Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Adv Mater ; : e2403066, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39348089

RESUMEN

Controlling exchange bias (EB) by electric fields is crucial for next-generation magnetic random access memories and spintronics with ultralow energy consumption and ultrahigh speed. Multiferroic heterostructures have been traditionally used to electrically control EB and interfacial ferromagnetism through weak/indirect coupling between ferromagnetic and ferroelectric films. However, three major bottlenecks (lattice mismatch, interface defects, and weak/indirect coupling in multiferroic heterostructures) remain, resulting in only a few tens of milli-tesla EB field. Here, this study reports a robust electric-field control recipe to dynamically tailor the EB effect in a pure CrI3 homotrilayer on a ferroelectric Y-doped HfO2 (HYO) substrate, and demonstrate a colossal and tunable EB field (HE) from -0.15 to +0.33 T, giving rise to an EB modulation of 0.48 T. The charge doping due to ferroelectric HYO film divides a homo-configuration of CrI3 homotrilayer into one antiferromagnetic (AFM) bilayer CrI3 and one ferromagnetic (FM) monolayer CrI3, favoring direct exchange coupling. The synergies of charge doping and electric field induce a transition of magnetic orders from AFM to FM phase in bilayer CrI3, which is also supported by first-principles calculations, leading to the robust electric control of colossal EB effect. The results therefore open numerous opportunities for exploring 2D spintronics, memories, and braininspired in-memory computing.

2.
Nano Lett ; 24(29): 8940-8947, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38989866

RESUMEN

Two-dimensional magnet CrI3 is a promising candidate for spintronic devices. Using nonadiabatic molecular dynamics and noncollinear spin time-dependent density functional theory, we investigated hole spin relaxation in two-dimensional CrI3 and its dependence on magnetic configurations, impacted by spin-orbit and electron-phonon interactions. Driven by in-plane and out-of-plane iodine motions, the relaxation rates vary, extending from over half a picosecond in ferromagnetic systems to tens of femtoseconds in certain antiferromagnetic states due to significant spin fluctuations, associated with the nonadiabatic spin-flip in tuning to the adiabatic flip. Antiferromagnetic CrI3 with staggered layer magnetic order notably accelerates adiabatic spin-flip due to enhanced state degeneracy and additional phonon modes. Ferrimagnetic CrI3 shows a transitional behavior between ferromagnetic and antiferromagnetic types as the magnetic moment changes. These insights into the spin dynamics of CrI3 underscore its potential for rapid-response spintronic applications and advance our understanding of two-dimensional materials for spintronics.

3.
Adv Mater ; 36(15): e2310291, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38235929

RESUMEN

Spin-polarized bands in pristine and proximity-induced magnetic materials are promising building blocks for future devices. Conceptually new memory, logic, and neuromorphic devices are conceived based on atomically thin magnetic materials and the manipulation of their spin-polarized bands via electrical and optical methods. A critical remaining issue is the direct probe and the optimized use of the magnetic coupling effect in van der Waals heterostructures, which requires further delicate design of atomically thin magnetic materials and devices. Here, a spin-selective memtransistor with magnetized single-layered graphene on a reactive antiferromagnetic material, CrI3, is reported. The spin-dependent hybridization between graphene and CrI3 atomic layers enables the spin-selective bandgap opening in the single-layered graphene and the electric field control of magnetization in a specific CrI3 layer. The microscopic working principle is clarified by the first-principles calculations and theoretical analysis of the transport data. Reliable memtransistor operations (i.e., memory and logic device-combined operations), as well as a spin-selective probe of Landau levels in the magnetized graphene, are achieved by using the subtle manipulation of the magnetic proximity effect via electrical means.

4.
Nano Lett ; 23(13): 6088-6094, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37367179

RESUMEN

Twist engineering of van der Waals magnets has emerged as an outstanding platform for manipulating exotic magnetic states. However, the complicated form of spin interactions in the large moiré superlattice obstructs a concrete understanding of such spin systems. To tackle this problem, for the first time, we developed a generic ab initio spin Hamiltonian for twisted bilayer magnets. Our atomistic model reveals that strong AB sublattice symmetry breaking due to the twist introduces a promising route to realize the novel noncentrosymmetric magnetism. Several unprecedented features and phases are uncovered including the peculiar domain structure and skyrmion phase induced by noncentrosymmetricity. The diagram of those distinctive magnetic phases has been constructed, and the detailed nature of their transitions analyzed. Further, we established the topological band theory of moiré magnons relevant to each of these phases. By respecting the full lattice structure, our theory provides the characteristic features that can be detected in experiments.

5.
Nanotechnology ; 34(6)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36347026

RESUMEN

Recent fabrication of chromium triiodide (CrI3) monolayers has raised potential prospects of developing two-dimensional (2D) ferromagnetic materials for spintronic device applications. The low Curie temperature has stimulated further interest for improving the ferromagnetic stability of CrI3monolayer. Here, based on density functional theory calculations, we investigated the adsorption energy, charge transfer, electronic and magnetic properties of gases (CO, CO2, N2, NH3, NO, NO2, O2, and SO2) adsorption on the CrI3monolayer. It is found that CrI3is sensitive to the NH3, NO, and NO2adsorption due to the high adsorption energy and large charge transfer. The electrical transport results show that the conductivity of CrI3monolayer is significantly reduced with the adsorption of N-based gases, suggesting that CrI3exhibits superior sensitivity and selectivity toward N-based gases. In addition, the ferromagnetic stability and Curie temperature (TC) of CrI3monolayer can be effectively enhanced by the adsorption of magnetic gases (NO, NO2, O2). This work not only demonstrates that CrI3monolayer can be used as a promising candidate for gas sensing, but also brings further interest to tune the electronic and magnetic properties of 2D ferromagnetic materials via gas adsorption.

6.
Nano Lett ; 22(21): 8755-8762, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36305523

RESUMEN

The excited state species and properties in low-dimensional semiconductors can be completely redefined by electron-lattice coupling or a polaronic effect. Here, by combining ultrafast broadband pump-probe spectroscopy and first-principles GW and Bethe-Salpeter equation calculations, we show semiconducting CrI3 as a prototypical 2D polaronic system with characteristic Jahn-Teller exciton polaron induced by symmetry breaking. A photogenerated electron and hole in CrI3 localize spontaneously in ∼0.9 ps and pair geminately to a Jahn-Teller exciton polaron with elongated Cr-I octahedra, large binding energy, and an unprecedentedly small exciton-exciton annihilation rate constant (∼10-20 cm3 s-1). Coherent phonon dynamics indicates the localization is mainly triggered by the coherent nuclear vibration of the I-Cr-I out-of-plane stretch mode at 128.5 ± 0.1 cm-1. The excited state Jahn-Teller exciton polaron in CrI3 broadens the realm of 2D polaron systems and reveals the decisive role of coupled electron-lattice motion on excited state properties and exciton physics in 2D semiconductors.

7.
Nano Lett ; 22(16): 6760-6766, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35930625

RESUMEN

We report experimental investigations of transport through bilayer graphene (BLG)/chromium trihalide (CrX3; X = Cl, Br, I) van der Waals interfaces. In all cases, a large charge transfer from BLG to CrX3 takes place (reaching densities in excess of 1013 cm-2), and generates an electric field perpendicular to the interface that opens a band gap in BLG. We determine the gap from the activation energy of the conductivity and find excellent agreement with the latest theory accounting for the contribution of the σ bands to the BLG dielectric susceptibility. We further show that for BLG/CrCl3 and BLG/CrBr3 the band gap can be extracted from the gate voltage dependence of the low-temperature conductivity, and use this finding to refine the gap dependence on the magnetic field. Our results allow a quantitative comparison of the electronic properties of BLG with theoretical predictions and indicate that electrons occupying the CrX3 conduction band are correlated.

8.
ACS Nano ; 16(5): 6960-7079, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35442017

RESUMEN

Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations. In this comprehensive review, prominent authors with expertise in complementary fields of 2D magnetism (i.e., synthesis, device engineering, magneto-optics, imaging, transport, mechanics, spin excitations, and theory and simulations) have joined together to provide a genome of current knowledge and a guideline for future developments in 2D magnetic materials research.


Asunto(s)
Metodologías Computacionales , Teoría Cuántica , Fenómenos Magnéticos
9.
Nanomaterials (Basel) ; 11(11)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34835730

RESUMEN

The acceleration of parallel high-throughput first-principle calculations in the context of 3D (three dimensional) periodic boundary conditions for low-dimensional systems, and particularly 2D materials, is an important issue for new material design. Where the scalability rapidly deflated due to the use of large void unit cells along with a significant number of atoms, which should mimic layered structures in the vacuum space. In this report, we explored the scalability and performance of the Quantum ESPRESSO package in the hybrid central processing unit - graphics processing unit (CPU-GPU) environment. The study carried out in the comparison to CPU-based systems for simulations of 2D magnets where significant improvement of computational speed was achieved based on the IBM ESSL SMP CUDA library. As an example of physics-related results, we have computed and discussed the ionicity-covalency and related ferro- (FM) and antiferro-magnetic (AFM) exchange competitions computed for some CrX3 compounds. Further, it has been demonstrated how this exchange interplay leads to high-order effects for the magnetism of the 1L-RuCl3 compound.

10.
ACS Nano ; 15(6): 10444-10450, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34075751

RESUMEN

Using polarization-resolved Raman spectroscopy, we investigate layer number, temperature, and magnetic field dependence of Raman spectra in one- to four-layer CrI3. Layer-number-dependent Raman spectra show that in the paramagnetic phase a doubly degenerated Eg mode of monolayer CrI3 splits into one Ag and one Bg mode in N-layer (N > 1) CrI3 due to the monoclinic stacking. Their energy separation increases in thicker samples until an eventual saturation. Temperature-dependent measurements further show that the split modes tend to merge upon cooling but remain separated until 10 K, indicating a failed attempt of the monoclinic-to-rhombohedral structural phase transition that is present in the bulk crystal. Magnetic-field-dependent measurements reveal an additional monoclinic distortion across the magnetic-field-induced layered antiferromagnetism-to-ferromagnetism phase transition. We propose a structural change that consists of both a lateral sliding toward the rhombohedral stacking and a decrease in the interlayer distance to explain our experimental observations.

11.
ACS Appl Mater Interfaces ; 13(18): 21593-21601, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33904708

RESUMEN

Among first experimentally discovered two-dimensional (2D) ferromagnetic materials, chromium triiodide (CrI3) monolayers have attracted particular attention due to their potential applications in electronics and spintronics. However, the Curie temperature Tc of the CrI3 monolayer is below room temperature, which greatly limits practical development of the devices. Herein, using density functional theory calculation, we explore how the electronic and magnetic properties of CrI3 monolayers change upon adsorption of 3d transition-metal (TM) atoms (from Sc to Zn). Our results indicate that the electronic properties of the TM-CrI3 system can be tuned from semiconductor to metal/half-metal/spin gapless semiconductor depending on the choice of the adsorbed TM atoms. Moreover, the adsorption can improve the ferromagnetic stability of CrI3 monolayers by increasing both magnetic moments and Tc. Notably, Tc of CrI3 with Sc and V adatoms can be increased by nearly a factor of 3. We suggest postsynthesis doping of 2D CrI3 by deposition of TM atoms as a new route toward potential applications of TM-CrI3 systems in nanoelectronic and spintronic devices.

12.
ACS Appl Mater Interfaces ; 13(14): 16694-16703, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33818069

RESUMEN

Two-dimensional (2D) CrI3 monolayer ferromagnets are key to the development of future miniature spintronic devices and modulating them into a half-metal will greatly expand the application scenarios of CrI3 in nanospintronics. Nevertheless, existing strategies to induce half-metallicity of a CrI3 monolayer remain experimentally challenging and have unstable issues. In this work, the introduction of a 2D electride [Y2C]2+·2e- as an auxiliary layer is shown to be an effective way to achieve the generation of stable half-metallicity in the CrI3 monolayer. When the fully hydrogenated Y2CH2 and ferromagnetic CrI3 monolayer combine to form a heterostructure, surprisingly the appropriate amount of charge injection (0.72 e) turns CrI3 into a half-metal. Hetero-interfacial half-metallicity in CrI3 is an intrinsic one and does not require any chemical functionalization or external physical modification. Therefore, it is advantageous for practical applications of CrI3 in miniature spintronic devices, such as magnetic tunnel junctions, spin valves or spin field-effect transistors. A new strategy of the stable CrI3/Y2CH2 heterostructure was successfully developed to induce the half-metallicity of 2D CrI3 ferromagnets, which is experimentally feasible and half-metallic stable enough. This work paves the way for the application of the CrI3 monolayer in half-metallic-based spintronics.

13.
Nano Lett ; 21(5): 1948-1954, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33600723

RESUMEN

We predict that layer antiferromagnetic bilayers formed from van der Waals (vdW) materials with weak interlayer versus intralayer exchange coupling have strong magnetoelectric response that can be detected in dual-gated devices where internal displacement fields and carrier densities can be varied independently. We illustrate this strong temperature-dependent magnetoelectric response in bilayer CrI3 at charge neutrality by calculating the gate voltage-dependent total magnetization through Monte Carlo simulations and mean-field solutions of the anisotropic Heisenberg model informed from density functional theory and experimental data and present a simple model for electrical control of magnetism by electrostatic doping.

14.
Adv Mater ; 33(5): e2004138, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33346397

RESUMEN

Higher-order exchange interactions and quantum effects are widely known to play an important role in describing the properties of low-dimensional magnetic compounds. Here, the recently discovered 2D van der Waals (vdW) CrI3 is identified as a quantum non-Heisenberg material with properties far beyond an Ising magnet as initially assumed. It is found that biquadratic exchange interactions are essential to quantitatively describe the magnetism of CrI3 but quantum rescaling corrections are required to reproduce its thermal properties. The quantum nature of the heat bath represented by discrete electron-spin and phonon-spin scattering processes induces the formation of spin fluctuations in the low-temperature regime. These fluctuations induce the formation of metastable magnetic domains evolving into a single macroscopic magnetization or even a monodomain over surface areas of a few micrometers. Such domains display hybrid characteristics of Néel and Bloch types with a narrow domain wall width in the range of 3-5 nm. Similar behavior is expected for the majority of 2D vdW magnets where higher-order exchange interactions are appreciable.

15.
ACS Appl Mater Interfaces ; 12(5): 6243-6249, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31910613

RESUMEN

Multiferroic materials with coupled ferroelectric (FE) and ferromagnetic (FM) properties are important for multifunctional devices because of their potential ability of controlling magnetism via electric field and vice versa. The recent discoveries of two-dimensional (2D) FM and FE materials have ignited tremendous research interest and aroused hope to search for 2D multiferroics. However, intrinsic 2D multiferroic materials and, particularly, those with strong magnetoelectric couplings are still rare to date. In this paper, using first-principles simulations, we propose artificial 2D multiferroics via a van der Waals (vdW) heterostructure formed by FM bilayer chromium triiodide (CrI3) and FE monolayer Sc2CO2. In addition to the coexistence of ferromagnetism and ferroelectricity, our calculations show that, by switching the electric polarization of Sc2CO2, we can tune the interlayer magnetic couplings of bilayer CrI3 between the FM and antiferromagnetic states. We further reveal that such a strong magnetoelectric effect is from a dramatic change of the band alignment induced by the strong built-in electric polarization in Sc2CO2 and the subsequent change of the interlayer magnetic coupling of bilayer CrI3. These artificial multiferroics and enhanced magnetoelectric effect give rise to realizing multifunctional nanoelectronics by vdW heterostructures.

16.
Sci Bull (Beijing) ; 65(13): 1064-1071, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36659157

RESUMEN

Single- and few-layer chromium triiodide (CrI3), which has been intensively investigated as a promising platform for two-dimensional magnetism, is usually prepared by the mechanical exfoliation. Here, we report direct growth of single-layer CrI3 using molecular beam epitaxy in ultrahigh vacuum. Scanning tunneling microscopy (STM), together with density functional theory (DFT) calculation, revealed that the iodine trimers, each of which consists of three I atoms surrounding a three-fold Cr honeycomb center, are the basic units of the topmost I layer. Different superstructures of single-layer CrI3 with periodicity around 2-4 nm were obtained on Au(1 1 1), while only the 1 × 1 structure was observed on the graphite substrate. At an elevated temperature of 423 K, single-layer CrI3 began to decompose and transformed into single-layer chromium diiodide. Our bias-dependent STM images suggest that the unoccupied and occupied states are spatial-separately distributed, consistent with the results of our DFT calculation. We also discussed the role of charge distribution in the super-exchange interactions among Cr atoms in single-layer CrI3.

17.
Nano Lett ; 20(1): 729-734, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31842543

RESUMEN

The recent discovery of 2D magnets has revealed various intriguing phenomena due to the coupling between spin and other degrees of freedoms (such as helical photoluminescence, nonreciprocal SHG). Previous research on the spin-phonon coupling effect mainly focuses on the renormalization of phonon frequency. Here we demonstrate that the Raman polarization selection rules of optical phonons can be greatly modified by the magnetic ordering in 2D magnet CrI3. For monolayer samples, the dominant A1g peak shows an abnormally high intensity in the cross-polarization channel at low temperatures, which is forbidden by the selection rule based on the lattice symmetry. For the bilayer, this peak is absent in the cross-polarization channel for the layered antiferromagnetic (AFM) state and reappears when it is tuned to the ferromagnetic (FM) state by an external magnetic field. Our findings shed light on exploring the emergent magneto-optical effects in 2D magnets.

18.
Nano Lett ; 20(1): 553-558, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31771332

RESUMEN

The magnetic properties in two-dimensional van der Waals materials depend sensitively on structure. CrI3, as an example, has been recently demonstrated to exhibit distinct magnetic properties depending on the layer thickness and stacking order. Bulk CrI3 is ferromagnetic (FM) with a Curie temperature of 61 K and a rhombohedral layer stacking, whereas few-layer CrI3 has a layered antiferromagnetic (AFM) phase with a lower ordering temperature of 45 K and a monoclinic stacking. In this work, we use cryogenic magnetic force microscopy to investigate CrI3 flakes in the intermediate thickness range (25-200 nm) and find that the two types of magnetic orders, hence the stacking orders, can coexist in the same flake with a layer of ∼13 nm at each surface being in the layered AFM phase similar to few-layer CrI3 and the rest in the bulk FM phase. The switching of the bulk moment proceeds through a remnant state with nearly compensated magnetic moment along the c-axis, indicating formation of c-axis domains allowed by a weak interlayer coupling strength in the rhombohedral phase. Our results provide a comprehensive picture on the magnetism in CrI3 and point to the possibility of engineering magnetic heterostructures within the same material.

19.
ACS Appl Mater Interfaces ; 11(17): 15781-15787, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30964639

RESUMEN

The recently discovered magnetism of two-dimensional (2D) van der Waals crystals has attracted a lot of attention. Among these materials is CrI3, a magnetic semiconductor, exhibiting transitions between ferromagnetic and antiferromagnetic orderings under the influence of an applied magnetic field. Here, using first-principles methods based on density functional theory, we explore spin-dependent transport in tunnel junctions formed of face-centered cubic Cu(111) electrodes and a CrI3 tunnel barrier. We find about 100% spin polarization of the tunneling current for a ferromagnetically ordered four-monolayer CrI3 and a tunneling magnetoresistance of about 3000% associated with a change of magnetic ordering in CrI3. This behavior is understood in terms of the spin and wave-vector-dependent evanescent states in CrI3, which control the tunneling conductance. We find a sizable charge transfer from Cu to CrI3, which adds new features to the mechanism of spin filtering in CrI3-based tunnel junctions. Our results elucidate the mechanisms of spin filtering in CrI3 tunnel junctions and provide important insights for the design of magnetoresistive devices based on 2D magnetic crystals.

20.
ACS Appl Mater Interfaces ; 11(13): 12675-12682, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30896143

RESUMEN

The generation and manipulation of valley polarization in controllable ways are important for the valley-related physics and devices. In analogy to multiferroic materials with more than one ferromagnetic, ferroelectric, and ferroelastic orders, a new triferroic system with ferromagnetism, ferroelectricity, and ferrovalley is proposed, namely, the monolayer AgBiP2Se6/CrI3 van der Waals heterostructure. Using density functional theory, we further predict that the electrical control on the valley degree of freedom could be realized in this triferroic system. The mechanism of electrically controlled valley is elucidated as an intermediate coupling between lattice and ferroelectricity. The coupling of three ferroic orders in triferroic material paves the way for electrically controlled valleytronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA