RESUMEN
D-allulose is a rare monosaccharide and a C-3 epimer of D-fructose. It has physiological functions, such as antihyperglycemic, obesity-preventing, neuroprotective, and reactive oxygen species (ROS) scavenging effects, making it an ideal sugar substitute. The synthesis methods for D-allulose include chemical synthesis and biosynthesis. Chemical synthesis requires strict reaction conditions and tends to produce byproducts. Biosynthesis is mainly an enzymatic process. Enzymatic catalysis for the conversion of starch or glycerol to D-allulose is performed mainly by enzymes such as isoamylase (IA), glucose isomerase (GI), D-allulose 3-epimerase (DPE), D-allulose-6-phosphate 3-epimerase (A6PE), D-allulose 6-phosphate phosphatase (A6PP), ribitol 2-dehydrogenase (RDH), glycerophosphate kinase (GK), glycerophosphate oxidase (GPO), and dihydroxyacetone phosphate (DHAP)-dependent aldolase. Biosynthesis is a more energy-efficient process, producing fewer harmful by-products and pollutants, and significantly reducing negative environmental impacts. Furthermore, the specific catalytic activity of enzymes facilitates the production of compounds of higher purity, thereby facilitating the isolation and purification of the products. It has thus become the main method for producing D-allulose. This article reviews the progress in research on the biosynthetic production of D-allulose, focusing on the enzymes involved and their enzymatic properties, and discusses the production prospects for D-allulose.
Asunto(s)
Fructosa , Fructosa/metabolismo , Fructosa/biosíntesisRESUMEN
BACKGROUND: D-Allulose is one of the most well-known rare sugars widely used in food, cosmetics, and pharmaceutical industries. The most popular method for D-allulose production is the conversion from D-fructose catalyzed by D-allulose 3-epimerase (DAEase). To address the general problem of low catalytic efficiency and poor thermostability of wild-type DAEase, D-allulose biosensor was adopted in this study to develop a convenient and efficient method for high-throughput screening of DAEase variants. RESULTS: The catalytic activity and thermostability of DAEase from Caballeronia insecticola were simultaneously improved by semi-rational molecular modification. Compared with the wild-type enzyme, DAEaseS37N/F157Y variant exhibited 14.7% improvement in the catalytic activity and the half-time value (t1/2) at 65°C increased from 1.60 to 27.56 h by 17.23-fold. To our delight, the conversion rate of D-allulose was 33.6% from 500-g L-1 D-fructose in 1 h by Bacillus subtilis WB800 whole cells expressing this DAEase variant. Furthermore, the practicability of cell immobilization was evaluated and more than 80% relative activity of the immobilized cells was maintained from the second to seventh cycle. CONCLUSION: All these results indicated that the DAEaseS37N/F157Y variant would be a potential candidate for the industrial production of D-allulose.
Asunto(s)
Bacillus subtilis , Técnicas Biosensibles , Estabilidad de Enzimas , Fructosa , Técnicas Biosensibles/métodos , Fructosa/metabolismo , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Carbohidrato Epimerasas/química , Ingeniería de Proteínas/métodos , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , TemperaturaRESUMEN
D-allulose, an epimer of D-fructose at C-3 position, is a low-calorie rare sugar with favorable physiochemical properties and special physiological functions, which displays promising perspectives in the food and pharmaceutical industries. Currently, D-allulose is extremely sparse in nature and is predominantly biosynthesized through the isomerization of D-fructose by D-allulose 3-epimerase (DAEase). In recent years, D-allulose 3-epimerase as the key biocatalyst for D-allulose production has received increasing interest. The current review begins by providing a summary of D-allulose regarding its characteristics and applications, as well as different synthesis pathways dominated by biotransformation. Then, the research advances of D-allulose 3-epimerase are systematically reviewed, focusing on heterologous expression and biochemical characterization, crystal structure and molecular modification, and application in D-allulose production. Concerning the constraint of low yield of DAEase for industrial application, this review addresses the various attempts made to promote the production of DAEase in different expression systems. Also, various strategies have been adopted to improve its thermotolerance and catalytic activity, which is mainly based on the structure-function relationship of DAEase. The application of DAEase in D-allulose biosynthesis from D-fructose or low-cost feedstocks through single- or multi-enzymatic cascade reaction has been discussed. Finally, the prospects for related research of D-allulose 3-epimerase are also proposed, facilitating the industrialization of DAEase and more efficient and economical bioproduction of D-allulose.
RESUMEN
As a low-calorie sugar, D-allulose is produced from D-fructose catalyzed by D-allulose 3-epimerase (DAE). Here, to improve the catalytic activity, stability, and processability of DAE, we reported a novel method by forming organic-inorganic hybrid nanoflowers (NF-DAEs) and co-immobilizing them on resins to form composites (Re-NF-DAEs). NF-DAEs were prepared by combining DAE with metal ions (Co2+, Cu2+, Zn2+, Ca2+, Ni2+, Fe2+, and Fe3+) in PBS buffer, and were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and X-ray diffraction. All of the NF-DAEs showed higher catalytic activities than free DAE, and the NF-DAE with Ni2+ (NF-DAE-Ni) reached the highest relative activity of 218%. The NF-DAEs improved the thermal stability of DAE, and the longest half-life reached 228 min for NF-DAE-Co compared with 105 min for the free DAE at 55 °C. To further improve the recycling performance of the NF-DAEs in practical applications, we combined resins and NF-DAEs to form Re-NF-DAEs. Resins and NF-DAEs co-effected the performance of the composites, and ReA (LXTE-606 neutral hydrophobic epoxy-based polypropylene macroreticular resins)-based composites (ReA-NF-DAEs) exhibited outstanding relative activities, thermal stabilities, storage stabilities, and processabilities. The ReA-NF-DAEs were able to be reused to catalyze the conversion from D-fructose to D-allulose, and kept more than 60% of their activities after eight cycles.
Asunto(s)
Estabilidad de Enzimas , Enzimas Inmovilizadas , Enzimas Inmovilizadas/química , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Nanoestructuras/química , Fructosa/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos XRESUMEN
D-allulose, a highly desirable sugar substitute, is primarily produced using the D-allulose 3-epimerase (DAE). However, the availability of usable DAE enzymes is limited. In this study, we discovered and engineered a novel DAE Rum55, derived from a human gut bacterium Ruminococcus sp. CAG55. The activity of Rum55 was strictly dependent on the presence of Co2+, and it exhibited an equilibrium conversion rate of 30.6 % and a half-life of 4.5 h at 50 °C. To enhance its performance, we engineered the interface interaction of Rum55 to stabilize its tetramer structure, and the best variant E268R was then attached with a self-assembling peptide to form active enzyme aggregates as carrier-free immobilization. The half-life of the best variant E268R-EKL16 at 50 °C was dramatically increased 30-fold to 135.3 h, and it maintained 90 % of its activity after 13 consecutive reaction cycles. Additionally, we identified that metal ions played a key role in stabilizing the tetramer structure of Rum55, and the dependence on metal ions for E268R-EKL16 was significantly reduced. This study provides a useful route for improving the thermostability of DAEs, opening up new possibilities for the industrial production of D-allulose.
Asunto(s)
Estabilidad de Enzimas , Ingeniería de Proteínas , Ruminococcus , Ruminococcus/enzimología , Ruminococcus/genética , Ingeniería de Proteínas/métodos , Péptidos/química , Péptidos/metabolismo , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Cinética , Modelos Moleculares , Fructosa/metabolismo , Fructosa/químicaRESUMEN
D-Allulose is a high value rare sugar with multiple physiological functions and commercial potential that can be enzymatically synthesized from D-fructose by D-allulose 3-epimerase (DAEase). Poor catalytic activity and thermostability of DAEase prevent the industrial production of D-allulose. In this work, rational design was applied to a previously identified DAEase from Clostridium bolteae ATCC BAA-613 based on the "back to consensus mutations" hypothesis, and the catalytic activity of the Cb-I265 V variant was enhanced 2.5-fold. Furthermore, the Cb-I265 V/E268D double-site variant displayed 2.0-fold higher specific catalytic activity and 1.4-fold higher thermostability than the wild-type enzyme. Molecular docking and kinetic simulation results indicated increased hydrogen bonds between the active pocket and substrate, possibly contributing to the improved thermal stability and catalytic activity of the double-site mutant. The findings outlined a feasible approach for the rational design of multiple preset functions of target enzymes simultaneously.
RESUMEN
d-Allulose, a functional bulk sweetener, has recently attracted increasing attention because of its low-caloric-ness properties and diverse health effects. d-Allulose is industrially produced by the enzymatic epimerization of d-fructose, which is catalyzed by ketose 3-epimerase (KEase). In this study, the food-grade expression of KEase was studied using Bacillus subtills as the host. Clostridium sp. d-allulose 3-epimerase (Clsp-DAEase) was screened from nine d-allulose-producing KEases, showing better potential for expression in B. subtills WB600. Promoter-based transcriptional regulation and N-terminal coding sequence (NCS)-based translational regulation were studied to enhance the DAEase expression level. In addition, the synergistic effect of promoter and NCS on the Clsp-DAEase expression was studied. Finally, the strain with the combination of a PHapII promoter and gln A-Up NCS was selected as the best Clsp-DAEase-producing strain. It efficiently produced Clsp-DAEase with a total activity of 333.2 and 1860.6 U/mL by shake-flask and fed-batch cultivations, respectively.
Asunto(s)
Bacillus subtilis , Racemasas y Epimerasas , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Fructosa/metabolismo , CetosasRESUMEN
This assessment addresses a food enzyme preparation consisting of the immobilised non-viable cells of the non-genetically modified bacterium identified by the applicant (Samyang Corporation) as Microbacterium foliorum strain SYG27B. This strain produces the enzyme D-psicose 3-epimerase (EC 5.1.3.30). The food enzyme preparation is used for the isomerisation of fructose to produce the speciality carbohydrate D-allulose (synonym D-psicose). Since the hazard identification and characterisation could not be made and the identity of the production organism could not be established, the Panel was unable to complete the assessment of this food enzyme preparation containing D-psicose 3-epimerase.
RESUMEN
D-Allulose 3-epimerase (DAE) is a vital biocatalyst for the industrial synthesis of D-allulose, an ultra-low calorie rare sugar. However, limited thermostability of DAEs hinders their use at high-temperature production. In this research, hyperthermophilic TI-DAE (Tm = 98.4 ± 0.7 â) from Thermotoga sp. was identified via in silico screening. A comparative study of the structure and function of site-directed saturation mutagenesis mutants pinpointed the residue I100 as pivotal in maintaining the high-temperature activity and thermostability of TI-DAE. Employing TI-DAE as a biocatalyst, D-allulose was produced from D-fructose with a conversion rate of 32.5%. Moreover, TI-DAE demonstrated excellent catalytic synergy with glucose isomerase CAGI, enabling the one-step conversion of D-glucose to D-allulose with a conversion rate of 21.6%. This study offers a promising resource for the enzyme engineering of DAEs and a high-performance biocatalyst for industrial D-allulose production.
Asunto(s)
Thermotoga , Thermotoga/enzimología , Thermotoga/genética , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Carbohidrato Epimerasas/biosíntesis , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Racemasas y Epimerasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/biosíntesis , Fructosa/metabolismo , Fructosa/biosíntesis , Fructosa/química , Estabilidad de Enzimas , Biocatálisis , Mutagénesis Sitio-Dirigida , CalorRESUMEN
D-Allulose has become a promising alternative sweetener due to its unique properties of low caloric content, moderate sweetness, and physiological effects. D-Allulose 3-epimerase (DAEase) is a promising enzyme for D-Allulose production. However, the low catalytic efficiency limited its large-scale industrial applications. To obtain a more effective biocatalyst, a putative DAEase from Christensenellaceae bacterium (CbDAE) was identified and characterized. The recombinant CbDAE exhibited optimum activity at pH 7.5°C and 55°C, retaining more than 60% relative activity from 40°C to 70°C, and the catalytic activity could be significantly increased by Co2+ supplementation. These enzymatic properties of purified CbDAE were compared with other DAEases. CbDAE was also found to possess desirable thermal stability at 55°C with a half-life of 12.4 h. CbDAE performed the highest relative activity towards D-allulose and strong affinity for D-fructose but relatively low catalytic efficiency towards D-fructose. Based on the structure-guided design, the best double-mutation variant G36N/W112E was obtained which reached up to 4.21-fold enhancement of catalytic activity compared with wild-type (WT) CbDAE. The catalytic production of G36N/W112E with 500 g/L D-fructose was at a medium to a higher level among the DAEases in 3.5 h, reducing 40% catalytic reaction time compared to the WT CbDAE. In addition, the G36N/W112E variant was also applied in honey and apple juice for D-allulose conversion. Our research offers an extra biocatalyst for D-allulose production, and the comprehensive report of this enzyme makes it potentially interesting for industrial applications and will aid the development of industrial biocatalysts for D-allulose.
RESUMEN
D-allulose, an ideal low-calorie sweetener, is primarily produced through the isomerization of d-fructose using D-allulose 3-epimerase (DAE; EC 5.1.3.30). Addressing the gap in available immobilized DAE enzymes for scalable commercial D-allulose production, three core-shell structured organic-inorganic composite silica-based carriers were designed for efficient covalent immobilization of DAE. Natural inorganic diatomite was used as the core, while 3-aminopropyltriethoxysilane (APTES), polyethyleneimine (PEI), and chitosan organic layers were coated as the shells, respectively. These tailored carriers successfully formed robust covalent bonds with DAE enzyme conjugates, cross-linked via glutaraldehyde, and demonstrated enzyme activities of 372 U/g, 1198 U/g, and 381 U/g, respectively. These immobilized enzymes exhibited an expanded pH tolerance and improved thermal stability compared to free DAE. Particularly, the modified diatomite with PEI exhibited a higher density of binding sites than the other carriers and the PEI-coated immobilized DAE enzyme retained 70.4 % of its relative enzyme activity after ten cycles of reuse. This study provides a promising method for DAE immobilization, underscoring the potential of using biosilica-based organic-inorganic composite carriers for the development of robust enzyme systems, thereby advancing the production of value-added food ingredients like D-allulose.
Asunto(s)
Tierra de Diatomeas , Enzimas Inmovilizadas , Racemasas y Epimerasas , Racemasas y Epimerasas/metabolismo , Enzimas Inmovilizadas/metabolismo , Concentración de Iones de Hidrógeno , Fructosa/metabolismo , Estabilidad de EnzimasRESUMEN
Fast screening strategies that enable high-throughput evaluation and identification of desired variants from diversified enzyme libraries are crucial to tailoring biocatalysts for the synthesis of D-allulose, which is currently limited by the poor catalytic performance of ketose 3-epimerases (KEases). Here, the study designs a minimally equipment-dependent, high-throughput, and growth-coupled in vivo screening platform founded on a redesigned D-allulose-dependent biosensor system. The genetic elements modulating regulator PsiR expression levels undergo systematic optimization to improve the growth-responsive dynamic range of the biosensor, which presents ≈30-fold facilitated growth optical density with a high signal-to-noise ratio (1.52 to 0.05) toward D-allulose concentrations from 0 to 100 mm. Structural analysis and evolutionary conservation analysis of Agrobacterium sp. SUL3 D-allulose 3-epimerase (ADAE) reveal a highly conserved catalytic active site and variable hydrophobic pocket, which together regulate substrate recognition. Structure-guided rational design and directed evolution are implemented using the growth-coupled in vivo screening platform to reprogram ADAE, in which a mutant M42 (P38N/V102A/Y201L/S207N/I251R) is identified with a 6.28-fold enhancement of catalytic activity and significantly improved thermostability with a 2.5-fold increase of the half-life at 60 °C. The research demonstrates that biosensor-assisted growth-coupled evolutionary pressure combined with structure-guided rational design provides a universal route for engineering KEases.
Asunto(s)
Fructosa , Racemasas y Epimerasas , Fructosa/química , Fructosa/metabolismo , Evolución BiológicaRESUMEN
D-Allulose, a functional sweetener, can be synthesized from fructose using D-allulose 3-epimerase (DAEase). Nevertheless, a majority of the reported DAEases have inadequate stability under harsh industrial reaction conditions, which greatly limits their practical applications. In this study, big data mining combined with a computer-guided free energy calculation strategy was employed to discover a novel DAEase with excellent thermostability. Consensus sequence analysis of flexible regions and comparison of binding energies after substrate docking were performed using phylogeny-guided big data analyses. TtDAE from Thermogutta terrifontis was the most thermostable among 358 candidate enzymes, with a half-life of 32 h at 70 °C. Subsequently, structure-guided virtual screening and a customized strategy based on a combinatorial active-site saturation test/iterative saturation mutagenesis were utilized to engineer TtDAE. Finally, the catalytic activity of the M4 variant (P105A/L14C/T63G/I65A) was increased by 5.12-fold. Steered molecular dynamics simulations indicated that M4 had an enlarged substrate-binding pocket, which enhanced the fit between the enzyme and the substrate. The approach presented here, combining DAEases mining with further rational modification, provides guidance for obtaining promising catalysts for industrial-scale production.
Asunto(s)
Fructosa , Racemasas y Epimerasas , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Fructosa/química , Ingeniería de Proteínas , Edulcorantes , Estabilidad de EnzimasRESUMEN
Biosynthesis of D-allulose has been achieved using ketose 3-epimerases (KEases), but its application is limited by poor catalytic performance. In this study, we redesigned a genetically encoded biosensor based on a D-allulose-responsive transcriptional regulator for real-time monitoring of D-allulose. An ultrahigh-throughput droplet-based microfluidic screening platform was further constructed by coupling with this D-allulose-detecting biosensor for the directed evolution of the KEases. Structural analysis of Sinorhizobium fredii D-allulose 3-epimerase (SfDAE) revealed that a highly flexible helix/loop region exposes or occludes the catalytic center as an essential lid conformation regulating substrate recognition. We reprogrammed SfDAE using structure-guided rational design and directed evolution, in which a mutant M3-2 was identified with 17-fold enhanced catalytic efficiency. Our research offers a paradigm for the design and optimization of a biosensor-based microdroplet screening platform.
Asunto(s)
Fructosa , Racemasas y Epimerasas , Fructosa/químicaRESUMEN
BACKGROUND: Rare sugars have become promising 'sugar alternatives' because of their low calories and unique physiological functions. Among the family of rare sugars, d-allulose is one of the sugars attracting interest. Ketose 3-epimerases (KEase), including d-tagatose 3-epimerase (DTEase) and d-allulose 3-epimerase (DAEase), are mainly used for d-allulose production. RESULTS: In this study, a putative xylose isomerase from Caballeronia insecticola was characterized and identified as a novel DAEase. Caballeronia insecticola DAEase displayed prominent enzymatic properties, and 150 g L-1 d-allulose was produced from 500 g L-1 d-fructose in 45 min with a conversion rate of 30% and high productivity of 200 g L-1 h-1 . Furthermore, DAEase was employed in a phosphorylation-dephosphorylation cascade reaction, which significantly increased the conversion rate of d-allulose. Under optimized conditions, the conversion rate of d-allulose was approximately 100% when the concentration of d-fructose was 50 mmol L-1 . CONCLUSION: This research described a very beneficial and facile approach for d-allulose production based on C. insecticola DAEase. © 2022 Society of Chemical Industry.
Asunto(s)
Fructosa , Racemasas y Epimerasas , Racemasas y Epimerasas/genética , Concentración de Iones de Hidrógeno , Fructosa/químicaRESUMEN
D-Allulose, as low-calorie rare sugar, possessed several notable biological activities and was biosynthesized by D-allulose 3-epimerase (DAEase). Here, CcDAE from Clostridium cellulolyticum was successfully immobilization via covalent attachment (RI-CcDAE), and Resin-SpyCatcher/SpyTag-CcDAE modular (DI-CcDAE). Both immobilized CcDAEs exhibited higher thermal and pH stabilities than the free form, and they maintained 80.0 % of relative activity after 7 consecutive cycles and 25 days of storage. Predominantly, DI-CcDAE represented superior catalytic efficiency with a 2.4-fold increase of kcat/Km, compared with RI-CcDAE (0.75 s-1 mM-1 vs 0.31 s-1 mM-1). The RI-CcDAE and DI-CcDAE were then applied in mixed fruit Jiaosu to convert D-fructose into D-allulose, which exhibited the productivity of D-allulose 1.08 g/Lh-1 and 1.57 g/Lh-1, respectively. This research provided a promising directional immobilization strategy for DAEase, and robust biocatalyst for production of functional foodstuff containing D-allulose.
Asunto(s)
Fructosa , Racemasas y Epimerasas , Racemasas y Epimerasas/genética , Concentración de Iones de HidrógenoRESUMEN
d-Allulose, a rare sugar and functional sweetener, can be biosynthesized by d-allulose 3-isomerase (DAE). However, most of the reported DAEs exhibit poor resistance under acidic conditions, which severely limited their application. Here, surface charge engineering and random mutagenesis were used to construct a mutant library of CcDAE from Clostridium cellulolyticum H10, combined with high-throughput screening to identify mutants with high activity and resistance under acidic conditions. The mutant M3 (I114R/K123E/H209R) exhibited high activity (3.36-fold of wild-type) and acid resistance (10.6-fold of wild-type) at pH 4.5. The structure-function relationship was further analyzed by molecular dynamics (MD) simulations, which indicated that M3 had a higher number of hydrogen bonds and negative surface charges than the wild type. A multienzyme cascade system including M3 was used to convert high-calorie sugars in acidic juices, and functional juices containing 7.8-15.4 g/L d-allulose were obtained. Our study broadens the manufacture of functional foods containing d-allulose.
Asunto(s)
Fructosa , Racemasas y Epimerasas , Racemasas y Epimerasas/genética , EdulcorantesRESUMEN
d-Allulose is the corresponding epimer of d-fructose at the C-3 position, which exhibits a similar taste and sweetness to sucrose. As a low-calorie sweetener, d-allulose has broad application prospects in the fields of medicine, food, and so on. Currently, the production method of d-allulose is mainly the enzymatic conversion of d-fructose by d-allulose 3-epimerase (DAEase). However, the limited specific activity and thermal stability of DAEase restrict its industrial application. Herein, an ultrahigh-throughput screening assay based on the transcription factor PsiR was extensively optimized from the aspects of culture medium components, screening plasmid, and expression host, which enhanced the correction between the fluorescent readout and the enzyme activity. Then, the error-prone PCR (epPCR) library of Clostridium cellulolyticum H10 DAEase (CcDAEase) was screened through the above optimized method, and the variant I228V with improved specific activity and thermal stability was obtained. Moreover, after combining two beneficial substitutions, D281G and C289R, which were previously obtained by this optimized assay, the specific activity of the triple-mutation variant I228V/D281G/C289R reached up to 1.42-fold of the wild type (WT), while its half-life (T1/2) at 60 °C was prolonged by 62.97-fold. The results confirmed the feasibility of the optimized screening assay as a powerful tool for the directed evolution of DAEase.
Asunto(s)
Fructosa , Racemasas y Epimerasas , Racemasas y Epimerasas/genética , Concentración de Iones de Hidrógeno , Fructosa/metabolismo , Ingeniería de ProteínasRESUMEN
d-Allulose is an attractive rare sugar that can be used as a low-calorie sweetener with significant health benefits. To meet the increasing market demands, it is necessary to develop an efficient and extensive microbial fermentation platform for the synthesis of d-allulose. Here, we applied a comprehensive systematic engineering strategy in Bacillus subtilis WB600 by introducing d-allulose 3-epimerase (DAEase), combined with the deactivation of fruA, levDEFG, and gmuE, to balance the metabolic network for the efficient production of d-allulose. This resulting strain initially produced 3.24 g/L of d-allulose with a yield of 0.93 g of d-allulose/g d-fructose. We further screened and obtained a suitable dual promoter combination and performed fine-tuning of its spacer region. After 64 h of fed-batch fermentation, the optimized engineered B. subtilis produced d-allulose at titers of 74.2 g/L with a yield of 0.93 g/g and a conversion rate of 27.6%. This d-allulose production strain is a promising platform for the industrial production of rare sugar.
Asunto(s)
Bacillus subtilis , Fructosa , Bacillus subtilis/metabolismo , Fructosa/metabolismo , Racemasas y Epimerasas/metabolismo , Ciclo del CarbonoRESUMEN
As a natural sweetener with low calories and various physiological activities, d-allulose has drawn worldwide attention. Currently, d-allulose 3-epimerase (DAEase) is mainly used to catalyze the epimerization of d-fructose to d-allulose. Therefore, it is quite necessary to enhance the food-grade expression of DAEase to meet the surging market demand for d-allulose. In this study, initially, the promising variant H207L/D281G/C289R of Clostridium cellulolyticum H10 DAEase (CcDAEase) was generated by protein engineering, the specific activity and the T1/2 of which were 2.24-fold and 13.45-fold those of the CcDAEase wild type at 60 °C, respectively. After that, PamyE was determined as the optimal promoter for the recombinant expression of CcDAEase in Bacillus subtilis, and catabolite-responsive element (CRE) box engineering was further performed to eliminate the carbon catabolite repression (CCR) effect. Lastly, high-density fermentation was carried out and the final activity peaked at 4971.5 U mL-1, which is the highest expression level and could effectively promote the industrial production of DAEase. This research provides a theoretical basis and technical support for the molecular modification of DAEase and its efficient fermentation preparation.