Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 622
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell Rep ; 43(10): 114778, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39325617

RESUMEN

Tumor necrosis factor (TNF) induces systemic inflammatory response syndrome (SIRS), and severe SIRS can serve as a model for studying animal death caused by organ failure. Through strategic cecectomy, we demonstrate that necroptosis in the cecum initiates the death process in TNF-treated mice, but it is not the direct cause of death. Instead, we show that it is the cardiac dysfunction downstream of cecum damage that ultimately leads to the death of TNF-treated mice. By in vivo and ex vivo physiological analyses, we reveal that TNF and the damage-associated molecular patterns (DAMPs) released from necroptotic cecal cells jointly target cardiac endothelial cells, triggering caspase-8 activation and subsequent cardiac endothelial damage. Cardiac endothelial damage is a primary cause of the deterioration of diastolic function in the heart of TNF-treated mice. Our research provides insights into the pathophysiological process of TNF-induced lethality.

2.
Plant Physiol Biochem ; 216: 109117, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39293143

RESUMEN

In plants, the perception of cell wall fragments initiates signal transduction cascades that activate the immune response. Previous research on early protein dynamics induced by oligogalacturonides (OGs), pectin fragments acting as damage-associated molecular patterns (DAMPs), revealed significant phosphorylation changes in several proteins. Among them, the subunit C of the vacuolar H+-ATPase, known as DE-ETIOLATED 3 (DET3), was selected to elucidate its role in the OG-triggered immune response. The Arabidopsis det3 knockdown mutant exhibited defects in H2O2 accumulation, mitogen-activated protein kinases (MAPKs) activation, and induction of defense marker genes in response to OG treatment. Interestingly, the det3 mutant showed a higher basal resistance to the fungal pathogen Botrytis cinerea that, in turn, was completely reversed by the pre-treatment with OGs. Our results suggest a compromised ability of the det3 mutant to maintain a primed state over time, leading to a weaker defense response when the plant is later exposed to the fungal pathogen. Using fluorescently labelled OGs, we demonstrated that endocytosis of OGs was less efficient in the det3 mutant, implicating DET3 in the internalization process of OGs. This impairment aligns with the observed defect in the priming response in the det3 mutant, underscoring that proper internalization and signaling of OGs are crucial for initiating and maintaining a primed state in plant defense responses.

3.
J Control Release ; 374: 89-102, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39122217

RESUMEN

Small extracellular vesicles (SEV) have attracted much attention both as mediators of intercellular communication and as drug delivery systems. In addition, recent studies have shown that SEV containing virus components and virus particles are released from virus-infected cells. Oncolytic viruses, which efficiently kill tumor cells by tumor cell-specific replication, have been actively studied as novel anticancer agents in clinical and preclinical studies. However, it remains to be fully elucidated whether SEV released from oncolytic virus-infected cells are involved in the antitumor effects of oncolytic viruses. In this study, we examined the tumor cell killing efficiencies and innate immune responses following treatment with SEV released from oncolytic reovirus-infected tumor cells in vitro and in vivo. Reovirus-infected B16 cells secreted SEV associated with or containing reovirus particles (Reo-SEV) with a diameter of approximately 130 nm and a zeta potential of -17 mV, although death of reovirus-infected B16 cells was not observed. The secreted Reo-SEV also contained interferon (IFN)-ß, tumor antigens, and damage-associated molecular patterns (DAMPs), including heat shock proteins (HSPs). Reo-SEV were secreted from the tumor tissues of reovirus-injected mice. Inhibition of the SEV secretion pathway using GW4869, which is a neutral sphingomyelinase inhibitor, resulted in significant reduction in the infectious titers of reovirus in the culture supernatants, suggesting that the cells released progeny virus via the SEV secretion pathway. Reo-SEV more efficiently killed mouse tumor cells and induced innate immune responses in mouse bone marrow-derived dendritic cells than reovirus. Reovirus and Reo-SEV mediated efficient and comparable levels of growth suppression of B16 subcutaneous tumors and induction of tumor infiltration of CD8+ T cells following intravenous administration. These results indicate that Reo-SEV are a promising oncolytic agent and that SEV are an effective delivery vehicle for oncolytic virus.


Asunto(s)
Antígenos de Neoplasias , Vesículas Extracelulares , Interferón beta , Ratones Endogámicos C57BL , Reoviridae , Animales , Línea Celular Tumoral , Antígenos de Neoplasias/inmunología , Ratones , Viroterapia Oncolítica/métodos , Virus Oncolíticos , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Compuestos de Anilina/farmacología , Compuestos de Anilina/administración & dosificación , Inmunidad Innata , Femenino , Compuestos de Bencilideno/farmacología , Humanos
4.
AMB Express ; 14(1): 89, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095672

RESUMEN

Therapeutics that interfere with the damage/pathogen-associated molecular patterns (DAMPs/PAMPs) have evolved as promising candidates for hepatic inflammation like that occurring in non-alcoholic fatty liver disease (NAFLD). In the current study, we examined the therapeutic impact of the phosphodiesterase-1 inhibitor vinpocetine (Vinpo), alone or when combined with Lactobacillus, on hepatic abnormalities caused by a 13-week high-fat diet (HFD) and diabetes in rats. The results show that Vinpo (10 and 20 mg/kg/day) dose-dependently curbed HFD-induced elevation of liver injury parameters in serum (ALT, AST) and tissue histopathology. These effects were concordant with Vinpo's potential to ameliorate HFD-induced fibrosis (Histological fibrosis score, hydroxyproline, TGF-ß1) and oxidative stress (MDA, NOx) alongside restoring the antioxidant-related parameters (GSH, SOD, Nrf-2, HO-1) in the liver. Mechanistically, Vinpo attenuated the hepatocellular release of DAMPs like high mobility group box (HMGB)1 alongside lowering the overactivation of the pattern recognition receptors including, toll-like receptor (TLR)4 and receptor for advanced glycation end-products (RAGE). Consequently, there was less activation of the transcription factor nuclear factor-kappa B that lowered production of the proinflammatory cytokines TNF-α and IL-6 in Vinpo-treated HFD/diabetes rats. Compared to Vinpo treatment alone, Lactobacillus probiotics as adjunctive therapy with Vinpo significantly improved the disease-associated inflammation and oxidative stress injury, as well as the insulin resistance and lipid profile abnormalities via enhancing the restoration of the symbiotic microbiota. In conclusion, combining Vinpo and Lactobacillus probiotics may be a successful approach for limiting NAFLD in humans.

5.
Cancer Sci ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086034

RESUMEN

Mitochondrial N-formylpeptides are released from damaged or dead cells to the extracellular spaces and cause inflammatory responses. The role of mitochondrial N-formylpeptides in aseptic systemic inflammatory response syndromes induced by trauma or cardiac surgery has been well investigated. However, there are no reports regarding the role of mitochondrial N-formylpeptides in cancer. In this study, we investigated the role of tumor cell-derived mitochondrial N-formylpeptides in anti-tumor immunity using knockout murine tumor cells of mitochondrial methionyl-tRNA formyltransferase (MTFMT), which catalyze N-formylation of mitochondrial DNA-encoded proteins. There was no apparent difference among the wild-type and MTFMT-knockout clones of E.G7-OVA cells with respect to morphology, mitochondrial dynamics, glycolysis and oxidative phosphorylation, oxygen consumption rate, or in vitro cell growth. In contrast, in vivo tumor growth of MTFMT-knockout cells was slower than that of wild-type cells. A reduced number of myeloid-derived suppressor cells and an increase of cytotoxic T-lymphocytes in the tumor tissues were observed in the MTFMT-knockout tumors. These results suggested that tumor cell-derived mitochondrial N-formylpeptides had a negative role in the host anti-tumor immunity through modification of the tumor microenvironment.

6.
Front Physiol ; 15: 1443604, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161701

RESUMEN

Chronic vascular encephalopathy (CVE) is a frequent cause of vascular mild cognitive impairment and dementia, which significantly worsens the quality of life, especially in the elderly population. CVE is a result of chronic cerebral hypoperfusion, characterized by prolonged limited blood flow to the brain. This causes insufficient oxygenation of the brain leading to hypoxia. The latter can trigger a series of events associated with the development of oxidative/reductive stresses and neuroinflammation. Addressing the gap in knowledge regarding oxidative and reductive stresses in the development of vascular disorders and neuroinflammation can give a start to new directions of research in the context of CVE. In this review, we consider the hypoxia-induced molecular challenges involved in the pathophysiology of CVE, focusing on oxidative stress and neuroinflammation, which are combined in a vicious cycle of neurodegeneration. We also briefly describe therapeutic approaches to the treatment of CVE and outline the prospects for the use of sulforaphane, an isothiocyanate common in cruciferous plants, and vitamin D to break the vicious cycle and alleviate the cognitive impairments characteristic of patients with CVE.

7.
Front Immunol ; 15: 1447817, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39185425

RESUMEN

The field of oncology has transformed in recent years, with treatments shifting from traditional surgical resection and radiation therapy to more diverse and customized approaches, one of which is immunotherapy. ICD (immunogenic cell death) belongs to a class of regulatory cell death modalities that reactivate the immune response by facilitating the interaction between apoptotic cells and immune cells and releasing specific signaling molecules, and DAMPs (damage-associated molecular patterns). The inducers of ICD can elevate the expression of specific proteins to optimize the TME (tumor microenvironment). The use of nanotechnology has shown its unique potential. Nanomaterials, due to their tunability, targeting, and biocompatibility, have become powerful tools for drug delivery, immunomodulators, etc., and have shown significant efficacy in clinical trials. In particular, these nanomaterials can effectively activate the ICD, trigger a potent anti-tumor immune response, and maintain long-term tumor suppression. Different types of nanomaterials, such as biological cell membrane-modified nanoparticles, self-assembled nanostructures, metallic nanoparticles, mesoporous materials, and hydrogels, play their respective roles in ICD induction due to their unique structures and mechanisms of action. Therefore, this review will explore the latest advances in the application of these common nanomaterials in tumor ICD induction and discuss how they can provide new strategies and tools for cancer therapy. By gaining a deeper understanding of the mechanism of action of these nanomaterials, researchers can develop more precise and effective therapeutic approaches to improve the prognosis and quality of life of cancer patients. Moreover, these strategies hold the promise to overcome resistance to conventional therapies, minimize side effects, and lead to more personalized treatment regimens, ultimately benefiting cancer treatment.


Asunto(s)
Muerte Celular Inmunogénica , Inmunoterapia , Nanoestructuras , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Muerte Celular Inmunogénica/efectos de los fármacos , Nanoestructuras/uso terapéutico , Nanoestructuras/química , Animales , Inmunoterapia/métodos , Microambiente Tumoral/inmunología
8.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39000412

RESUMEN

Biological aging results from an accumulation of damage in the face of reduced resilience. One major driver of aging is cell senescence, a state in which cells remain viable but lose their proliferative capacity, undergo metabolic alterations, and become resistant to apoptosis. This is accompanied by complex cellular changes that enable the development of a senescence-associated secretory phenotype (SASP). Mitochondria, organelles involved in energy provision and activities essential for regulating cell survival and death, are negatively impacted by aging. The age-associated decline in mitochondrial function is also accompanied by the development of chronic low-grade sterile inflammation. The latter shares some features and mediators with the SASP. Indeed, the unloading of damage-associated molecular patterns (DAMPs) at the extracellular level can trigger sterile inflammatory responses and mitochondria can contribute to the generation of DAMPs with pro-inflammatory properties. The extrusion of mitochondrial DNA (mtDNA) via mitochondrial outer membrane permeabilization under an apoptotic stress triggers senescence programs. Additional pathways can contribute to sterile inflammation. For instance, pyroptosis is a caspase-dependent inducer of systemic inflammation, which is also elicited by mtDNA release and contributes to aging. Herein, we overview the molecular mechanisms that may link mitochondrial dyshomeostasis, pyroptosis, sterile inflammation, and senescence and discuss how these contribute to aging and could be exploited as molecular targets for alleviating the cell damage burden and achieving healthy longevity.


Asunto(s)
Supervivencia Celular , Senescencia Celular , Mitocondrias , Transducción de Señal , Humanos , Mitocondrias/metabolismo , Animales , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Inflamación/metabolismo , Inflamación/patología , Muerte Celular , Apoptosis , Piroptosis , Envejecimiento/metabolismo
9.
Dig Dis Sci ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963463

RESUMEN

In inflammatory bowel diseases (IBD), the most promising therapies targeting cytokines or immune cell trafficking demonstrate around 40% efficacy. As IBD is a multifactorial inflammation of the intestinal tract, a single-target approach is unlikely to solve this problem, necessitating an alternative strategy that addresses its variability. One approach often overlooked by the pharmaceutically driven therapeutic options is to address the impact of environmental factors. This is somewhat surprising considering that IBD is increasingly viewed as a condition heavily influenced by such factors, including diet, stress, and environmental pollution-often referred to as the "Western lifestyle". In IBD, intestinal responses result from a complex interplay among the genetic background of the patient, molecules, cells, and the local inflammatory microenvironment where danger- and microbe-associated molecular patterns (D/MAMPs) provide an adjuvant-rich environment. Through activating DAMP receptors, this array of pro-inflammatory factors can stimulate, for example, the NLRP3 inflammasome-a major amplifier of the inflammatory response in IBD, and various immune cells via non-specific bystander activation of myeloid cells (e.g., macrophages) and lymphocytes (e.g., tissue-resident memory T cells). Current single-target biological treatment approaches can dampen the immune response, but without reducing exposure to environmental factors of IBD, e.g., by changing diet (reducing ultra-processed foods), the adjuvant-rich landscape is never resolved and continues to drive intestinal mucosal dysregulation. Thus, such treatment approaches are not enough to put out the inflammatory fire. The resultant smoldering, low-grade inflammation diminishes physiological resilience of the intestinal (micro)environment, perpetuating the state of chronic disease. Therefore, our hypothesis posits that successful interventions for IBD must address the complexity of the disease by simultaneously targeting all modifiable aspects: innate immunity cytokines and microbiota, adaptive immunity cells and cytokines, and factors that relate to the (micro)environment. Thus the disease can be comprehensively treated across the nano-, meso-, and microscales, rather than with a focus on single targets. A broader perspective on IBD treatment that also includes options to adapt the DAMPing (micro)environment is warranted.

10.
Bioengineering (Basel) ; 11(7)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39061769

RESUMEN

Gingival fibroblasts are a significant source of paracrine signals required to maintain periodontal homeostasis and to mediate pathological events linked to periodontitis and oral squamous cell carcinomas. Among the potential paracrine signals are stanniocalcin-1 (STC1), involved in oxidative stress and cellular survival; amphiregulin (AREG), a growth factor that mediates the cross-talk between immune cells and epithelial cells; chromosome 11 open reading frame 96 (C11orf96) with an unclear biologic function; and the inflammation-associated prostaglandin E synthase (PTGES). Gingival fibroblasts increasingly express these genes in response to bone allografts containing remnants of injured cells. Thus, the gene expression might be caused by the local release of damage-associated molecular patterns arising from injured cells. The aim of this study is consequently to use the established gene panel as a bioassay to measure the damage-associated activity of oral cell lysates. To this aim, we have exposed gingival fibroblasts to lysates prepared from the squamous carcinoma cell lines TR146 and HSC2, oral epithelial cells, and gingival fibroblasts. We report here that all lysates significantly increased the transcription of the entire gene panel, supported for STC1 at the protein level. Blocking TGF-ß receptor 1 kinase with SB431542 only partially reduced the forced expression of STC1, AREG, and C11orf96. SB431542 even increased the PTGES expression. Together, these findings suggest that the damage signals originating from oral cells can change the paracrine activity of gingival fibroblasts. Moreover, the expression panel of genes can serve as a bioassay for testing the biocompatibility of materials for oral application.

11.
ACS Biomater Sci Eng ; 10(8): 4701-4715, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38959418

RESUMEN

The utilization of traditional therapies (TTS), such as chemotherapy, reactive oxygen species-based therapy, and thermotherapy, to induce immunogenic cell death (ICD) in tumor cells has emerged as a promising strategy for the activation of the antitumor immune response. However, the limited effectiveness of most TTS in inducing the ICD effect of tumors hinders their applications in combination with immunotherapy. To address this challenge, various intelligent strategies have been proposed to strengthen the immune activation effect of these TTS, and then achieve synergistic antitumor efficacy with immunotherapy. These strategies primarily focus on augmenting the tumor ICD effect or facilitating the antigen (released by the ICD tumor cells) presentation process during TTS, and they are systematically summarized in this review. Finally, the existing bottlenecks and prospects of TTS in the application of tumor immune regulation are also discussed.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Inmunoterapia/métodos , Animales , Muerte Celular Inmunogénica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
12.
Cell Rep ; 43(7): 114515, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39003743

RESUMEN

Wounding is a general stress in plants that results from various pest and pathogenic infections in addition to environment-induced mechanical damages. Plants have sophisticated molecular mechanisms to recognize and respond to wounding, with those of monocots being distinct from dicots. Here, we show the involvement of two distinct categories of temporally separated, endogenously derived peptides, namely, plant elicitor peptides (PEPs) and phytosulfokine (PSK), mediating wound responses in rice. These peptides trigger a dynamic signal relay in which a receptor kinase involved in PSK perception named OsPSKR plays a major role. Perturbation of OsPSKR expression in rice leads to compromised development and constitutive autoimmune phenotypes. OsPSKR regulates the transitioning of defense to growth signals upon wounding. OsPSKR displays mutual antagonism with the OsPEPR1 receptor involved in PEP perception. Collectively, our work indicates the presence of a stepwise peptide-mediated signal relay that regulates the transition from defense to growth upon wounding in monocots.


Asunto(s)
Oryza , Proteínas de Plantas , Transducción de Señal , Oryza/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Péptidos/metabolismo , Enfermedades de las Plantas/inmunología
13.
Biology (Basel) ; 13(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38927311

RESUMEN

Mitochondria serve an ultimate purpose that seeks to balance the life and death of cells, a role that extends well beyond the tissue and organ systems to impact not only normal physiology but also the pathogenesis of diverse diseases. Theorized to have originated from ancient proto-bacteria, mitochondria share similarities with bacterial cells, including their own circular DNA, double-membrane structures, and fission dynamics. It is no surprise, then, that mitochondria interact with a bacterium-targeting immune pathway known as a complement system. The complement system is an ancient and sophisticated arm of the immune response that serves as the body's first line of defense against microbial invaders. It operates through a complex cascade of protein activations, rapidly identifying and neutralizing pathogens, and even aiding in the clearance of damaged cells and immune complexes. This dynamic system, intertwining innate and adaptive immunity, holds secrets to understanding numerous diseases. In this review, we explore the bidirectional interplay between mitochondrial dysfunction and the complement system through the release of mitochondrial damage-associated molecular patterns. Additionally, we explore several mitochondria- and complement-related diseases and the potential for new therapeutic strategies.

14.
Exp Hematol Oncol ; 13(1): 63, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926796

RESUMEN

BACKGROUND: Cancer cells frequently evolve necroptotic resistance to overcome various survival stress during tumorigenesis. However, we have previously showed that necroptosis is widespread in head and neck squamous cell carcinoma (HNSCC) and contributes to tumor progression and poor survival via DAMPs-induced migration and invasiveness in peri-necroptotic tumor cells. This implicated an alternative strategy that cancers cope with necroptotic stress by reprogramming a pro-invasive necroptotic microenvironment (NME). Here, we aim to decipher how necroptotic cells shape the NME and affect HNSCC progression. METHODS: Both our pre-established cellular necroptotic model and newly established Dox-induce intratumoral necroptosis model were used to investigate how necroptosis affect HNSCC progression. Transcriptomic alterations in peri-necroptotic tumor cells were analyzed by RNA-seq and validated in the NME in mice and patients' samples. The differential DAMPs compositon among apopotosis. Necrosis, and necroptosis were analyzed by label-free proteomic technique, and the necroptosis-specific DAMPs were then identified and validated. The potential receptor for ISG15 were simulated using molecular docking and further validated by in vitro assays. Then the ISG15-RAGE axis was blocked by either knockdown of necroptotic-ISG15 release and RAGE inhibitor FPS-ZM1, and the impact on tumor progression were tested. Last, we further tested our findings in a HNSCC-patients cohort. RESULTS: Necroptosis played a crucial role in driving tumor-cell invasiveness and lymphatic metastasis via tumor-type dependent DAMPs-releasing. Mechanistically, necroptotic DAMPs induced peri-necroptotic EMT via NF-κB and STAT3 signaling. Furthermore, intrinsic orchestration between necroptotic and cGAS-STING signaling resulted in producing a group of interferon stimulated genes (ISGs) as HNSCC-dependent necroptotic DAMPs. Among them, ISG15 played an essential role in reprogramming the NME. We then identified RAGE as a novel receptor for extracellular ISG15. Either blockage of ISG15 release or ISG15-RAGE interaction dramatically impeded necroptosis-driven EMT and lymphatic metastasis in HNSCC. Lastly, clinicopathological analysis showed high ISG15 expression in NME. Extensive necroptosis and high tumor-cell RAGE expression correlated with tumor progression and poor survival of HNSCC patients. CONCLUSIONS: Our data revealed a previously unknown cGAS-ISG15-RAGE dependent reprogramming of the necroptotic microenvironment which converts the necroptotic stress into invasive force to foster HNSCC-cell dissemination. By demonstrating the programmatic production of ISG15 via necroptosis-cGAS orchestration and its downstream signaling through RAGE, we shed light on the unique role of ISG15 in HNSCC progression. Targeting such machineries may hold therapeutic potential for restoring intratumoral survival stress and preventing lymphatic metastasis in HNSCC.

15.
Acute Med Surg ; 11(1): e976, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38894736

RESUMEN

Immune responses that occur following burn injury comprise a series of reactions that are activated in response to damaged autologous tissues, followed by removal of damaged tissues and foreign pathogens such as invading bacteria, and tissue repair. These immune responses are considered to be programmed in living organisms. Developments of modern medicine have led to the saving of burned patients who could not be cured previously; however, the programmed response is no longer able to keep up, and various problems have arisen. This paper describes the mechanism of immune response specific to burn injury and the emerging concept of persistent inflammation, immunosuppression, and catabolism syndrome.

16.
Int J Nanomedicine ; 19: 5895-5930, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895146

RESUMEN

Low immunogenicity of tumors poses a challenge in the development of effective tumor immunotherapy. However, emerging evidence suggests that certain therapeutic approaches, such as chemotherapy, radiotherapy, and phototherapy, can induce varying degrees of immunogenic cell death (ICD). This ICD phenomenon leads to the release of tumor antigens and the maturation of dendritic cells (DCs), thereby enhancing tumor immunogenicity and promoting immune responses. However, the use of a single conventional ICD inducer often fails to achieve in situ tumor ablation and establish long-term anti-tumor immune responses. Furthermore, the induction of ICD induction varies among different approaches, and the distribution of the therapeutic agent within the body influences the level of ICD and the occurrence of toxic side effects. To address these challenges and further boost tumor immunity, researchers have explored nanosystems as inducers of ICD in combination with tumor immunotherapy. This review examines the mechanisms of ICD and different induction methods, with a specific focus on the relationship between ICD and tumor immunity. The aim is to explore the research advancements utilizing various nanomaterials to enhance the body's anti-tumor effects by inducing ICD. This paper aims to contribute to the development and clinical application of nanomaterial-based ICD inducers in the field of cancer immunotherapy by providing important theoretical guidance and practical references.


Asunto(s)
Células Dendríticas , Muerte Celular Inmunogénica , Inmunoterapia , Neoplasias , Inmunoterapia/métodos , Humanos , Muerte Celular Inmunogénica/efectos de los fármacos , Neoplasias/terapia , Neoplasias/inmunología , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Animales , Nanoestructuras/química , Nanopartículas/química , Antígenos de Neoplasias/inmunología
17.
Int J Immunopathol Pharmacol ; 38: 3946320241265265, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38889772

RESUMEN

Introduction: Exceedingly high levels of the chemokine CCL5/RANTES have been found in fatty degenerated osteonecrotic alveolar bone cavities (FDOJ) and aseptic ischemic osteolysis of the jaw (AIOJ) from toothless regions. Because CCL5/RANTES seems to have a prominent role in creating the COVID-19 "cytokine storm", some researchers have used the monoclonal antibody Leronlimab to block the CCR5 on inflammatory cells.Objective: Is preexisting FDOJ/AIOJ jaw marrow pathology a "hidden" co-morbidity affecting some COVID-19 infections? To what extent does the chronic CCL5/RANTES expression from preexisting FDOJ/AIOJ areas contribute to the progression of the acute cytokine storm in COVID-19 patients?Methods: Authors report on reducing the COVID-19 "cytokine storm" by treating infected patients through targeting the chemokine receptor 5 (CCR5) with Leronlimab and interrupting the activation of CCR5 by high CCL5/RANTES signaling, thus dysregulating the inflammatory phase of the viremia. Surgical removal of FDOJ/AIOJ lesions with high CCL5/RANTES from patients with inflammatory diseases may be classified as a co-morbid disease.Results: Both multiplex analysis of 249 FDOJ/AIOJ bone tissue samples as well as serum levels of CCL5/RANTES displayed exceedingly high levels in both specimens.Discussion: By the results the authors hypothesize that chronic CCL5/RANTES induction from FDOJ/AIOJ areas may sensitize CCR5 throughout the immune system, thus, enabling it to amplify its response when confronted with the virus. As conventional intraoral radiography does little to assess the quality of the alveolar bone, ultrasonography units are available to help dentists locate the FDOJ/AIOJ lesions in an office setting.Conclusion: The authors propose a new approach to containment of the COVID-19 cytokine storm by a prophylactic focus for future viral-related pandemics, which may be early surgical clean-up of CCL5/RANTES expression sources in the FDOJ/AIOJ areas, thus diminishing a possible pre-sensitization of CCR5. A more complete dental examination includes trans-alveolar ultrasono-graphy (TAU) for hidden FDOJ/AIOJ lesions.


Asunto(s)
COVID-19 , Quimiocina CCL5 , Humanos , COVID-19/inmunología , COVID-19/epidemiología , Comorbilidad , Masculino , Femenino , Persona de Mediana Edad , Receptores CCR5/metabolismo , Anciano , Enfermedades Maxilomandibulares/epidemiología , Enfermedades Maxilomandibulares/inmunología , SARS-CoV-2 , Síndrome de Liberación de Citoquinas , Anticuerpos Monoclonales Humanizados/uso terapéutico , Adulto
18.
Eur J Med Chem ; 275: 116534, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38870830

RESUMEN

Combination therapy proven to be an effective therapeutic approach for estrogen receptor (ER)-positive breast cancer. Currently, cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are combined with aromatase inhibitors (AIs) or selective estrogen receptor degraders (SERDs) as first-line therapy for advanced ER-positive breast cancer. Herein, a new family of quinoline scaffold SERDs was synthesized and evaluated in MCF-7 cells. Among them, compounds 18j and 24d exhibited remarkable MCF-7 inhibition, both alone and in combination with ribociclib (CDK4/6 inhibitor), in vitro and in vivo. Meanwhile, compounds 18j and 24d effectively degraded ER and inhibited ER downstream signaling pathways. Interestingly, compounds 18j and 24d induced endoplasmic reticulum stress (ERS) and triggered immunogenic cell death (ICD) via damage-associated molecular patterns (DAMPs) in MCF-7 cells. These findings highlight the immune-related and enhanced antiproliferative effects of oral SERDs in ER positive breast cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Quinolinas , Receptores de Estrógenos , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Proliferación Celular/efectos de los fármacos , Quinolinas/farmacología , Quinolinas/química , Quinolinas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Femenino , Receptores de Estrógenos/metabolismo , Relación Estructura-Actividad , Estructura Molecular , Animales , Muerte Celular Inmunogénica/efectos de los fármacos , Descubrimiento de Drogas , Relación Dosis-Respuesta a Droga , Células MCF-7 , Ratones , Estrés del Retículo Endoplásmico/efectos de los fármacos
19.
Trends Biochem Sci ; 49(8): 717-728, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906725

RESUMEN

Lytic cell death culminates in cell swelling and plasma membrane rupture (PMR). The cellular contents released, including proteins, metabolites, and nucleic acids, can act as danger signals and induce inflammation. During regulated cell death (RCD), lysis is actively initiated and can be preceded by an initial loss of membrane integrity caused by pore-forming proteins, allowing small molecules and cytokines to exit the cell. A recent seminal discovery showed that ninjurin1 (NINJ1) is the common executioner of PMR downstream of RCD, resulting in the release of large proinflammatory molecules and representing a novel target of cell death-associated lysis. We summarize recent developments in understanding membrane integrity and rupture of the plasma membrane with a focus on NINJ1.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Membrana Celular , Humanos , Membrana Celular/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Animales , Factores de Crecimiento Nervioso/metabolismo , Apoptosis
20.
Cell Rep ; 43(7): 114403, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38943639

RESUMEN

Ferroptosis is a type of regulated cell death characterized by iron-dependent lipid peroxidation. A model cell system is constructed to induce ferroptosis by re-expressing the transcription factor BACH1, a potent ferroptosis inducer, in immortalized mouse embryonic fibroblasts (iMEFs). The transfer of the culture supernatant from ferroptotic iMEFs activates the proliferation of hepatoma cells and other fibroblasts and suppresses cellular senescence-like features. The BACH1-dependent secretion of the longevity factor FGF21 is increased in ferroptotic iMEFs. The anti-senescent effects of the culture supernatant from these iMEFs are abrogated by Fgf21 knockout. BACH1 activates the transcription of Fgf21 by promoting ferroptotic stress and increases FGF21 protein expression by suppressing its autophagic degradation through transcriptional Sqstm1 and Lamp2 repression. The BACH1-induced ferroptotic FGF21 secretion suppresses obesity in high-fat diet-fed mice and the short lifespan of progeria mice. The inhibition of these aging-related phenotypes can be physiologically significant regarding ferroptosis.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Senescencia Celular , Ferroptosis , Factores de Crecimiento de Fibroblastos , Obesidad , Animales , Ferroptosis/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Obesidad/metabolismo , Obesidad/patología , Ratones , Longevidad , Humanos , Ratones Endogámicos C57BL , Fibroblastos/metabolismo , Autofagia , Dieta Alta en Grasa , Ratones Noqueados , Masculino , Proteína Sequestosoma-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA