values from distinct experiments have not been thoroughly assessed and compared. This study evaluated strontium (Sr) sorption on different granite materials using static batch and dynamic experiments (column and core-flooding experiments). The results from batch sorption experiments showed higher Sr sorption on granite under acidic and strongly alkaline conditions, low solid-liquid ratios, and low ionic strength. In column experiments, a two-site sorption model was used to simulate Sr transport in crushed granite and mixed pure minerals. The sorption of Sr on crushed granite exhibited a higher affinity than that of mixed pure minerals. The dual-porosity transport model was employed to investigate Sr transport behavior in fractured granite in the core-flooding experiment. Kd obtained from batch sorption experiments are four to twenty times higher than those from column experiments, and two to three orders of magnitude higher than that from a core-flooding experiment. The results of this study provide valuable insights into safety assessment for the HLW geological repository.


Asunto(s)
Residuos Radiactivos , Dióxido de Silicio , Estroncio , Estroncio/química , Dióxido de Silicio/química , Adsorción
2.
Toxics ; 12(5)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38787113

RESUMEN

In small populations and scattered communities, wastewater treatment through vegetation filters (VFs), a nature-based solution, has proved to be feasible, especially for nutrient and organic matter removal. However, the presence of pharmaceuticals in wastewater and their potential to infiltrate through the vadose zone and reach groundwater is a drawback in the evaluation of VF performances. Soil amended with readily labile carbon sources, such as woodchips, enhances microbial activity and sorption processes, which could improve pharmaceutical attenuation in VFs. The present study aims to assess if woodchip amendments to a VF's soil are able to abate concentrations of selected pharmaceuticals in the infiltrating water by quantitatively describing the occurring processes through reactive transport modelling. Thus, a column experiment using soil collected from an operating VF and poplar woodchips was conducted, alongside a column containing only soil used as reference. The pharmaceuticals acetaminophen, naproxen, atenolol, caffeine, carbamazepine, ketoprofen and sulfamethoxazole were applied daily to the column inlet, mimicking a real irrigation pattern and periodically measured in the effluent. Ketoprofen was the only injected pharmaceutical that reached the column outlet of both systems within the experimental timeframe. The absence of acetaminophen, atenolol, caffeine, carbamazepine, naproxen and sulfamethoxazole in both column outlets indicates that they were attenuated even without woodchips. However, the presence of 10,11-epoxy carbamazepine and atenolol acid as transformation products (TPs) suggests that incomplete degradation also occurs and that the effect of the amendment on the infiltration of TPs is compound-specific. Modelling allowed us to generate breakthrough curves of ketoprofen in both columns and to obtain transport parameters during infiltration. Woodchip-amended columns exhibited Kd and µw values from one to two orders of magnitude higher compared to soil column. This augmentation of sorption and biodegradation processes significantly enhanced the removal of ketoprofen to over 96%.

3.
J Hazard Mater ; 467: 133741, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38341887

RESUMEN

Radioactive strontium (90Sr) is considered as one of the most dangerous radionuclides due to its high biochemical toxicity. For the efficient and selective separation of Sr from acidic environments, a novel functional adsorbent CEPA@SBA-15-APTES was prepared in this work through the phosphorylation of amino-modified mesoporous silica with organic content of approximately 20 wt%. CEPA@SBA-15-APTES was characterized by TEM, SEM, EDS, TG-DSC, BET, FTIR, and XPS techniques, revealing its characteristics of an ordered hexagonal lattice-like structure and rich functional groups. The experimental results demonstrated that the adsorbent exhibited good adsorption capacity for Sr over a wide acidity range (i.e., from 10-10 M to 4 M HNO3). The adsorption equilibriums of Sr by CEPA@SBA-15-APTES in 10-6 M and 3 M HNO3 solutions were reached within 30 and 5 min, respectively, and the adsorption capacities at 318 K were 112.6 and 71.8 mg/g, respectively. Furthermore, by combining the experimental and characterization results, we found that the adsorption mechanism consisted of ion exchange between Sr(II) and H+ (in P-OH) in the 10-6 M HNO3 solution and coordination between the Sr(II) and oxygen-containing (CO and P = O) functional groups in the 3 M HNO3 solution.

5.
Environ Sci Technol ; 57(41): 15588-15597, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37782746

RESUMEN

Prevention, mitigation, and regulation of bacterial contaminants in groundwater require a fundamental understanding of the mechanisms of transport and attachment in complex geological materials. Discrepancies in bacterial transport behaviors observed between field studies and laboratory experiments indicate an incomplete understanding of dynamic bacterial transport and immobilization processes in realistic heterogeneous geologic systems. Here, we develop a new experimental approach for in situ quantification of dynamic bacterial transport and attachment distribution in geologic media that relies on radiolabelingEscherichia coliwith positron-emitting radioisotopes and quantifying transport with three-dimensional (3D) positron emission tomography (PET) imaging. Our results indicate that the highest bacterial attachment occurred at the interfaces between sand layers oriented orthogonal to the direction of flow. The predicted bacterial attachment from a 3D numerical model matched the experimental PET results, highlighting that the experimentally observed bacterial transport behavior can be accurately captured with a distribution of a first-order irreversible attachment model. This is the first demonstration of the direct measurement of attachment coefficient distributions from bacterial transport experiments in geologic media and provides a transformational approach to better understand bacterial transport mechanisms, improve model parametrization, and accurately predict how local geologic conditions can influence bacterial fate and transport in groundwater.


Asunto(s)
Agua Subterránea , Arena , Bacterias , Porosidad
6.
Environ Pollut ; 331(Pt 2): 121862, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37220863

RESUMEN

The fate and transport behavior of microplastics (MPs), emerging colloidal contaminant ubiquitous in natural environments, would be greatly affected by other copresent pollutants. PFOA (emerging surfactant pollutant) would interact with MPs after encounter with them in natural environments, which could alter the transport behavior of both pollutants. Relevant knowledge is still lacking, affecting accurate prediction the fate and distribution of these two emerging contaminants in natural porous media. The cotransport behavior of different surface charged MPs (negatively/positively charged, CMPs/AMPs) with PFOA (three concentrations ranging from 0.1 to 10 mg/L) in porous media in both 10 and 50 mM NaCl solutions thus was investigated in the present study. We found PFOA inhibited CMPs transport in porous media, while enhanced AMPs transport. The mechanisms leading to the altered transport of CMPs/AMPs caused by PFOA were found to be different. The decreased electrostatic repulsion between CMPs-sand induced by the decreased CMPs negative zeta potentials via the adsorption of PFOA led to the inhibited transport of CMPs in CMPs-PFOA suspension. The enhanced electrostatic repulsion between AMPs-sand due to the decreased positive charge of AMPs via the adsorption of PFOA together with steric repulsion induced by suspended PFOA resulted in the increased transport of AMPs in AMPs-PFOA suspension. Meanwhile, we found that the adsorption onto MPs surfaces also impacted the transport of PFOA. Due to the lower mobility of MPs than PFOA, the presence of MPs despite their surface charge decreased the transport of PFOA of all examined concentrations in quartz sand columns. This study demonstrates that when MPs and PFOA are co-existing in environments, their interaction with each other will alter the fate and transport behavior of both pollutants in porous media and the alteration is highly correlated with the amount of PFOA adsorbed onto MPs and original surface properties of MPs.


Asunto(s)
Microplásticos , Dióxido de Silicio , Plásticos , Arena , Porosidad , Suspensiones
7.
Chemosphere ; 330: 138701, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37062388

RESUMEN

Removal of heavy metals (e.g., Cd) from contaminated water using waste-converted adsorbents is promising, but the efficiency still needs to be improved. Here, we prepared a functional biochar composite as novel Cd adsorbents by co-pyrolysis of two typical solid wastes, i.e., agricultural corn straw and industrial fly ash. The adsorption behavior and mechanism were investigated using batch and column adsorption experiments and modern characterization techniques. Results showed that alkali-modified fly ash (AMFA) was loaded onto the surface of the corn straw biochar as some fine particle forms, with quartz (SiO2) and silicate being the main mineral phases on the surface. The maximum sorption capacity fitted by Langmuir model for functionalized biochar composite (FBC700) was up to 137.1 mg g-1, which was 7.7 times higher than that of the original corn straw biochar (BC700). Spectroscopic analysis revealed that adsorption mechanisms of Cd onto the FBC700 included mainly precipitation and ion exchange, with complexation and Cd-π interaction also contributing. The AMFA could effectively improve the mineral precipitation with Cd. The adsorption columns filled with FBC700 exhibited a longer breakthrough time than that filled with BC700. The adsorption capacity calculated by Thomas model for FBC700 was also approximately 6.0 times higher than that for BC700, showing that FBC700 was more suited to practical applications. This study provided a novel perspective for recycling solid wastes and treating Cd-contaminated water.


Asunto(s)
Cadmio , Contaminantes Químicos del Agua , Cadmio/análisis , Ceniza del Carbón , Zea mays , Dióxido de Silicio , Pirólisis , Residuos Sólidos , Contaminantes Químicos del Agua/análisis , Carbón Orgánico/química , Minerales , Agua , Adsorción
8.
Toxics ; 11(2)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36850999

RESUMEN

In this study, a column experiment was employed to evaluate the nuclide migration behavior in the surrounding rock medium of a near-surface disposal site in China and to investigate the advection-dispersion behavior of tritium (H-3) and plutonium-238 (Pu-238) in highly weathered argillaceous shale. A reasonable numerical model was selected to fit the experimental breakthrough curves (BTCs) and to obtain the relevant migration parameters. The results show the following: (1) the internal structure of the highly weathered argillaceous shale exhibited heterogeneity, and the nuclide migration BTC showed characteristics of a "curve peak moving forward" and a "tail curve trailing"; (2) compared with other models, the stream tube mode could better fit the BTCs and obtain the average dispersion coefficient , average distribution coefficient , and other parameters; (3) compared to the results of the batch experiment, the distribution coefficient Kd obtained from the column experiment was smaller than that obtained from the batch experiment, which is speculated to be due to the influence of contact time and the contact area between the nuclide and the medium.

9.
J Hazard Mater ; 448: 130850, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36764259

RESUMEN

The effects of initial soil moisture on colloid-associated transport are still poorly understood given the well-recognized significance of colloid-facilitated transport of strongly-sorbing contaminants. In this study, Cd leaching was sequentially conducted in an intact soil column under three initial moisture conditions (near saturation, field capacity and dryness). Soil colloids were always the dominant carriers for Cd. However, upon the lowering of initial soil moisture, increased transport of colloids (96.2→101.0→168.2 mg) was observed, surprisingly, along with decreased transport of colloid-associated Cd (C-Cd) (23.9→10.7→8.2 µg) and enrichment factor (248.4→105.9→48.8 mg/kg) of Cd on colloids, resulting from pH reduction which increased Cd desorption and colloid size increase and/or ζ-potential decrease that showed lower affinity for Cd. Correlation, redundancy analysis and structural equation modelling revealed the dominantly positive role of colloids, EC plus cations (Ca2+ and Mg2+) in the release of C-Cd and dissolved Cd (D-Cd), respectively, under initial moistures of near saturation and field capacity. Under initially dry conditions, soil water potential showed dominantly negative effects on the transport of both C-Cd and D-Cd. These findings highlighted the critical role of initial moisture conditions in modulating colloid-facilitated Cd mobilisation, providing insights into the environmental risk assessment of heavy metals in other leaching scenarios.

10.
Sci Total Environ ; 865: 161285, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36587688

RESUMEN

Soil aggregate size plays an important role in controlling the distribution and transport of metals. Metals immobilized in soil particles will pose potential risks through production/sink flow and infiltration. This study explored the distribution behavior of metals based on soil aggregate size in a restored coastal mining area by establishing Structural Equation Model (SEM) and column experiments. The results showed that hydrological factors and a high degree of weathering accelerated the dissolution of metals from the mine, the desorption of Wa-NH4+-N, the release of F-, and the leaching of NO3-. Driven by soil properties, natural factors, and anthropogenic activities, the total metal content (Totalmetal) of Cr, Ni, Zn, Mn, and As showed significant spatial heterogeneity compared to Cd, Co, Cu, and Pb. The geochemical fraction of metals (Geometal) indicated that Cd, Co, Pb, Zn, As, and Cu are mainly present in iron­manganese oxidation bound, organically bound, and residual fractions. The results of SEM showed that the physicochemical properties, Wa-NH4+-N, nitrate nitrogen, and inorganic anions of the soil could explain 69.1 %, 76.4 %, 97.1 %, and 80.0 % of the variation in Kd-Mn, Kd-Pb, Kd-Ni, and Kd-Zn, respectively. While Kd-Cd, Kd-Cu, and Kd-Cr could be predicted by the Totalmetal, but the Geometal seemed to have little influence on metal Kd. The results of column experiments showed that macroaggregates (>0.25 mm) significantly affected the distribution of Co, Cr, Cu, Mn, Ni, Pb, and Zn in the topsoil. The severe disruption of soil aggregate structure resulted in small fluctuations of anthropogenic Cu, Mn, Pb, Zn, and As in different layers of deep soil. In addition, mineral composition in >0.15 mm particle size was more likely to change. Overall, the hydrological cycle of coastal mines increases the uncertainty of their response to risk. Our study provides a basis for future strategies for priority control and risk prevention.

11.
Sci Total Environ ; 858(Pt 3): 159960, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356766

RESUMEN

Lake Urmia in north-western Iran was once one of the world's largest hyper-saline lakes and represented a unique ecosystem for a number of endangered species. The lake's shrinking over the past decades has attracted considerable attention and several studies have addressed its water balance. Yet, evaporation of shallow groundwater from the dried-up lake bed has not been fully quantified - despite the appreciable size of these areas (approx. 4000 km2 in summer 2015). Here, we target this water cycle component by combining column experiments with upscaling and regionalisation techniques. In the experiments, we studied evaporation from two undisturbed soil cores from the exposed lake bed in a climate chamber, mimicking diurnal temperature and humidity variations in the three summer months of the study area. Despite the dropping water levels in the columns and the formation of salt crusts, evaporation rates remained remarkably constant (0.12 and 0.20 mm d-1). This suggests that the system is not driven by slow vapour diffusion, but controlled by capillary rise in the fine-grained sediments, ensuring steady water supply to the column surface. Thus, evaporation from the dried-up lake bed can be assumed to be largely independent from the unsaturated zone thickness (within the observed water level range) and evaporation rates can be simply upscaled and regionalised by considering the satellite-derived development of dried-up lake bed areas (1998-2020). In this time-period, estimated summer evaporation from the exposed lake bed reached maximum values of 0.04 and 0.07 km3 (summer 2015). While these absolute numbers are significant (comparable to the catchment's annual urban drinking water consumption), they correspond to only 4 and 7 % of the evaporation from the open lake surface (1.06 km3).


Asunto(s)
Ecosistema , Irán
12.
J Hazard Mater ; 442: 130027, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36162305

RESUMEN

In this paper, red mud-based geopolymer microspheres (RM@GMs: 75-150 µm) was prepared by dispersion-suspension-solidification method to remove fluoride ions (F-). It was found that RM@GMs still had good mechanical properties and better F- removal effect at RM content reached 80 % of the total solid mass. The batch adsorption experiment results showed that the F- concentration (< 1.5 mg/L) reached the drinking water standard in 45 min at pH = 2 and RM@GMs dosage was 1 g/L. RM@GMs showed maximum adsorption capacity of 76.57 mg/g for F-, and the adsorption kinetics and isotherm fitted the pseudo-second-order kinetic and Langmuir isotherm model, respectively. RM@GMs exhibited excellent dynamic separation effect at the flow rate of 4 mL/min and column height of 1 cm. In addition, RM@GMs had good selectivity for F- in the competitive adsorption experiments and followed an order of: PO43- > > SO42- ≈ NO3- ≈ Cl-. In real seawater, natural surface water and tap water, RM@GMs still had excellent F- removal effect. The adsorption mechanism revealed that RM@GMs removed F- mainly through the synergistic effect of adsorption and ion exchange. Therefore, this paper provides the potential value for the large-scale utilization of RM in the application of F--containing wastewater.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Fluoruros , Aguas Residuales , Purificación del Agua/métodos , Microesferas , Contaminantes Químicos del Agua/química , Cinética , Flúor , Concentración de Iones de Hidrógeno
13.
Sci Total Environ ; 856(Pt 1): 159097, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36179840

RESUMEN

The abundance of micro(nano)plastics in natural ecosystems is a crucial global challenge, as these small-sized plastic particles originate from land-based and marine-based activities and are widely present in marine, freshwater, and terrestrial ecosystems. Micro(nano)plastics can significantly be reduced through various methods, such as biological, chemical, and physical techniques. Biochar is a low-cost adsorbent and is considered an efficient material and its application is ecologically effective carbon-negative for remediation of organic and inorganic pollutants. Therefore, this review critically discusses the fate and transport of micro(nano)plastics and their interactions with different biochar in aqueous and column porous media. This review outlines the implications of biochar with the co-existence of micro(nano)plastics in efforts to understand their coupled effects on soil physicochemical properties, microbial communities, and plant growth, along with the removal of heavy metals and other toxic contaminants. In batch experiments, biochar synthesized from various biomasses such as corn straw, hardwood, pine and spruce bark, corncob, and Prosopis juliflora had shown high level of removal efficiency (>90 %) for microplastic adsorption under varying environmental conditions viz., pH, temperature, ionic strength, particle size, and dose due to chemical bonding and electrostatic attractions. Increased temperature of the aqueous solutions encouraged higher adsorption, while higher pH and dissolved organic matter and nutrients may show decreased adsorption capacities for micro(nano)plastics using biochar. Compared to other available physical, chemical, and biological methods, biochar-amended sand filters in column experiments have been very efficient in removing micro(nano)plastics. In saturated column porous media, various microplastics could be inhibited using biochar due to decreased electrostatic repulsion, steric hindrance, and competitive sorption due to humic acid, ionic strength, and cations. Finally, this review provides in-depth insights on further investigations and recommendations for overall micro(nano)plastics removal using biochar-based materials.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Adsorción , Ecosistema , Carbón Orgánico , Microplásticos , Contaminantes Químicos del Agua/análisis
14.
Artículo en Inglés | MEDLINE | ID: mdl-36497748

RESUMEN

The changes in soil/rock structure caused by engineering disturbance or earthquakes could affect water chemistry by increasing the reaction surface, enhancing the oxidation condition, or exposing soluble rocks. However, the details of the mechanisms of the disturbance of soil/rock are little known. Based on the soil column experiment, this study analyzed the concentrations of sulfate (SO4), sulfur, and oxygen isotopic composition of SO4 (δ34S-SO4 and δ18O-SO4) in effluent water. The water-rock interaction mechanisms in the disturbed soil and the contribution of this interaction to the SO4 in groundwater were studied. The results suggest that the concentration of SO4 in the first effluent water sample can reach up to 97 mg/L, much higher than that in natural groundwater (6.8 mg/L). The isotopic composition of SO4 further suggested that SO4 in the first effluent water sample was mainly derived from the dissolution of SO4-containing evaporites. The proportion was estimated to be 93%. SO4-containing evaporites accounted for 23% of the SO4 content in all effluent water samples during the experiment. The disturbance of soil structure led to the exposure and dissolution of SO4-containing evaporites, which were initially insoluble under natural conditions. This study is essential to the clarification of the water-rock interaction mechanisms following the changes in soil/rock structures.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Agua , Suelo , Agua Subterránea/química , Sulfatos/análisis
15.
Bull Environ Contam Toxicol ; 109(4): 636-642, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35829735

RESUMEN

This study investigated heavy metal(HM) soil pollution and evaluated the risk and sources at a legacy tailings pond's area in Meizhou, China. Result shows that HM accumulation in soil, particularly Cd, Pb, and Zn, were serious. Zn and Cd in tailing soil and all studied elements in field soil had a significant release potential. Four HM sources were identified by positive matrix factorization (PMF) model: cinder and vehicle emissions (11.3%), natural sources (16.3%), tailings pond and human activities (32.8%), tailings pond (39.7%). The soil was severely polluted with Cd, Pb, and Zn, which posed a high potential environmental risk near surrounding area. Column leaching tests showed that large quantities of HMs were released from the tailings soil during simulated rainfall with different pH. This study indicates that the study area has been severely polluted and continues to have a great risk of HM pollution under natural conditions.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cadmio , China , Monitoreo del Ambiente , Humanos , Plomo , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Emisiones de Vehículos , Zinc/análisis
16.
J Hazard Mater ; 422: 126957, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34449352

RESUMEN

The water and oxygen contents of the vadose zone change cyclically depending upon the meteorological condition (e.g., intermittent rainfall), which can affect the biogeochemical reactions that govern the fate of arsenic (As). To simulate and evaluate the transient behavior of As in this zone when subjected to repeated wet and dry conditions, soil column experiments with different soil properties were conducted. Three wetting-drying cycles resulted in the fluctuation of water and dissolved oxygen contents, and consequently, the reduction-oxidation potential in the soil columns. Under these circumstances, the biotic reduction of As(V) to As(III) was observed, especially in the column filled with soils enriched in organic matter. Most of the As was found to be associated with soil particles rather than to be dissolved in the pore water in all of the columns tested. Retention of As was more preferable in the soil column with a higher Fe content and bulk density, which provided more sorption sites and reaction time, respectively. However, a considerable amount of soil-bound As could be remobilized and released back to the pore water with the repetition of wetting and drying due to the transformation of As(V) to As(III).


Asunto(s)
Arsénico , Contaminantes del Suelo , Arsénico/análisis , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis , Agua
17.
Bioresour Technol ; 343: 126081, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34610424

RESUMEN

The adsorption performance and mechanisms of Pb2+ and Cd2+ in wastewater using MgO modified biochar derived from crofton weed (MBCW600) are investigated. The Pb2+ and Cd2+ adsorption capacities of MBCW600 by the Hill model reach 384.08 mg/g and 207.02 mg/g, respectively, which is larger than that of original biochar. Pb2+ could be more easily captured by MBCW600 compared to Cd2+ in the multimetal system. Mg2+ contributes to Pb2+ and Cd2+ adsorption among coexisting cations. The exhausted MBCW600 could be well regenerated by simple method after use. The adsorption mechanism study indicates that Pb2+ and Cd2+ removal are primary contributed to mineral precipitation and ion exchange. The effective treatment volumes of Pb2+ and Cd2+ wastewater achieve 3050 mL and 2150 mL in the fixed-bed column experiment, respectively. Therefore, MBCW600 presents remarkable adsorption capability, excellent recoverability and large throughput, which shows the potential application in future treatment of wastewater containing heavy metal.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Cadmio , Carbón Orgánico , Plomo , Óxido de Magnesio , Contaminantes Químicos del Agua/análisis
18.
Environ Technol ; 43(1): 34-41, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32448087

RESUMEN

Electric arc furnace (EAF) slag aggregate, a waste by-product of the steel industry, exhibited a high potential for phosphorus (P) removal and had attracted considerable attention. The main objectives of this study were to evaluate the performance of using EAF slag aggregate as an adsorbent for P removal and identify its P removal capacity. A series of batch tests showed that P removal capacity of EAF slag increases gradually with the increase of pH with a range of 2-10, while the highest P removal capacity (1.94 mg/g) can be obtained at pH 12. The adsorption kinetics of P on EAF slag can be described by pseudo-second-order kinetic equations. Isothermal adsorption simulations showed that the best fitted model was the Freundlich model with a correlation coefficient of 0.9825. A continuous flow column experiment feeding a synthetic influent containing 15 mg P/L was operated for 60 days and the P removal efficiency was greater than 95% with a P removal capacity of 1.6 mg P/g slag. The results obtained in this study showed that EAF slag could act as an efficient adsorbent for P removal. Calcium phosphate precipitation depends on the release of Ca2+ and OH- by the dissolution of calcium oxide in EAF slag was found to be the dominant removal mechanism for P removal.


Asunto(s)
Fósforo , Aguas Residuales , Adsorción , Residuos Industriales/análisis , Acero
19.
Artículo en Inglés | MEDLINE | ID: mdl-36612990

RESUMEN

Phosphorus widely existing in rainfall and wastewater impacts the water environment. In this study, sludge, cement block, and coal fly ash were employed as ceramsite material to synthesize Al-doped waste ceramsite (Al-ceramsite) for removing phosphate (PO43--P) from aqueous solutions. Batch static adsorption-desorption experiments were designed to investigate the effect of various parameters such as Al-ceramsite dosage, PO43--P concentration, temperature, initial pH, coexisting ions, and desorbents on the removal of PO43--P. Also, the fate of PO43--P removal efficiency in actual rainwater was studied through dynamic adsorption column experiments using Al-ceramsite. Results showed that Al-ceramsite could remove PO43--P efficiently under the optimum parameters as follows: Al-ceramsite dosage of 40 g/L, initial PO43--P concentration of 10 mg/L, temperature of 25 °C, and pH of 5. Besides that, the Al-ceramsite could completely remove PO43--P in actual rainwater, and the effluent PO43--P concentration was lower than the environmental quality standards for surface water Class Ⅰ (0.02 mg/L). The adsorption characteristics of Al-ceramsite on PO43--P by X-ray photoelectron spectroscopy (XPS) were further explained. As a result, ligand exchange and complexation were confirmed as the main PO43--P removal mechanism of Al-ceramsite. Thus, Al-ceramsite was prepared from industrial waste and has shown excellent potential for phosphorus removal in practical applications.


Asunto(s)
Fosfatos , Contaminantes Químicos del Agua , Adsorción , Fósforo , Agua , Ceniza del Carbón , Contaminantes Químicos del Agua/análisis
20.
Sci Total Environ ; 810: 152300, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896509

RESUMEN

Injection of zero-valent iron nanoparticles (nZVI) into aquifers has gained increasing attention of researchers for in-situ treatment of NO3--contaminated groundwater. nZVI has proved efficient in chemically reducing NO3- and, according to recent research efforts, in supporting biological denitrification under favoured conditions. Given the scarce research on nZVI pulsed injection in continuous-flow systems, the objective of this study was to evaluate the effect of nZVI pulses on the removal of NO3- from groundwater in packed soil columns and, more particularly, to elucidate whether or not biotic NO3- removal processes were promoted by nZVI. Three identical columns were filled with aquifer soil samples and fed with the same nitrate polluted groundwater but operated under different conditions: (A) with application of nZVI pulses and biocide spiked in groundwater, (B) without application of nZVI pulses and (C) with application of nZVI pulses. Results showed that the application of nZVI (at 30 mg/L and 78 mg/L doses) resulted in an immediate and sharp removal of NO3- (88-94%), accompanied by an increase in pH (from 7.0 to 9.0-10.0), a drop in redox potential (Eh) (from +420 mV to <100 mV) and a release of Fe(II) and Total Organic Carbon (TOC) in the effluent (to 200 mg/L and 150-200 mg/L, respectively). The released TOC came from the organic polymer used as stabilizer of the nZVI particles. Comparison against the sterilized control column revealed that, under the experimental conditions, no biological denitrification developed and that the removal of NO3- was due to chemical reduction by nZVI. The main by-product of the NO3- removal was NH4+, which at the prevailing pH was partially converted to NH3, which dissipated from the aqueous solution resulting in a net removal of total dissolved N. A mass balance of Fe permitted to quantify the percentage of injected nZVI trapped in the column (>98%) and the NO3- retention capacity of the nZVI particles (13.2-85.5 mg NO3-/g nZVI).


Asunto(s)
Restauración y Remediación Ambiental , Agua Subterránea , Contaminantes Químicos del Agua , Hierro , Nitratos/análisis , Suelo , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA