Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38890266

RESUMEN

PURPOSE: To identify the sperm preparation procedure that selects the best sperm population for medically assisted reproduction. METHODS: Prospective observational study comparing the effect of four different sperm selection procedures on various semen parameters. Unused raw semen after routine diagnostic analysis was split in four fractions and processed by four different methods: (1) density gradient centrifugation (DGC), (2) sperm wash (SW), (3) DGC followed by magnetic activated cell sorting (MACS), and (4) using a sperm separation device (SSD). Each fraction was analyzed for progressive motility, morphology, acrosome index (AI), and DNA fragmentation index (DFI). RESULTS: With DGC as standard of care in intraclass correlation coefficient analysis, only SSD was in strong disagreement regarding progressive motility and DFI [0.26, 95%CI (- 0.2, 0.58), and 0.17, 95%CI (- 0.19, 0.45), respectively]. When controlling for abstinence duration, DFI was significantly lower after both MACS and SSD compared to DGC [- 0.27%, 95%CI (- 0.47, - 0.06), p = 0.01, and - 0.6%, 95%CI (- 0.80, - 0.41), p < 0.001, respectively]. Further comparisons between SSD and MACS indicate significantly less apoptotic cells [Median (IQR) 4 (5), 95%CI (4.1, - 6.8) vs Median (IQR) 5 (8), 95%CI (4.9, - 9.2), p < 0.001, respectively] and dead cells [Median (IQR) 9.5 (23.3), 95%CI (13.2, - 22.4) vs Median (IQR) 22 (28), 95%CI (23.1, - 36.8), p < 0.001, respectively] in the SSD group. CONCLUSION: The selection of a population of highly motile spermatozoa with less damaged DNA from unprocessed semen is ideally performed with SSD. Question remains whether this method improves the embryological outcomes in the IVF laboratory.

2.
Small ; : e2401670, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38586925

RESUMEN

Atomically thin two-dimensional (2D) semiconductors have high potential in optoelectronics and magneto-optics appliances due to their tunable band structures and physicochemical stability. The work demonstrates that Gd3+ incorporated 2D-g-C3N4 nanosheet (Gd3+/2D-g-C3N4 NS) is synthesized through chemisorption methodology for defect enrichment. The material characterizations reveal that the ion decoration enhances the surface area and defect concentration of the 2D sheet. The experimental observations have been further corroborated with the help of density functional theory (DFT) simulation. Spin asymmetry polarizations near the Fermi level, obtained through the partial density of states (PDOS) analyses, reveal the magnetic nature of the synthesized material, validating the room temperature ferromagnetism obtained through a vibrating-sample magnetometer (VSM). Gd3+/2D-g-C3N4 NS shows significant enhancement in saturation magnetization (Ms) experimentally and computationally compared to the pristine one. The magnetic catalyst shows 98% remediation efficiency for ultrasound-assisted visible-light-driven photodegradation of methyl orange (MO). The synergistic approach of liquid chromatography-mass spectrometry (LC-MS) analyses and DFT studies elucidates reaction intermediates and unveils the degradation mechanism. Post-characterization studies assure the stability of the magnetic catalyst through optical, chemical, magnetic, and microscopic analyses. So, the synthesized material can be proficiently used as a magnetic nanocatalyst in wastewater treatments and spin-electronics applications.

3.
Reprod Sci ; 31(6): 1695-1704, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38393626

RESUMEN

Does sperm preparation using the FERTILE PLUS™ Sperm Sorting Chip improve fertilization rates, blastocyst formation, utilization, and euploidy rates in patients undergoing intracytoplasmic sperm injection (ICSI), compared with density gradient centrifugation (DGC)? A single-cohort, retrospective data review including data from 53 couples who underwent ICSI cycles within a 12-month period. For each couple, the two closest, consecutive cycles were identified, where one used the standard technique of sperm preparation (DGC) and the subsequent used FERTILE PLUS™, therefore, couples acted as their own controls. Paired samples t-test was used to compare means for the outcomes (fertilization, blastocyst formation, utilization, and euploidy rates). Binary logistic regression analysis assessed the relationship between female age, the presence of male factor infertility, and euploidy rates. Blastocyst, utilization, and euploidy rates were significantly higher for cycles using FERTILE PLUS™ compared to DGC (76% vs 56%, p = 0.002; 60% vs 41%, p = 0.005, and 40% vs 20%, p = 0.001, respectively). Although there was an increase in fertilization rates for cycles using FERTILE PLUS™, this was not significant (72% vs 68%, p = 0.449). The euploidy rates of females ≤ 35 years were significantly increased when the FERTILE PLUS™ sperm preparation method was used, compared to the older age group (OR 2.31, p = 0.007). No significant association was found between the presence or absence of male factor infertility and euploidy rates between the two cycles. This study provides tentative evidence that the FERTILE PLUS™ microfluidic sorting device for sperm selection can improve blastocyst formation, utilization, and euploidy rates following ICSI in comparison to the DGC method.


Asunto(s)
Centrifugación por Gradiente de Densidad , Inyecciones de Esperma Intracitoplasmáticas , Espermatozoides , Humanos , Inyecciones de Esperma Intracitoplasmáticas/métodos , Masculino , Femenino , Adulto , Centrifugación por Gradiente de Densidad/métodos , Estudios Retrospectivos , Espermatozoides/citología , Embarazo , Índice de Embarazo , Infertilidad Masculina/terapia , Resultado del Tratamiento , Dispositivos Laboratorio en un Chip
4.
Anim Reprod Sci ; 258: 107344, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37837771

RESUMEN

Artificial insemination (AI) is critical for breeding in the dairy industry. High-merit bulls can present low freezability, hampering genetic dissemination. Thawed semen can be improved using density gradient centrifugation (DGC) with colloids, but little information deals with the pre-freezing application. Thus, the BoviPure colloid (optimized for bull spermatozoa) was tested for pre-freezing application as the usual double-layer (DLC) versus single-layer (SLC, quick and economical). Semen from twelve Holstein-Friesian bulls was extended with OPTIXcell extender, frozen (Control), or processed by SLC or DLC and frozen. Sperm were assessed pre-freezing for motility and viability and post-thawing (directly and after 4 h 38 °C) for apoptosis, capacitation status, acrosomal damage, mitochondrial activity, cytoplasmic and mitochondrial reactive oxygen species (ROS), and chromatin status (SCSA for DNA fragmentation and chromatin compaction and monobromobimane, mBBr, for disulfide bridges evaluation). The DGC improved parameters post-thawing (e.g., 57.5%±10.1 motility vs. control 53.3% ± 11.2) at the cost of sperm loss (sperm recovery of DGC 14.4% ± 2.5 and SLC 17.4% ± 2.5). DNA fragmentation (%DFI) decreased (0.21% ± 0.53 vs. control 1.30% ± 0.10), and SLC reduced chromatin compaction. A clustering procedure separated lesser (LF) and greater freezability (GF) bulls. LF samples were especially benefited by DGC, with SLC providing better post-thawing results for this group. In conclusion, pre-freezing DGC improved sperm parameters post-thawing, potentially improving the cryopreservation of low-freezability semen from high-merit bulls. SLC, quicker and economical, would be preferable since it showed similar or higher performance than DLC.


Asunto(s)
Preservación de Semen , Semen , Masculino , Animales , Bovinos , Congelación , Biopelículas , Reactores Biológicos , Espermatozoides , Criopreservación/veterinaria , Criopreservación/métodos , Centrifugación/métodos , Centrifugación/veterinaria , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Cromatina , Coloides , Motilidad Espermática
5.
Hum Fertil (Camb) ; 26(6): 1408-1416, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37469268

RESUMEN

Conventional sperm selection based on motility and morphology fails to provide detailed information on sperm functional and molecular status. Magnetic-activated cell sorting (MACS) protocol aims to optimize this process by selecting apoptotic sperm cells. Phospholipase C zeta-1 (PLCz1) is a physiological stimulus for oocyte activation and early embryonic development. The purpose of this study was to examine seminal parameters, DNA fragmentation index (DFI), and PLCz1 expression levels in MACS-DGC sorted specimens (DFI > 30%) and assess early development in resulting embryos. Semen specimens from 60 patients diagnosed with male factor infertility were collected and processed by either density gradient centrifugation (DGC) or MACS-DGC protocols. Pre and post-preparation analysis was performed. PLCz1 expression was assessed using the RT-PCR method. Retrieved eggs from their partners were divided into two groups in which they were injected with different sorted sperm. The fertilization rate and embryonic development were evaluated. While sperm's progressive motility and morphology significantly improved, there was a substantial decline in DFI following MACS-DGC. Fertilization rates were almost the same between the groups, and the latter resulted in remarkably more top-quality embryos and more blastocysts. PLCz1 expression was considerably higher in the MACS-DGC group. By eliminating apoptotic cells, the MACS-DGC technique could sort highly PLCz1-expressed sperm, optimize sperm selection in individuals with elevated DFI, development of resulting embryos.


Asunto(s)
Infertilidad Masculina , Semen , Embarazo , Femenino , Humanos , Masculino , Infertilidad Masculina/metabolismo , Espermatozoides/metabolismo , Fragmentación del ADN , ADN/metabolismo , Blastocisto
6.
Obstet Gynecol Sci ; 66(3): 221-229, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36883228

RESUMEN

OBJECTIVE: To compare the degree of efficiency between density gradient centrifugation (DGC) method and an extended horizontal swim-up (SU) method. METHODS: A total of 97 couples undergoing in vitro fertilization were enrolled in the study. Semen samples were divided into three aliquots and treated using DGC, extended horizontal SU, and combined methods. DNA fragmentation and chromatin decondensation were detected in native semen samples and their three corresponding aliquots. The corresponding mature oocytes of each semen sample were divided into two sibling cultures. The first sibling culture was microinjected with semen pellets from DGC, and the second sibling culture was microinjected with semen pellets from the combination of both methods. Fertilization rate and embryonic development were assessed at day 3. RESULTS: DNA fragmentation and chromatin decondensation was significantly low in DGC and extended horizontal SU samples; however, the rates of DNA fragmentation and chromatin decondensation were significantly lower in extended horizontal SU samples than in DGC samples. The lowest rates of DNA fragmentation and chromatin decondensation corresponded to the samples treated with both methods. The highest rates of DNA fragmentation and chromatin decondensation corresponded to the samples treated with DGC. No significant difference was found in the fertilization rate or day 3 embryos between sibling cultures. CONCLUSION: The combination of DGC and the extended horizontal SU techniques is best for giving the lowest rates of sperm DNA fragmentation and chromatin decondensation.

7.
Pflugers Arch ; 475(5): 595-606, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36964781

RESUMEN

The primary function of dystrophin is to form a link between the cytoskeleton and the extracellular matrix. In addition to this crucial structural function, dystrophin also plays an essential role in clustering and organizing several signaling proteins, including ion channels. Proteomic analysis of the whole rodent brain has stressed the role of some components of the dystrophin-associated glycoprotein complex (DGC) as potential interacting proteins of the voltage-gated Ca2+ channels of the CaV2 subfamily. The interaction of CaV2 with signaling and scaffolding proteins, such as the DGC components, may influence their function, stability, and location in neurons. This work aims to study the interaction between dystrophin and CaV2.1. Our immunoprecipitation data showed the presence of a complex formed by CaV2.1, CaVα2δ-1, CaVß4e, Dp140, and α1-syntrophin in the brain. Furthermore, proximity ligation assays (PLA) showed that CaV2.1 and CaVα2δ-1 interact with dystrophin in the hippocampus and cerebellum. Notably, Dp140 and α1-syntrophin increase CaV2.1 protein stability, half-life, permanence in the plasma membrane, and current density through recombinant CaV2.1 channels. Therefore, we have identified the Dp140 and α1-syntrophin as novel interaction partners of CaV2.1 channels in the mammalian brain. Consistent with previous findings, our work provides evidence of the role of DGC in anchoring and clustering CaV channels in a macromolecular complex.


Asunto(s)
Distrofina , Proteómica , Animales , Distrofina/genética , Distrofina/metabolismo , Mamíferos/metabolismo , Neuronas/metabolismo
8.
J Chromatogr A ; 1693: 463879, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36822039

RESUMEN

The accuracy of compound-specific isotope analysis (CSIA) of trace-level pollutants in complex environmental samples has always been limited by two main challenges: poor chromatographic separation and insufficient amounts of analytes. In this study, a two-dimensional gas chromatography-isotope ratio mass spectrometry (2DGC-IRMS) system was constructed for compound-specific δ13C analysis of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in estuarine/marine sediments. This construction occurred through hyphenating an extra gas chromatography system (GC) to a conventional GC-IRMS using a commercially available multi-column switching-cryogenic trapping system (MCS-CTS). Compared with the previous 2DGC-IRMS strategy, which utilizes a Deans Switch device, the newly implemented 2DGC-IRMS scheme resulted in online purification of target analytes as well as enriched them online via duplicate injection and cryogenic trapping in CTS; this resultingly lowered the limits of detection (LOD) of CSIA. To improve the sample transfer efficiency to the IRMS, a broader-bore and longer fused-silica capillary was utilized to replace the original sample capillary running from the sample open split to the IRMS. A ẟ13C analysis of PAH standards showed accurate ẟ13C values, and high precisions (standard deviations 0.13-0.37%) were achieved, with the LOD of HMW-PAHs reduced to at least 1.0 mg/L (i.e., 0.07 to 0.09 nmol carbon per compound on-column). The successful application of this newly developed 2DGC-IRMS scheme provides a practical solution for the reliable CSIA of trace-level pollutants in complex environmental samples that cannot be measured using the conventional GC-IRMS system.


Asunto(s)
Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/análisis , Peso Molecular , Isótopos de Carbono/análisis , Espectrometría de Masas/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Contaminantes Ambientales/análisis
9.
Talanta ; 252: 123799, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36027621

RESUMEN

According to the annual production of plastics worldwide, in 2020 about 370 million tons of plastic were produced in the world. Chemical recycling, particularly pyrolysis of plastic wastes, could be a valuable solution to resolve these problems and provide an alternative pathway to produce "recycled" chemical products for the petrochemical industry. Nevertheless, the pyrolysis oils need a detailed characterization before the upgrading test to re-use them to generate new recycled products. Multidimensional gas chromatography coupled with both low- and high-resolution time-of-flight mass spectrometers was employed for a detailed investigation among and within different chemical classes present in bio-plastic oil. The presence of several isomeric species as well as homologs series did not allow a reliable molecular identification, except for a few compounds that showed both MS similarity >800/1000 and retention index within ±20. Indeed, the identification of several isomeric species was assessed by high-resolution mass spectrometry equipped with photoionization interface. This soft ionization mode was an additional filter in the identification step allowing unambiguous identification of analytes not identified by the standard electron ionization mode at 70 eV. The injection method was also optimized using a central composite design to successfully introduce a wide range of carbon number compounds without discrimination of low/high boiling points.


Asunto(s)
Plásticos , Pirólisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas/métodos , Aceites de Plantas/química , Compuestos Orgánicos
10.
Crit Rev Anal Chem ; 53(3): 655-671, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34435920

RESUMEN

Chromatography and mass spectrometry based techniques are the most commonly employed procedures to quantitate the analytes in pharmaceutical research. However, sensitivity of analytical methods significantly varies due to the difference in physicochemical characteristics of analytes. Sensitivity of methods greatly affects the quality of analytical results. Establishment of a sufficiently sensitive method ensures the suitability of a technique for its intended purpose. Although various types of advancement in chromatographic science are witnessed, issues related to sensitivity remain a major challenge for the analyte with low detection limit. Highly sensitive analytical methods are specifically essential to quantitate the analytes in the samples from dissolution study of sustained release formulations, cross-contamination study, impurity analysis, metabolite profiling, bioanalysis of highly potent and low bioavailable drugs. In recent years, huge involvement of researchers toward sensitivity enhancement of quantitative methods is evidenced. Wide verities of approaches are being reported in the field. Derivatization technique, introduction of ion-pairing reagents, sample pretreatment, and utilization of innovative methods such as 2-dimensional liquid chromatography, nano liquid chromatography, 2-dimensional gas chromatography, supercritical fluid chromatography, use of microcolumn are some approaches that are being employed. Online sample preparation techniques can significantly improve the sensitivity of a method by reducing sample loss and degradation. This review summarizes and critically discussed the approaches to improve the sensitivity of chromatographic and mass spectrometry based analytical methods. This article can guide the researchers to select suitable approaches for achieving the desired detection limit of analytical and bioanalytical methods based on their specific requirements.


Asunto(s)
Cromatografía con Fluido Supercrítico , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos
11.
J Funct Morphol Kinesiol ; 7(3)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36135420

RESUMEN

The dystrophin-glycoprotein complex is a multimeric system made up of the sarcoglycan sub-complex, the sarcomplasmatic complex and the dystroglycans complex. The sarcoglycan sub-complex stabilizes the sarcolemma during muscle activity and plays a role in force transduction. This protein system is also expressed in the muscle of non-human primates such as chimpanzees and baboons, and its expression changes depending on social ranking. In fact, previous data have shown that all muscle fibers of masseter and sternocleidomastoid muscles of chimpanzees and high- ranking baboons always express sarcoglycans, while middle- and low-ranking baboons are characterized by fibers that are negative for the sarcoglycan sub-complex. Given this information, the aim of the present work was to evaluate the expression of other proteins such as laminin, beta dystroglycan and dystrophin in the sternocleidomastoid muscle of high- and low-ranking baboons. The samples were processed by immunohistochemistry; results show that in high-ranking baboons, all tested proteins were always expressed while in low-ranking baboons, fibers that were negative for sarcoglycans and beta dystroglycan have been observed. No negative fibers for laminin and dystrophin have been found in low-ranking baboons suggesting that only the transmembrane proteins of the dystrophin glycoprotein complex change in their expression and that could be correlated to a phylogenetic arrangement.

12.
Front Cell Infect Microbiol ; 12: 956445, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36004331

RESUMEN

Pseudomonas aeruginosa can cause various types of infections and is one of the most ubiquitous antibiotic-resistant pathogens found in healthcare settings. It is capable of adapting to adverse conditions by transforming its motile lifestyle to a sessile biofilm lifestyle, which induces a steady state of chronic infection. However, mechanisms triggering the lifestyle transition of P. aeruginosa strains with clinical significance are not very clear. In this study, we reported a recently isolated uropathogenic hyper-biofilm producer PA_HN002 and characterized its genome to explore genetic factors that may promote its transition into the biofilm lifestyle. We first showed that high intracellular c-di-GMP content in PA_HN002 gave rise to its attenuated motilities and extraordinary strong biofilm. Reducing the intracellular c-di-GMP content by overexpressing phosphodiesterases (PDEs) such as BifA or W909_14950 converted the biofilm and motility phenotypes. Whole genome sequencing and comprehensive analysis of all the c-di-GMP metabolizing enzymes led to the identification of multiple mutations within PDEs. Gene expression assays further indicated that the shifted expression profile of c-di-GMP metabolizing enzymes in PA_HN002 might mainly contribute to its elevated production of intracellular c-di-GMP and enhanced biofilm formation. Moreover, mobile genetic elements which might interfere the endogenous regulatory network of c-di-GMP metabolism in PA_HN002 were analyzed. This study showed a reprogrammed expression profile of c-di-GMP metabolizing enzymes which may promote the pathoadaption of clinical P. aeruginosa into biofilm producers.


Asunto(s)
Proteínas de Escherichia coli , Pseudomonas aeruginosa , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Hidrolasas Diéster Fosfóricas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
13.
Mol Ther Nucleic Acids ; 29: 481-497, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36035750

RESUMEN

The immature phenotype of embryonic stem cell-derived cardiomyocytes (ESC-CMs) limits their application. However, the molecular mechanisms of cardiomyocyte maturation remain largely unexplored. This study found that overexpression of long noncoding RNA (lncRNA)-Cmarr, which was highly expressed in cardiomyocytes, promoted the maturation change and physiological maturation of mouse ESC-CMs (mESC-CMs). Moreover, transplantation of cardiac patch overexpressing Cmarr exhibited better retention of mESC-CMs, reduced infarct area by enhancing vascular density in the host heart, and improved cardiac function in mice after myocardial infarction. Mechanism studies identified that Cmarr acted as a competitive endogenous RNA to impede the repression of miR-540-3p on Dtna expression and promoted the binding of the dystrophin-glycoprotein complex (DGC) and yes-associated protein (YAP), which in turn reduced the proportion of nuclear YAP and the expression of YAP target genes. Therefore, this study revealed the function and mechanism of Cmarr in promoting cardiomyocyte maturation and provided a lncRNA that can be used as a functional factor in the construction of cardiac patches for the treatment of myocardial infarction.

14.
Insects ; 13(2)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35206691

RESUMEN

The earliest description of the discontinuous gas exchange cycle (DGC) in lepidopterous insects supported the hypothesis that the DGC serves to reduce water loss (hygric hypothesis) and facilitate gaseous exchange in hyperoxia/hypoxia (chthonic hypothesis). With technological advances, other insect orders were investigated, and both hypotheses were questioned. Thus, we conducted a meta-analysis to evaluate the merit of both hypotheses. This included 46 insect species in 24 families across nine orders. We also quantified the percent change in metabolic rates per °C change of temperature during the DGC. The DGC reduced water loss (-3.27 ± 0.88; estimate ± 95% confidence limits [95% CI]; p < 0.0001) in insects. However, the DGC does not favor gaseous exchange in hyperoxia (0.21 ± 0.25 [estimate ± 95% CI]; p = 0.12) nor hypoxia, but did favor gaseous exchange in normoxia (0.27 ± 0.26 [estimate ± 95% CI]; p = 0.04). After accounting for variation associated with order, family, and species, a phylogenetic model reflected that metabolic rate exhibited a significant, non-zero increase of 8.13% (± 3.48 95% CI; p < 0.0001) per °C increase in temperature. These data represent the first meta-analytic attempt to resolve the controversies surrounding the merit of adaptive hypotheses in insects.

15.
3 Biotech ; 12(1): 27, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35036275

RESUMEN

Biofilms represent a protective survival mode in which bacteria adapt themselves to the natural environment for survival purposes. Biofilm formation is regulated by 3,5-cyclic diguanylic acid (c-di-GMP), which is a universal second messenger molecule in bacteria. Diguanylate cyclase (DGC) catalyses c-di-GMP intracellular synthesis, which plays important roles in bacterial adaptation to the natural environment. In this study, the DGC gene was first cloned from Antarctic Rhodococcus sp. NJ-530. DGC contained 948 nucleotides and encoded 315 amino acids with a molecular weight of 34.6 KDa and an isoelectric point of 5.58. qRT-PCR demonstrated that the DGC expression level was significantly affected by lower salinity and temperature. Consistently, more biofilm formation occurred under the same stress. It has been shown that Rhodococcus sp. NJ-530 can adapt to the extreme environment in Antarctica, which is closely related to biofilm formation. These results provide an important reference for studying the adaptive mechanism of Antarctic microorganisms to this extreme environment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03093-z.

16.
Cells ; 10(12)2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34944074

RESUMEN

In assisted reproductive technology (ART), the aim of sperm cells' preparation is to select competent spermatozoa with the highest fertilization potential and in this context, the intracytoplasmic sperm injection (ICSI) represents the most applied technique for fertilization. This makes the process of identifying the perfect spermatozoa extremely important. A number of methods have now been developed to mimic some of the natural selection processes that exist in the female reproductive tract. Although many studies have been conducted to identify the election technique, many doubts and disagreements still remain. In this review, we will discuss all the sperm cell selection techniques currently available for ICSI, starting from the most basic methodologies and continuing with those techniques suitable for sperm cells with reduced motility. Furthermore, different techniques that exploit some sperm membrane characteristics and the most advanced strategy for sperm selection based on microfluidics, will be examined. Finally, a new sperm selection method based on a micro swim-up directly on the ICSI dish will be analyzed. Eventually, advantages and disadvantages of each technique will be debated, trying to draw reasonable conclusions on their efficacy in order to establish the gold standard method.


Asunto(s)
Inyecciones de Esperma Intracitoplasmáticas , Espermatozoides/fisiología , Anexina A5/metabolismo , Humanos , Rayos Láser , Masculino , Microfluídica , Motilidad Espermática
17.
Comput Struct Biotechnol J ; 19: 1874-1888, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995893

RESUMEN

Globin-coupled sensors (GCS) usually consist of three domains: a sensor/globin, a linker, and a transmitter domain. The globin domain (GD), activated by ligand binding and/or redox change, induces an intramolecular signal transduction resulting in a response of the transmitter domain. Depending on the nature of the transmitter domain, GCSs can have different activities and functions, including adenylate and di-guanylate cyclase, histidine kinase activity, aerotaxis and/or oxygen sensing function. The gram-negative delta-proteobacterium Geobacter sulfurreducens expresses a protein with a GD covalently linked to a four transmembrane domain, classified, by sequence similarity, as GCS (GsGCS). While its GD is fully characterized, not so its transmembrane domain, which is rarely found in the globin superfamily. In the present work, GsGCS was characterized spectroscopically and by native ion mobility-mass spectrometry in combination with cryo-electron microscopy. Although lacking high resolution, the oligomeric state and the electron density map were valuable for further rational modeling of the full-length GsGCS structure. This model demonstrates that GsGCS forms a transmembrane domain-driven tetramer with minimal contact between the GDs and with the heme groups oriented outward. This organization makes an intramolecular signal transduction less likely. Our results, including the auto-oxidation rate and redox potential, suggest a potential role for GsGCS as redox sensor or in a membrane-bound e-/H+ transfer. As such, GsGCS might act as a player in connecting energy production to the oxidation of organic compounds and metal reduction. Database searches indicate that GDs linked to a four or seven helices transmembrane domain occur more frequently than expected.

19.
Acta Pharm Sin B ; 10(5): 734-745, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32528825

RESUMEN

Peroxisome proliferator-activated receptor γ (PPARγ) is a transcriptional coactivator that binds to a diverse range of transcription factors. PPARγ coactivator 1 (PGC-1) coactivators possess an extensive range of biological effects in different tissues, and play a key part in the regulation of the oxidative metabolism, consequently modulating the production of reactive oxygen species, autophagy, and mitochondrial biogenesis. Owing to these findings, a large body of studies, aiming to establish the role of PGC-1 in the neuromuscular system, has shown that PGC-1 could be a promising target for therapies targeting neuromuscular diseases. Among these, some evidence has shown that various signaling pathways linked to PGC-1α are deregulated in muscular dystrophy, leading to a reduced capacity for mitochondrial oxidative phosphorylation and increased reactive oxygen species (ROS) production. In the light of these results, any intervention aimed at activating PGC-1 could contribute towards ameliorating the progression of muscular dystrophies. PGC-1α is influenced by different patho-physiological/pharmacological stimuli. Natural products have been reported to display modulatory effects on PPARγ activation with fewer side effects in comparison to synthetic drugs. Taken together, this review summarizes the current knowledge on Duchenne muscular dystrophy, focusing on the potential effects of natural compounds, acting as regulators of PGC-1α.

20.
Front Chem ; 8: 264, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373581

RESUMEN

The majority of bacteria in the natural environment organize themselves into communal biofilms. Biofilm formation benefits bacteria conferring resistance to harmful molecules (e.g., antibiotics, disinfectants, and host immune factors) and coordinating their gene expression through quorum sensing (QS). A primary signaling molecule promoting bacterial biofilm formation is the universal second messenger cyclic di-GMP. This dinucleotide predominantly controls the gene expression of motility, adhesins, and capsule production to coordinate biofilm formation. Cyclic di-GMP is synthesized by diguanylate cyclases (DGCs) that have a GGDEF domain and is degraded by phosphodiesterases (PDEs) containing either an EAL or an HD-GYP domain. Since high cellular c-di-GMP concentrations are correlated with promoting the ability of bacteria to form biofilms, numerous research endeavors to identify chemicals capable of inhibiting the c-di-GMP synthesis activity of DGCs have been performed in order to inhibit bacterial biofilm formation. This review describes currently identified chemical inhibitors that disturb the activity of DGCs and the methods of screening and assay for their discovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA