Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.989
Filtrar
Más filtros

Intervalo de año de publicación
1.
Tumour Virus Res ; : 200288, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960143

RESUMEN

Global methylation analysis of gene promoters is promising for detection of high-grade squamous intraepithelial lesions or worse (HSIL+) in high-risk human papillomavirus (hrHPV)-positive women. However, diagnostic performance of methylation data at individual CpG-sites is limited. We explored methylation for predicting HSIL+ in self- and clinician-collected samples from Papua New Guinea. Methylation of EPB41L3 (1-6 CpG-sites), hTERT (1-10 CpG-sites) and FAM19A4 (1-5 CpG-sites) was assessed through pyrosequencing from 44 HPV+ samples (4 cancers, 19 HSIL, 4 low-grade squamous intraepithelial lesions (LSIL), 17 normal). New primers were designed for FAM19A4 directed to the first exon region not explored previously. In clinician-collected samples, methylation at CpG-sites 4 and 5 of EPB41L3 were the best HSIL predictors (AUC >0.83) and CpG-site 4 for cancer (0.925). Combination of EPB41L3 sites 2/4 plus FAM19A4 site 1 were the best HSIL+ markers [100% sensitivity, 63.2% specificity]. Methylation at CpG-site 5 of FAM19A4 was the best HSIL predictor (0.67) in self-collected samples, and CpG-sites 1 and 3 of FAM19A4 for cancer (0.77). Combined, FAM19A4 site 1 plus HPV 16/18 detection yielded sensitivity of 82.6% and specificity of 61.9%. In conclusion, methylation at individual CpG-sites of EPB41L3 and FAM19A4 outperformed global analysis and improved HSIL+ detection, warranting further investigation.

2.
Genome Biol ; 25(1): 175, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961490

RESUMEN

BACKGROUND: Transposable elements play a critical role in maintaining genome architecture during neurodevelopment. Short Interspersed Nuclear Elements (SINEs), a major subtype of transposable elements, are known to harbor binding sites for the CCCTC-binding factor (CTCF) and pivotal in orchestrating chromatin organization. However, the regulatory mechanisms controlling the activity of SINEs in the developing brain remains elusive. RESULTS: In our study, we conduct a comprehensive genome-wide epigenetic analysis in mouse neural precursor cells using ATAC-seq, ChIP-seq, whole genome bisulfite sequencing, in situ Hi-C, and RNA-seq. Our findings reveal that the SET domain bifurcated histone lysine methyltransferase 1 (SETDB1)-mediated H3K9me3, in conjunction with DNA methylation, restricts chromatin accessibility on a selective subset of SINEs in neural precursor cells. Mechanistically, loss of Setdb1 increases CTCF access to these SINE elements and contributes to chromatin loop reorganization. Moreover, de novo loop formation contributes to differential gene expression, including the dysregulation of genes enriched in mitotic pathways. This leads to the disruptions of cell proliferation in the embryonic brain after genetic ablation of Setdb1 both in vitro and in vivo. CONCLUSIONS: In summary, our study sheds light on the epigenetic regulation of SINEs in mouse neural precursor cells, suggesting their role in maintaining chromatin organization and cell proliferation during neurodevelopment.


Asunto(s)
Cromatina , N-Metiltransferasa de Histona-Lisina , Células-Madre Neurales , Elementos de Nucleótido Esparcido Corto , Animales , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Ratones , Cromatina/metabolismo , Metilación de ADN , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Epigénesis Genética , Histonas/metabolismo , Encéfalo/metabolismo , Encéfalo/citología
3.
Artículo en Inglés | MEDLINE | ID: mdl-38961842

RESUMEN

Epigenetic mechanisms are considered to contribute to diabetic nephropathy by maintaining memory of poor glycemic control during the early stages of diabetes. However, DNA methylation changes in the human kidney are poorly characterized, because of the lack of cell type-specific analysis. We examined DNA methylation in proximal tubules purified from diabetic nephropathy patients and identified differentially methylated CpG sites, given the critical role of proximal tubules in the kidney injury. Hypermethylation was observed at CpG sites annotated to genes responsible for proximal tubule functions, including gluconeogenesis, nicotinamide adenine dinucleotide synthesis, transporters of glucose, water, phosphate, and drugs, in diabetic kidneys, while genes involved in oxidative stress and the cytoskeleton exhibited demethylation. Methylation levels of CpG sites annotated to ACTN1, BCAR1, MYH9, UBE4B, AFMID, TRAF2, TXNIP, FOXO3, and HNF4A were correlated with the estimated glomerular filtration rate, while methylation of the CpG site in RUNX1 was associated with interstitial fibrosis and tubular atrophy. Hypermethylation of G6PC and HNF4A was accompanied by decreased expression in diabetic kidneys. Proximal tubule-specific hypomethylation of metabolic genes related to HNF4A observed in control kidneys was compromised in diabetic kidneys, suggesting a role for aberrant DNA methylation in the dedifferentiation process. Multiple genes with aberrant DNA methylation in diabetes overlapped genes with altered expressions in maladaptive proximal tubule cells, including transcription factors PPARA and RREB1. In conclusion, DNA methylation derangement in the proximal tubules of patients with diabetes may drive phenotypic changes, characterized by inflammatory and fibrotic features, along with impaired function in metabolism and transport.

4.
J Infect Dis ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962817

RESUMEN

BACKGROUND: Tuberculosis (TB) is amongst the largest infectious causes of death worldwide and there is a need for a time- and resource-effective diagnostic method. In this novel and exploratory study, we show the potential of using buccal swabs to collect human DNA and investigate the DNA methylation (DNAm) signatures as a diagnostic tool for TB. METHODS: Buccal swabs were collected from pulmonary TB patients (n= 7), TB exposed (n= 7), and controls (n= 9) in Sweden. Using Illumina MethylationEPIC array the DNAm status was determined. RESULTS: We identified 5644 significant differentially methylated CpG sites between the patients and controls. Performing the analysis on a validation cohort of samples collected in Kenya and Peru (patients, n=26; exposed, n=9; control, n=10) confirmed the DNAm signature. We identified a TB consensus disease module, significantly enriched in TB-associated genes. Lastly, we used machine learning to identify a panel of seven CpG sites discriminative for TB and developed a TB classifier. In the validation cohort the classifier performed with an AUC of 0.94, sensitivity of 0.92, and specificity of 1. CONCLUSION: In summary, the result from this study shows clinical implications of using DNAm signatures from buccal swabs to explore new diagnostic strategies for TB.

5.
Cancer Med ; 13(13): e7470, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38963018

RESUMEN

INTRODUCTION: Identifying reliable biomarkers that reflect cancer survivorship symptoms remains a challenge for researchers. DNA methylation (DNAm) measurements reflecting epigenetic changes caused by anti-cancer therapy may provide needed insights. Given lack of consensus describing utilization of DNAm data to predict survivorship issues, a review evaluating the current landscape is warranted. OBJECTIVE: Provide an overview of current studies examining associations of DNAm with survivorship burdens in cancer survivors. METHODS: A literature review was conducted including studies if they focused on cohorts of cancer survivors, utilized peripheral blood cell DNAm data, and evaluated the associations of DNAm and survivorship issues. RESULTS: A total of 22 studies were identified, with majority focused on breast (n = 7) or childhood cancer (n = 9) survivors, and half studies included less than 100 patients (n = 11). Survivorship issues evaluated included those related to neurocognition (n = 5), psychiatric health (n = 3), general wellness (n = 9), chronic conditions (n = 5), and treatment specific toxicities (n = 4). Studies evaluated epigenetic age metrics (n = 10) and DNAm levels at individual CpG sites or regions (n = 12) for their associations with survivorship issues in cancer survivors along with relevant confounding factors. Significant associations of measured DNAm in the peripheral blood samples of cancer survivors and survivorship issues were identified. DISCUSSION/CONCLUSION: Studies utilizing epigenetic age metrics and differential methylation analysis demonstrated significant associations of DNAm measurements with survivorship burdens. Associations were observed encompassing diverse survivorship outcomes and timeframes relative to anti-cancer therapy initiation. These findings underscore the potential of these measurements as useful biomarkers in survivorship care and research.


Asunto(s)
Supervivientes de Cáncer , Metilación de ADN , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/mortalidad , Neoplasias/sangre , Epigénesis Genética , Supervivencia , Biomarcadores de Tumor/genética , Femenino
6.
Mol Med Rep ; 30(3)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38963030

RESUMEN

DNA methylation is one of the earliest and most significant epigenetic mechanisms discovered. DNA methylation refers, in general, to the addition of a methyl group to a specific base in the DNA sequence under the catalysis of DNA methyltransferase, with S­adenosine methionine as the methyl donor, via covalent bonding and chemical modifications. DNA methylation is an important factor in inducing cancer. There are different types of DNA methylation, and methylation at different sites plays different roles. It is well known that the progression of colorectal cancer (CRC) is affected by the methylation of key genes. The present review did not only discuss the potential relationship between DNA methylation and CRC but also discussed how DNA methylation affects the development of CRC by affecting key genes. Furthermore, the clinical significance of DNA methylation in CRC was highlighted, including that of the therapeutic targets and biomarkers of methylation; and the importance of DNA methylation inhibitors was discussed as a novel strategy for treatment of CRC. The present review did not only focus upon the latest research findings, but earlier reviews were also cited as references to older literature.


Asunto(s)
Neoplasias Colorrectales , Metilación de ADN , Epigénesis Genética , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Animales
7.
J Biochem Mol Toxicol ; 38(7): e23764, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38963172

RESUMEN

Obesity is an established risk factor for numerous malignancies, although it remains uncertain whether the disease itself or weight-loss drugs are responsible for a greater predisposition to cancer. The objective of the current study was to determine the impact of dulaglutide on genetic and epigenetic DNA damage caused by obesity, which is a crucial factor in the development of cancer. Mice were administered a low-fat or high-fat diet for 12 weeks, followed by a 5-week treatment with dulaglutide. Following that, modifications of the DNA bases were examined using the comet assay. To clarify the underlying molecular mechanisms, oxidized and methylated DNA bases, changes in the redox status, levels of inflammatory cytokines, and the expression levels of some DNA repair genes were evaluated. Animals fed a high-fat diet exhibited increased body weights, elevated DNA damage, oxidation of DNA bases, and DNA hypermethylation. In addition, obese mice showed altered inflammatory responses, redox imbalances, and repair gene expressions. The findings demonstrated that dulaglutide does not exhibit genotoxicity in the investigated conditions. Following dulaglutide administration, animals fed a high-fat diet demonstrated low DNA damage, less oxidation and methylation of DNA bases, restored redox balance, and improved inflammatory responses. In addition, dulaglutide treatment restored the upregulated DNMT1, Ogg1, and p53 gene expression. Overall, dulaglutide effectively maintains DNA integrity in obese animals. It reduces oxidative DNA damage and hypermethylation by restoring redox balance, modulating inflammatory responses, and recovering altered gene expressions. These findings demonstrate dulaglutide's expediency in treating obesity and its associated complications.


Asunto(s)
Daño del ADN , Metilación de ADN , Reparación del ADN , Dieta Alta en Grasa , Péptidos Similares al Glucagón , Fragmentos Fc de Inmunoglobulinas , Oxidación-Reducción , Proteínas Recombinantes de Fusión , Animales , Péptidos Similares al Glucagón/análogos & derivados , Péptidos Similares al Glucagón/farmacología , Metilación de ADN/efectos de los fármacos , Fragmentos Fc de Inmunoglobulinas/farmacología , Daño del ADN/efectos de los fármacos , Ratones , Reparación del ADN/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Proteínas Recombinantes de Fusión/farmacología , Masculino , Oxidación-Reducción/efectos de los fármacos , Inflamación/metabolismo , Inflamación/genética , Estrés Oxidativo/efectos de los fármacos , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/genética , Regulación de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos C57BL
8.
Bull Exp Biol Med ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963595

RESUMEN

Squamous cell lung cancer (SCLC) occurs as a result of dysregenerative changes in the bronchial epithelium: basal cell hyperplasia (BCH), squamous cell metaplasia (SM), and dysplasia. We previously suggested that combinations of precancerous changes detected in the small bronchi of patients with SCLC may reflect various "scenarios" of the precancerous process: isolated BCH→stopping at the stage of hyperplasia, BCH+SM→progression of hyperplasia into metaplasia, SM+dysplasia→progression of metaplasia into dysplasia. In this study, DNA methylome of various forms of precancerous changes in the bronchial epithelium of SCLC patients was analyzed using the genome-wide bisulfite sequencing. In BCH combined with SM, in contrast to isolated BCH, differentially methylated regions were identified in genes of the pathogenetically significant MET signaling pathway (RNMT, HPN). Differentially methylated regions affecting genes involved in inflammation regulation (IL-23, IL-23R, IL12B, IL12RB1, and FIS1) were detected in SM combined with dysplasia in comparison with SM combined with BCH. The revealed changes in DNA methylation may underlie various "scenarios" of the precancerous process in the bronchial epithelium.

9.
Neurogenetics ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967831

RESUMEN

The debate surrounding nature versus nurture remains a central question in neuroscience, psychology, and in psychiatry, holding implications for both aging processes and the etiology of mental illness. Epigenetics can serve as a bridge between genetic predisposition and environmental influences, thus offering a potential avenue for addressing these questions. Epigenetic clocks, in particular, offer a theoretical framework for measuring biological age based on DNA methylation signatures, enabling the identification of disparities between biological and chronological age. This structured review seeks to consolidate current knowledge regarding the relationship between mental disorders and epigenetic age within the brain. Through a comprehensive literature search encompassing databases such as EBSCO, PubMed, and ClinicalTrials.gov, relevant studies were identified and analyzed. Studies that met inclusion criteria were scrutinized, focusing on those with large sample sizes, analyses of both brain tissue and blood samples, investigation of frontal cortex markers, and a specific emphasis on schizophrenia and depressive disorders. Our review revealed a paucity of significant findings, yet notable insights emerged from studies meeting specific criteria. Studies characterized by extensive sample sizes, analysis of brain tissue and blood samples, assessment of frontal cortex markers, and a focus on schizophrenia and depressive disorders yielded particularly noteworthy results. Despite the limited number of significant findings, these studies shed light on the complex interplay between epigenetic aging and mental illness. While the current body of literature on epigenetic aging in mental disorders presents limited significant findings, it underscores the importance of further research in this area. Future studies should prioritize large sample sizes, comprehensive analyses of brain tissue and blood samples, exploration of specific brain regions such as the frontal cortex, and a focus on key mental disorders. Such endeavors will contribute to a deeper understanding of the relationship between epigenetic aging and mental illness, potentially informing novel diagnostic and therapeutic approaches.

10.
Addict Biol ; 29(7): e13422, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38949208

RESUMEN

Opioid use disorder (OUD) is a multifaceted condition influenced by sex, genetic and environmental factors that could be linked with epigenetic changes. Understanding how these factors interact is crucial to understand and address the development and progression of this disorder. Our aim was to elucidate different potential epigenetic and genetic mechanisms between women and men that correlate with OUD under real-world pain unit conditions. Associations between analgesic response and the DNA methylation level of the opioid mu receptor (OPRM1) gene (CpG sites 1-5 selected in the promoter region) were evaluated in 345 long opioid-treated chronic non cancer pain: cases with OUD (n = 67) and controls (without OUD, n = 278). Cases showed younger ages, low employment status and quality of life, but higher morphine equivalent daily dose and psychotropic use, compared to the controls. The patients with OUD showed a significant decrease in OPRM1 DNA methylation, which correlated with clinical outcomes like pain relief, depression and different adverse events. Significant differences were found at the five CpG sites studied for men, and exclusively in women for CpG site 3, in relation to OUD diagnosis. These findings support the importance of epigenetics and sex as biological variables to be considered toward efficient OUD understanding and therapy development.


Asunto(s)
Dolor Crónico , Metilación de ADN , Epigénesis Genética , Trastornos Relacionados con Opioides , Receptores Opioides mu , Humanos , Receptores Opioides mu/genética , Metilación de ADN/genética , Masculino , Femenino , Dolor Crónico/genética , Dolor Crónico/tratamiento farmacológico , Trastornos Relacionados con Opioides/genética , Persona de Mediana Edad , Adulto , Factores Sexuales , Analgésicos Opioides/uso terapéutico , Estudios de Casos y Controles , Islas de CpG/genética , Calidad de Vida
11.
Pak J Med Sci ; 40(6): 1207-1213, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38952532

RESUMEN

Objective: To investigate the relationship between the DNA methylation state of NRG1 promoter and its expression changes, and to analyze the clinical significance of its regulatory mechanism of DNA methylation in cervical carcinoma. Methods: This was a retrospective study. One-hundred and twenty patients from the Department of Gynecology of Cangzhou People's Hospital from September 2017 to September 2019 were selected, including 40 cases of cervical SCC, 40 cases of high grade squamous intraepithelial lesions(HSIL) and 40 cases of control cervical tissues. RT-qPCR, immunohistochemistry and DNA methylation-specific PCR(MSP) were used to detect the mRNA and protein expression of NRG1 and DNA methylation status in different tissue types. Results: Immunohistochemical results showed that the positive protein expression rate of NRG1 gene in the SCC group was lower than that in both HSIL and Control groups. RT-qPCR results showed that the mRNA gene of NRG1 gradually decreased in expression with the increase of cervical tissue lesions, with a statistically significant difference. Similarly, it also found that the mRNA expression level of NRG1 in the SCC group was independent of patients' age (p>0.05), but significantly correlated with tumor pathological staging, surgical pathology staging and lymphatic metastasis (p<0.05). Furthermore, methylation-specific PCR results revealed a significantly higher DNA methylation rate of NRG1 gene in the SCC group than in both HSIL and Control groups, with a statistically significant difference. Moreover, the methylation degree of NRG1 gene in SCC tissues was negatively correlated with its mRNA expression (p<0.05). Conclusions: Abnormal DNA hypermethylation of NRG1 gene inhibits the expression of mRNA and protein in the progression of cervical tissue from normal to cancerous state, which is involved in the occurrence and development of cervical carcinoma.

12.
Evol Appl ; 17(7): e13743, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957308

RESUMEN

The Neolithic transition introduced major diet and lifestyle changes to human populations across continents. Beyond well-documented bioarcheological and genetic effects, whether these changes also had molecular-level epigenetic repercussions in past human populations has been an open question. In fact, methylation signatures can be inferred from UDG-treated ancient DNA through postmortem damage patterns, but with low signal-to-noise ratios; it is thus unclear whether published paleogenomes would provide the necessary resolution to discover systematic effects of lifestyle and diet shifts. To address this we compiled UDG-treated shotgun genomes of 13 pre-Neolithic hunter-gatherers (HGs) and 21 Neolithic farmers (NFs) individuals from West and North Eurasia, published by six different laboratories and with coverage c.1×-58× (median = 9×). We used epiPALEOMIX and a Monte Carlo normalization scheme to estimate methylation levels per genome. Our paleomethylome dataset showed expected genome-wide methylation patterns such as CpG island hypomethylation. However, analyzing the data using various approaches did not yield any systematic signals for subsistence type, genetic sex, or tissue effects. Comparing the HG-NF methylation differences in our dataset with methylation differences between hunter-gatherers versus farmers in modern-day Central Africa also did not yield consistent results. Meanwhile, paleomethylome profiles did cluster strongly by their laboratories of origin. Using larger data volumes, minimizing technical noise and/or using alternative protocols may be necessary for capturing subtle environment-related biological signals from paleomethylomes.

13.
Epigenetics ; 19(1): 2370542, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38963888

RESUMEN

Although DNA methylation (DNAm) has been implicated in the pathogenesis of numerous complex diseases, from cancer to cardiovascular disease to autoimmune disease, the exact methylation sites that play key roles in these processes remain elusive. One strategy to identify putative causal CpG sites and enhance disease etiology understanding is to conduct methylome-wide association studies (MWASs), in which predicted DNA methylation that is associated with complex diseases can be identified. However, current MWAS models are primarily trained using the data from single studies, thereby limiting the methylation prediction accuracy and the power of subsequent association studies. Here, we introduce a new resource, MWAS Imputing Methylome Obliging Summary-level mQTLs and Associated LD matrices (MIMOSA), a set of models that substantially improve the prediction accuracy of DNA methylation and subsequent MWAS power through the use of a large summary-level mQTL dataset provided by the Genetics of DNA Methylation Consortium (GoDMC). Through the analyses of GWAS (genome-wide association study) summary statistics for 28 complex traits and diseases, we demonstrate that MIMOSA considerably increases the accuracy of DNA methylation prediction in whole blood, crafts fruitful prediction models for low heritability CpG sites, and determines markedly more CpG site-phenotype associations than preceding methods. Finally, we use MIMOSA to conduct a case study on high cholesterol, pinpointing 146 putatively causal CpG sites.


Asunto(s)
Metilación de ADN , Epigenoma , Estudio de Asociación del Genoma Completo , Humanos , Estudio de Asociación del Genoma Completo/métodos , Sitios de Carácter Cuantitativo , Islas de CpG , Fenotipo , Modelos Genéticos
14.
J Hazard Mater ; 476: 135018, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38959829

RESUMEN

DNA adducts are widely recognized as biomarkers of exposure to environmental carcinogens and associated health effects in toxicological and epidemiological studies. This study presents a targeted and sensitive method for comprehensive DNA adductome analysis using ultra-high-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS). The method was developed using calf thymus DNA, with careful optimization of mass spectrometric parameters, chromatographic separation conditions, and pretreatment methods. Ultimately, a targeted method was established for 41 DNA adducts, which showed good linearity (R2 ≥0.992), recovery (80.1-119.4 %), accuracy (81.3-117.8 %), and precision (relative standard deviation <14.2 %). The established method was employed to analyze DNA adducts in peripheral blood cells from pregnant women in Shanxi and Beijing. Up to 23 DNA adducts were successfully detected in samples of varying sizes. From 2 µg of maternal DNA samples, seven specific adducts were identified: 5-methyl-2'-deoxycytidine (5-MedC), 5-hydroxymethyl-2'-deoxycytidine (5-HmdC), N6-methyl-2'-deoxyadenosine (N6-MedA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), 5-hydroxy-2'-deoxycytidine (5-OHdC), 1,N6-etheno-2'-deoxyadenosine (1,N6-εdA), and N2-methyl-2'-deoxyguanosine (N2-MedG). This study reveals that exposure to higher concentrations of ambient air pollutants may elevate the levels of DNA methylation and oxidative damage at different base sites, highlighting the application potential of DNA adducts as sensitive biomarkers of air pollution exposure.

15.
Epigenetics ; 19(1): 2375030, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38967279

RESUMEN

The mechanisms by which the ageing process is associated to an unhealthy lifestyle and how they play an essential role in the aetiology of systemic arterial hypertension have not yet been completely elucidated. Our objective is to investigate the influence of NOS3 polymorphisms [-786T > C and (Glu298Asp)] on systolic blood pressure (SBP) and diastolic blood pressure (DBP) response, differentially methylated regions (DMRs), and physical fitness of adult and older women after a 14-week combined training intervention. The combined training was carried out for 14 weeks, performed 3 times a week, totalling 180 minutes weekly. The genotyping experiment used Illumina Infinium Global Screening Array version 2.0 (GSA V2.0) and Illumina's EPIC Infinium Methylation BeadChip. The participants were separated into SNP rs2070744 in TT (59.7 ± 6.2 years) and TC + CC (60.0 ± 5.2 years), and SNP rs17999 in GluGlu (58.8 ± 5.7 years) and GluAsp + AspAsp (61.6 ± 4.9 years). We observed an effect of time for variables BP, physical capacities, and cholesterol. DMRs related to SBP and DBP were identified for the rs2070744 and rs17999 groups pre- and decreased numbers of DMRs post-training. When we analysed the effect of exercise training in pre- and post-comparisons, the GluGlu SNP (rs17999) showed 10 DMRs, and after enrichment, we identified several biological biases. The combined training improved the SBP and DBP values of the participants regardless of the SNPs. In addition, exercise training affected DNA methylation differently between the groups of NOS3 polymorphisms.


Asunto(s)
Presión Sanguínea , Metilación de ADN , Ejercicio Físico , Óxido Nítrico Sintasa de Tipo III , Polimorfismo de Nucleótido Simple , Humanos , Femenino , Persona de Mediana Edad , Óxido Nítrico Sintasa de Tipo III/genética , Presión Sanguínea/genética , Anciano , Hipertensión/genética , Epigénesis Genética
16.
Epigenetics ; 19(1): 2375022, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38967555

RESUMEN

Infinium Methylation BeadChip arrays remain one of the most popular platforms for epigenome-wide association studies, but tools for downstream pathway analysis have their limitations. Functional class scoring (FCS) is a group of pathway enrichment techniques that involve the ranking of genes and evaluation of their collective regulation in biological systems, but the implementations described for Infinium methylation array data do not retain direction information, which is important for mechanistic understanding of genomic regulation. Here, we evaluate several candidate FCS methods that retain directional information. According to simulation results, the best-performing method involves the mean aggregation of probe limma t-statistics by gene followed by a rank-ANOVA enrichment test using the mitch package. This method, which we call 'LAM,' outperformed an existing over-representation analysis method in simulations, and showed higher sensitivity and robustness in an analysis of real lung tumour-normal paired datasets. Using matched RNA-seq data, we examine the relationship of methylation differences at promoters and gene bodies with RNA expression at the level of pathways in lung cancer. To demonstrate the utility of our approach, we apply it to three other contexts where public data were available. First, we examine the differential pathway methylation associated with chronological age. Second, we investigate pathway methylation differences in infants conceived with in vitro fertilization. Lastly, we analyse differential pathway methylation in 19 disease states, identifying hundreds of novel associations. These results show LAM is a powerful method for the detection of differential pathway methylation complementing existing methods. A reproducible vignette is provided to illustrate how to implement this method.


Asunto(s)
Metilación de ADN , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Regiones Promotoras Genéticas , Femenino , Estudio de Asociación del Genoma Completo/métodos , Epigénesis Genética
17.
J Cancer ; 15(13): 4287-4300, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947378

RESUMEN

Background: Hepatocellular carcinoma (HCC) is the main type of primary liver cancer, and its related death ranks third worldwide. The curative methods and progress prediction markers of HCC are not sufficient enough. Nevertheless, little progress has been made in the signature of m1A-, m5C-, m6A-, m7G-, and DNA methylation of HCC. Results: We calibrated a risk gene signature model that can be used to categorize HCC patients based on univariate, multivariate, and LASSO Cox regression analysis. This gene signature classified the patients into high- and low-risk subgroups. Patients in the high-risk group showed significantly reduced overall survival (OS) compared with patients in the low-risk group. The gene set variation analysis (GSVA), immune infiltration, and immunotherapy response were analyzed. The results demonstrated that an immunosuppressive environment was exited and the high-risk group had higher sensitivity to 5-fluorouracil, cisplatin, sorafenib, tamoxifen, and epirubicin. These results indicated personalized therapy should be taken into consideration. Conclusions: Our findings enriched our understanding of the molecular heterogeneity, tumor microenvironment (TME), and drug susceptibility of HCC. m1A-, m5C-, m6A-, m7G-, and DNA methylation-related regulators may be promising biomarkers for future research.

18.
Evol Appl ; 17(7): e13703, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38948539

RESUMEN

Anthropogenic climate change has led to globally increasing temperatures at an unprecedented pace and, to persist, wild species have to adapt to their changing world. We, however, often fail to derive reliable predictions of species' adaptive potential. Genomic selection represents a powerful tool to investigate the adaptive potential of a species, but constitutes a 'blind process' with regard to the underlying genomic architecture of the relevant phenotypes. Here, we used great tit (Parus major) females from a genomic selection experiment for avian lay date to zoom into this blind process. We aimed to identify the genetic variants that responded to genomic selection and epigenetic variants that accompanied this response and, this way, might reflect heritable genetic variation at the epigenetic level. We applied whole genome bisulfite sequencing to blood samples of individual great tit females from the third generation of bidirectional genomic selection lines for early and late lay date. Genomic selection resulted in differences at both the genetic and epigenetic level. Genetic variants that showed signatures of selection were located within genes mostly linked to brain development and functioning, including LOC107203824 (SOX3-like). SOX3 is a transcription factor that is required for normal hypothalamo-pituitary axis development and functioning, an essential part of the reproductive axis. As for epigenetic differentiation, the early selection line showed hypomethylation relative to the late selection line. Sites with differential DNA methylation were located in genes important for various biological processes, including gonadal functioning (e.g., MSTN and PIK3CB). Overall, genomic selection for avian lay date provided insights into where within the genome the heritable genetic variation for lay date, on which selection can operate, resides and indicates that some of this variation might be reflected by epigenetic variants.

19.
Oncol Nurs Forum ; 51(4): 349-360, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38950092

RESUMEN

OBJECTIVES: To determine associations among DNA methylation of brain-derived neurotrophic factor (BDNF) and RAS p21 protein activator 2 (RASA2) genes with processing speed and perceived cognitive function. SAMPLE & SETTING: This was a cross-sectional, secondary analysis of baseline data from a randomized controlled trial, the Exercise Program in Cancer and Cognition Study. METHODS & VARIABLES: Data included M values for DNA methylation of the BDNF and RASA2 genes; processing speed, objectively measured using the Grooved Pegboard and Digit Vigilance Test scores; and perceived cognitive function, self-reported using the Patient Assessment of Own Functioning Inventory. Regression analysis was conducted. RESULTS: Greater methylation of cg21291635 of the BDNF gene (p = 0.01) and cg20247102 of the RASA2 gene (p = 0.013) were associated with poorer processing speed, whereas greater methylation of cg20108357 of the BDNF gene (p < 0.001) and cg00567892 of the RASA2 gene (p = 0.019) were associated with better perceived cognitive function. IMPLICATIONS FOR NURSING: Gene methylation variations were demonstrated, suggesting the genes' potential roles and two possible distinct mechanisms of cognitive function in cancer. .


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Neoplasias de la Mama , Cognición , Metilación de ADN , Posmenopausia , Humanos , Factor Neurotrófico Derivado del Encéfalo/genética , Femenino , Persona de Mediana Edad , Estudios Transversales , Neoplasias de la Mama/genética , Neoplasias de la Mama/psicología , Anciano , Posmenopausia/psicología , Posmenopausia/genética
20.
Oncol Nurs Forum ; 51(4): 404-416, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38950096

RESUMEN

OBJECTIVES: To explore genes in the nuclear factor E2-related factor 2 antioxidative response elements (Nrf2-ARE) signaling pathway using a multiomics approach for associations with variability of cancer-related fatigue (CRF) in postmenopausal women with early-stage hormone receptor-positive breast cancer. SAMPLE & SETTING: Postmenopausal women (N = 116) with early-stage hormone receptor-positive breast cancer were recruited from western Pennsylvania. METHODS & VARIABLES: Candidate genes from the Nrf2-ARE pathway were investigated for associations with CRF occurrence and severity. Associations were evaluated using logistic regression for occurrence and linear regression for severity. RESULTS: The rs2706110 TT genotype in NFE2L2 was associated with a 3.5-fold increase in odds of CRF occurrence. The cytosine-phosphate-guanine (CpG) site cg22820568 in PRDX1 was associated with CRF occurrence and severity. IMPLICATIONS FOR NURSING: Biomarkers based on Nrf2-ARE genes may help to identify women at increased risk for more severe CRF and to develop targeted interventions.


Asunto(s)
Neoplasias de la Mama , Fatiga , Factor 2 Relacionado con NF-E2 , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/complicaciones , Factor 2 Relacionado con NF-E2/genética , Fatiga/genética , Persona de Mediana Edad , Anciano , Elementos de Respuesta Antioxidante/genética , Transducción de Señal/genética , Posmenopausia , Pennsylvania , Estadificación de Neoplasias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA