Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Med Genomics ; 17(1): 115, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685053

RESUMEN

BACKGROUND: The genetic basis of type 2 diabetes (T2D) is under-investigated in the Middle East, despite the rapidly growing disease prevalence. We aimed to define the genetic determinants of T2D in Qatar. METHODS: Using whole genome sequencing of 11,436 participants (2765 T2D cases and 8671 controls) from the population-based Qatar Biobank (QBB), we conducted a genome-wide association study (GWAS) of T2D with and without body mass index (BMI) adjustment. RESULTS: We replicated 93 known T2D-associated loci in a BMI-unadjusted model, while 96 known loci were replicated in a BMI-adjusted model. The effect sizes and allele frequencies of replicated SNPs in the Qatari population generally concurred with those from European populations. We identified a locus specific to our cohort located between the APOBEC3H and CBX7 genes in the BMI-unadjusted model. Also, we performed a transethnic meta-analysis of our cohort with a previous GWAS on T2D in multi-ancestry individuals (180,834 T2D cases and 1,159,055 controls). One locus in DYNC2H1 gene reached genome-wide significance in the meta-analysis. Assessing polygenic risk scores derived from European- and multi-ancestries in the Qatari population showed higher predictive performance of the multi-ancestry panel compared to the European panel. CONCLUSION: Our study provides new insights into the genetic architecture of T2D in a Middle Eastern population and identifies genes that may be explored further for their involvement in T2D pathogenesis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Diabetes Mellitus Tipo 2/genética , Qatar/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Sitios Genéticos , Estudios de Casos y Controles , Índice de Masa Corporal , Etnicidad/genética
2.
Int Med Case Rep J ; 17: 209-214, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550721

RESUMEN

Jeune syndrome, or asphyxiating thoracic dystrophy (JATD), is a rare autosomal recessive skeletal dysplasia with heterogeneous genetic and clinical phenotypes, which primarily affects cartilage and bone development. Herein, we report a patient with a lethal form of SRTD3 without polydactyly (JATD), which led to severe restrictive lung disease and fatal respiratory failure. A full-term boy was born to a 30-year-old mother who was known to have hypothyroidism and was on thyroxine. The parents were first-degree cousins and had one healthy older son. Fetal ultrasound showed a cephalic fetus, normal amniotic fluid and a fundal placenta. All long bones and ribs were below the 1% percentile. The femur was bowed with no fractures or signs of significant demineralization at time of imaging. Head and abdominal circumference were within normal range. An echocardiogram on the 2nd day of life showed severe pulmonary hypertension (PHTN). Nitric oxide was started due to the presence of persistent hypoxia and severe PHTN. The patient continued to require high cardiorespiratory support, but the medical condition worsened, and respiratory failure persisted. The patient died of severe respiratory failure at 16 days of life due to respiratory insufficiency secondary to a severely restricted thoracic cage. Whole-exome sequencing (WES) revealed a homozygous mutation in the DYNC2H1 (NM_001377.3) gene, namely, the c.9041G>T NP_001368.2: p.(Arg3014Ile) missense variant, which results in the substitution of the arginine codon at amino acid position 3014 with an isoleucine codon. The phenotyping of the patient's JATD and the detection of a homozygous variant in the DYNC2H1 gene confirmed the diagnosis of short-rib thoracic dysplasia-3 without polydactyly. In summary, the patient had isolated skeletal anomalies without polydactyly or other organ involvement. Additionally, the infant had severe PHTN on top of the respiratory failure, which eventually caused death. Considerably more work will need to be done to determine the clinical spectrum of JATD and understand its genetic heterogeneity.

3.
BMC Med Genomics ; 16(1): 318, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062428

RESUMEN

BACKGROUND: Short-rib polydactyly syndrome (SRPS) refers to a group of lethal skeletal dysplasias that can be difficult to differentiate between subtypes or from other non-lethal skeletal dysplasias such as Ellis-van Creveld syndrome and Jeune syndrome in a prenatal setting. We report the ultrasound and genetic findings of four unrelated fetuses with skeletal dysplasias. METHODS: Systemic prenatal ultrasound examination was performed in the second or third trimester. Genetic tests including GTG-banding, single nucleotide polymorphism (SNP) array and exome sequencing were performed with amniocytes or aborted fetal tissues. RESULTS: The major and common ultrasound anomalies for the four unrelated fetuses included short long bones of the limbs and narrow thorax. No chromosomal abnormalities and pathogenic copy number variations were detected. Exome sequencing revealed three novel variants in the DYNC2H1 gene, namely NM_001080463.2:c.6809G > A p.(Arg2270Gln), NM_001080463.2:3133C > T p.(Gln1045Ter), and NM_001080463.2:c.337C > T p.(Arg113Trp); one novel variant in the IFT172 gene, NM_015662.3:4540-5 T > A; and one novel variant in the WDR19 gene, NM_025132.4:c.2596G > C p.(Gly866Arg). The genotypes of DYNC2H1, IFT172 and WDR19 and the phenotypes of the fetuses give hints for the diagnosis of short-rib thoracic dysplasia (SRTD) with or without polydactyly 3, 10, and 5, respectively. CONCLUSION: Our findings expand the mutation spectrum of DYNC2H1, IFT172 and WDR19 associated with skeletal ciliopathies, and provide useful information for prenatal diagnosis and genetic counseling on rare skeletal disorders.


Asunto(s)
Ciliopatías , Síndrome de Ellis-Van Creveld , Osteocondrodisplasias , Polidactilia , Embarazo , Femenino , Humanos , Variaciones en el Número de Copia de ADN , Síndrome de Ellis-Van Creveld/diagnóstico por imagen , Síndrome de Ellis-Van Creveld/genética , Diagnóstico Prenatal , Ciliopatías/diagnóstico por imagen , Ciliopatías/genética , Proteínas del Citoesqueleto/genética , Proteínas Adaptadoras Transductoras de Señales/genética
4.
Mol Genet Genomic Med ; 11(10): e2247, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37489014

RESUMEN

BACKGROUND: Intronic variants outside the canonical splice site are challenging to interpret and therefore likely represent an underreported cause of human disease. Autosomal recessive variants in DYNC2H1 are associated with short-rib thoracic dysplasia 3 with or without polydactyly (SRTD3), a clinically heterogeneous disease generally presenting with short ribs, shortened tubular bones, narrow thorax and acetabular roof anomalies. We describe a case of SRTD3 with compound heterozygous frameshift and intronic variants and highlight the essential role of RNA sequencing (RNA-Seq) in variant interpretation. METHODS: Following inconclusive clinical genetic testing identifying a likely pathogenic frameshift variant and an intronic variant of uncertain significance (VUS) in DYNC2H1 in trans, the family enrolled in the Care4Rare Canada research program, where RNA-Seq studies were performed. RESULTS: The proband presented with post-axial polydactyly of all four limbs, a significantly small chest with a pectus excavatum and anterior flaring of the ribs. RNA-Seq investigations revealed a novel splice junction as a result of the intronic VUS and significantly decreased DYNC2H1 gene expression in the proband. CONCLUSION: This case demonstrates the diagnostic utility of RNA-Seq for variant interpretation following inconclusive clinical testing, which can ultimately lead to diagnosis for patients with rare disease.

5.
Front Genet ; 14: 1125473, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091781

RESUMEN

Background and aims: Short-rib thoracic dysplasia 3 with or without polydactyly (SRTD3) represents a type of severe fetal skeletal dysplasia (SD) characterized by shortened limbs, narrow thorax with or without polydactyly, which is caused by the homozygous or compound heterozygous mutations in the DYNC2H1 gene. SRTD3 is a recessive disorder, identification of the responsible genetic variation would be beneficial to an accurate prenatal diagnosis and well-grounded counseling for the affected families. Material and methods: Two families having experienced recurrent fetal SDs were recruited and submitted to a multiplatform genetic investigation. Whole-exome sequencing (WES) was performed with samples collected from the probands. Sanger sequencing and fluorescent quantitative PCR (qPCR) were conducted as validation assays for suspected variations. Results: WES identified two compound heterozygous variations in the DYNC2H1(NM_001080463.2) gene, namely c.2386C>T (p.Arg796Trp) and c.7289T>C (p.Ile2430Thr) for one; and exon (64-83)del and c.8190G>T (p.Leu2730Phe) for the other, respectively. One variant in them, exon (64-83)del, was novelly identified. Conclusion: The study detected two compound heterozygous variation in DYNC2H1 including one novel deletion: exon (64-83) del. Our findings clarified the cause of fetal skeletal dysplasia in the subject families, provided guidance for their future pregnancies, and highlighted the value of WES in diagnosis of skeletal dysplasia with unclear prenatal indications.

6.
J Matern Fetal Neonatal Med ; 36(1): 2205985, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37100787

RESUMEN

Short-rib thoracic dysplasia 3 with or without polydactyly (OMIM # 613091) represents a clinical spectrum encompassing a heterogeneous group of skeletal dysplasias associated with homozygous or compound heterozygous mutations of DYNC2H1. We describe the case of a couple with two consecutive therapeutic abortions due to a diagnosis of short-rib thoracic dysplasia mutations. In the first pregnancy, the diagnosis has been made at 21 weeks. In the second one, an accurate and early ultrasound examination allowed a diagnosis at 12 weeks. DYNC2H1 mutations were confirmed in both cases. In this report, we underline the importance of an ultrasound evaluation at the end of the first trimester of pregnancy in the detection of early signs of skeletal dysplasias. An early prenatal diagnosis of a short-rib skeletal dysplasia, such as for other severe skeletal dysplasias, is critical to offer a couple the chance of a weighted, informed, and less traumatic decision about the continuation of the pregnancy.


Asunto(s)
Osteocondrodisplasias , Síndrome de Costilla Pequeña y Polidactilia , Embarazo , Femenino , Humanos , Síndrome de Costilla Pequeña y Polidactilia/diagnóstico , Síndrome de Costilla Pequeña y Polidactilia/genética , Diagnóstico Prenatal , Ultrasonografía , Osteocondrodisplasias/diagnóstico por imagen , Osteocondrodisplasias/genética , Costillas , Ultrasonografía Prenatal , Dineínas Citoplasmáticas/genética
7.
Front Genet ; 14: 1075187, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007936

RESUMEN

Background: To describe the genetic variation of dynein cytoplasmic 2 heavy chain 1 (DYNC2H1) gene in four Chinese families affected with short-rib thoracic dysplasia 3 with or without polydactyly (SRTD3), and to provide evidence for accurate prenatal diagnosis and genetic counseling. Methods: The detailed clinical prenatal sonographic features of four fetuses with SRTD3 were carried out. Trio-whole exome sequencing (WES) and proband-WES sequencing was applied to filtrated causative variants in four families. The causative variants of each family were validated in by Sanger sequencing. Bioinformation analysis was applied to predict the harmfulness of these mutations and perform the protein-protein interaction network and Gene Ontology (GO) analysis. A vitro minigene splicing assay was conducted to assess the influence of the splice site variant. Results: Typical characterization of the four fetuses included short long bones, short ribs, narrow chest, hand and foot posture abnormalities, femur short in diameter and slightly bowing, cardiac abnormalities, and so on. Moreover, eight compound heterozygous variants of DYNC2H1 (NM_001080463.2): c.3842A>C (p.Tyr1281Ser) and c.8833-1G>A, c.8617A>G (p.Met2873Val) and c.7053_7054del (p.Cys2351Ter), c.5984C>T (p.Ala1995Val) and c.10219C>T (p.Arg3407Ter), c.5256del (p.Ala1753GlnfsTer13) and c.9737C>T (p.Thr3246Ile), were identified. Among which, c.10219C>T (p.Arg3407Terp), c.5984C>T (p.Ala1995Val) and c.9737C>T (p.Thr3246Ile) were reported in ClinVar databases, and c.8617A>G (p.Met2873Val), c.10219C>T (p.Arg3407Ter), c.5984C>T (p.Ala1995Val) were found in HGMD databases. Four variants (c.3842A>C (p.Tyr1281Ser), c.8833-1G>A, c.7053_7054del (p.Cys2351Ter) and c.5256del (p.Ala1753GlnfsTer13) were first reported as novel mutations. According to the ACMG guidelines, c.8617A>G (p.Met2873Val), c.7053_7054del (p.Cys2351Ter), c.5984C>T (p.Ala1995Val), c.10219C>T (p.Arg3407Ter) and c.5256del (p.Ala1753GlnfsTer13) were rated as pathogenic or likely pathogenic variants, others variants were predicted to be variants of uncertain significance mutations. The minigene assay results indicated that c.8833-1G>A caused the skipping over exon 56, resulting in exon 56 loss. Conclusion: In our study, we analyzed the genetic mutations in four fetuses with SRTD3 by whole exome sequencing and identified pathogenic variants causing SRTD3. Our results expand the mutation spectrum of DYNC2H1 in SRTD3, which is helpful for the accurate prenatal diagnosis of SRTD3 fetuses and provide useful strategies for genetic counseling.

8.
J Oral Pathol Med ; 51(8): 755-761, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36087272

RESUMEN

BACKGROUND: Molecular etiology of lingual hamartoma is poorly understood. This study aims to identify potentially deleterious mutations for lingual hamartoma and analyze its molecular profile by a combination of whole-exome sequencing and RNA-sequencing. METHODS: Whole-exome sequencing was conducted on the proband presenting lingual hamartoma and patient's unaffected family members. Potentially pathogenic mutations were identified after filtration. The pathogenicity of the identified variants was predicted by in silico algorithms and conservative analysis. RNA-sequencing was performed to further explore the molecular profile of lingual hamartoma. RESULTS: Whole-exome sequencing of the proband and patients' unaffected brother and parents identified a de novo mutation c.931C>T_p.Pro311Ser in the DYNC2H1 gene (NM_001080463.2). The DYNC2H1 mutation was predicted to be disease-causing for affecting highly conserved amino acid by PolyPhen2 and Mutation Taster. RNA-sequencing analysis showed that the DYNC2H1 gene was significantly down-regulated in lingual hamartoma. Gene set enrichment analysis revealed cilium assembly and Hedgehog signaling pathway were significantly affected. CONCLUSION: The study expanded our knowledge on the clinical and genetic spectrum of lingual hamartoma by identifying causal variants in a Chinese pedigree. DYNC2H1 is likely to participate in tongue development and its pathologic mutation may underlie the etiology of lingual hamartoma.


Asunto(s)
Hamartoma , Proteínas Hedgehog , China , Dineínas Citoplasmáticas , Hamartoma/genética , Humanos , Masculino , Linaje , ARN
9.
Genes (Basel) ; 13(8)2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35893076

RESUMEN

Skeletal dysplasias (SDs) are a large, heterogeneous group of mostly genetic disorders that affect the bones and cartilage, resulting in abnormal growth and development of skeletal structures. The high clinical and genetic diversity in SDs cause difficulties in prenatal diagnosis. To establish a correct prognosis and better management, it is very important to distinguish SDs with poor life-limiting prognosis or lethal SDs from other ones. Bad prognosis in foetuses is assessed on the basis of the size of the thorax, lung volumes, long bones' length, bones' echogenicity, bones' angulation or presented fractures, and the concomitant presence of non-immune hydrops or visceral abnormalities. To confirm SD diagnosis and perform family genetic consultation, rapid molecular diagnostics are needed; therefore, the NGS method using a panel of genes corresponding to SD or whole-exome sequencing (WES) is commonly used. We report a case of a foetus showing long bones' shortening and a narrow chest with short ribs, diagnosed prenatally with asphyxiating thoracic dystrophy, also known as Jeune syndrome (ATD; OMIM 208500), caused by compound heterozygous variants in the DYNC2H1 gene, identified by prenatally performed rapid-WES analysis. The missense variants in the DYNC2H1 gene were inherited from the mother (c.7289T>C; p.Ile2430Thr) and from the father (c.12716T>G; p.Leu4239Arg). The DYNC2H1 gene is one of at least 17 ATD-associated genes. This disorder belongs to the ninth group of SD, ciliopathies with major skeletal involvement. An extremely narrow, bell-shaped chest, and abnormalities of the kidneys, liver, and retinas were observed in most cases of ATD. Next to lethal and severe forms, clinically mild forms have also been reported. A diagnosis of ATD is important to establish the prognosis and management for the patient, as well as the recurrence risk for the family.


Asunto(s)
Dineínas Citoplasmáticas , Diagnóstico Prenatal , Dineínas Citoplasmáticas/genética , Diagnóstico Diferencial , Síndrome de Ellis-Van Creveld , Femenino , Humanos , Mutación , Embarazo , Secuenciación del Exoma
10.
Am J Med Genet A ; 185(3): 687-694, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33369054

RESUMEN

Ciliopathy syndromes are a diverse spectrum of disease characterized by a combination of cystic kidney disease, hepatobiliary disease, retinopathy, skeletal dysplasia, developmental delay, and brain malformations. Though generally divided into distinct disease categories based on the pattern of system involvement, ciliopathy syndromes are known to display certain phenotypic overlap. We performed next-generation sequencing panel testing, clinical exome sequencing, and research-based exome sequencing reanalysis on patients with suspected ciliopathy syndromes with additional features. We identified biallelic pathogenic variants in BBS1 in a child with features of cranioectodermal dysplasia, and biallelic variants in BBS12 in a child with the clinical stigmata of Bardet-Biedl syndrome, but also with anal atresia. We additionally identified biallelic pathogenic variants in WDR35 and DYNC2H1 in children with predominant liver disease and ductal plate malformation without skeletal dysplasia. Our study highlights the phenotypic and genetic diversity of ciliopathy syndromes, the importance of considering ciliopathy syndromes as a disease-spectrum and screening for all associated complications in all patients, and describes exclusive extra-skeletal manifestations in two classical skeletal dysplasia syndromes.


Asunto(s)
Anomalías Múltiples/patología , Chaperoninas/genética , Ciliopatías/patología , Dineínas Citoplasmáticas/genética , Proteínas del Citoesqueleto/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación , Anomalías Múltiples/genética , Adulto , Niño , Preescolar , Ciliopatías/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Fenotipo , Pronóstico
11.
Genet Med ; 22(12): 2041-2051, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32753734

RESUMEN

PURPOSE: Determining the role of DYNC2H1 variants in nonsyndromic inherited retinal disease (IRD). METHODS: Genome and exome sequencing were performed for five unrelated cases of IRD with no identified variant. In vitro assays were developed to validate the variants identified (fibroblast assay, induced pluripotent stem cell [iPSC] derived retinal organoids, and a dynein motility assay). RESULTS: Four novel DYNC2H1 variants (V1, g.103327020_103327021dup; V2, g.103055779A>T; V3, g.103112272C>G; V4, g.103070104A>C) and one previously reported variant (V5, g.103339363T>G) were identified. In proband 1 (V1/V2), V1 was predicted to introduce a premature termination codon (PTC), whereas V2 disrupted the exon 41 splice donor site causing incomplete skipping of exon 41. V1 and V2 impaired dynein-2 motility in vitro and perturbed IFT88 distribution within cilia. V3, homozygous in probands 2-4, is predicted to cause a PTC in a retina-predominant transcript. Analysis of retinal organoids showed that this new transcript expression increased with organoid differentiation. V4, a novel missense variant, was in trans with V5, previously associated with Jeune asphyxiating thoracic dystrophy (JATD). CONCLUSION: The DYNC2H1 variants discussed herein were either hypomorphic or affecting a retina-predominant transcript and caused nonsyndromic IRD. Dynein variants, specifically DYNC2H1 variants are reported as a cause of non syndromic IRD.


Asunto(s)
Síndrome de Ellis-Van Creveld , Degeneración Retiniana , Dineínas Citoplasmáticas/genética , Síndrome de Ellis-Van Creveld/genética , Exones , Humanos , Mutación , Linaje , Retina , Degeneración Retiniana/genética
12.
Neuroscience ; 450: 3-14, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32682825

RESUMEN

Cell specification in the ventral spinal cord is a well-studied model system to understand how tissue pattern develops in response to a morphogen gradient. Ventral cell types including motor neurons (MNs) are induced in the neural tube in response to graded Sonic Hedgehog (Shh) signaling. We performed a forward genetic screen in the mouse that incorporated a GFP-expressing transgene to visualize MNs to identify genes regulating ventral patterning. Here we contrast the neural patterning phenotypes of two mouse lines carrying induced mutations in ciliary trafficking genes. We show that a hypomorphic mutation in the gene Tubby-like protein 3 (Tulp3) resulted in a dorsal expansion of MNs consistent with an up-regulation of Shh signaling. Interestingly, patterning defects in Tulp3 mutants were restricted to posterior regions of the spinal cord as patterning was similar to WT in the anterior spinal cord. In contrast, a mutation in the ciliary trafficking gene cytoplasmic dynein 2 heavy chain 1 (Dync2h1), led to a complete loss of MNs in anterior regions of the spinal cord, indicating a strong down-regulation of Shh signaling. However, this severe phenotype was restricted to the cervical region as MNs developed posteriorly. Mutations in cilia trafficking genes affect Shh-dependent signaling in the neural tube differentially along the anterior-posterior (A-P) axis in a process that is not understood.


Asunto(s)
Proteínas Hedgehog , Tubo Neural , Animales , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Mutación , Tubo Neural/metabolismo
13.
Intractable Rare Dis Res ; 9(2): 95-98, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32494556

RESUMEN

A prenatal sonograph revealed a 26-week-old fetus with short limbs and a narrow chest in a 23-year-old woman with a history of fetal skeletal dysplasia. A single nucleotide polymorphism-based chromosomal microarray (CMA) indicated a normal karyotype, and no chromosomal segments with abnormal copy numbers were noted in the fetus. Whole exome sequencing identified compound heterozygous mutations in the DYNC2H1 gene responsible for a lethal type of bone growth disorder, short-rib thoracic dysplasia 3 with or without polydactyly (SRTD3), and revealed a missense mutation c.515C>A (p. Pro172Gln) of paternal origin and a missense mutation c.5983G>A (p. Ala1995Thr) of maternal origin. These variants were further confirmed by Sanger sequencing. To the extent known, the c.515C>A (p. Pro172Gln) mutation is novel for SRTD3, and the site is conserved across species. This study found a novel mutation of the DYNC2H1 gene for SRTD3 and it has increased the number of reported cases and expanded the spectrum of mutations causing this rare disease.

14.
Mol Genet Genomic Med ; 8(3): e1064, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31943948

RESUMEN

BACKGROUND: In the last few years trio-whole exome sequencing (WES) analysis has demonstrated its potential in obtaining genetic diagnoses even in nonspecific clinical pictures and in atypical presentations of known diseases. Moreover WES allows the detection of variants in multiple genes causing different genetic conditions in a single patient, in about 5% of cases. The resulting phenotype may be clinically discerned as variability in the expression of a known phenotype, or as a new unreported syndromic condition. METHODS: Trio-WES was performed on a 4-month-old baby with a complex clinical presentation characterized by skeletal anomalies, congenital heart malformation, congenital hypothyroidism, generalized venous and arterial hypoplasia, and recurrent infections. RESULTS: WES detected two different homozygous variants, one in CEP57, the gene responsible for mosaic variegated aneuploidy syndrome 2, the other in DYNC2H1, the main gene associated with short-rib thoracic dysplasia. CONCLUSION: The contribution of these two different genetic causes in determining the phenotype of our patient is discussed, including some clinical signs not explained by the detected variants. The report then highlights the role of WES in providing complete and fast diagnosis in patients with complex presentations of rare genetic syndromes, with important implications in the assessment of recurrence risk.


Asunto(s)
Dineínas Citoplasmáticas/genética , Cardiopatías Congénitas/genética , Hipotiroidismo/genética , Proteínas Asociadas a Microtúbulos/genética , Anomalías Musculoesqueléticas/genética , Proteínas Nucleares/genética , Fenotipo , Cardiopatías Congénitas/patología , Homocigoto , Humanos , Hipotiroidismo/patología , Lactante , Masculino , Mosaicismo , Anomalías Musculoesqueléticas/patología , Mutación , Síndrome , Secuenciación del Exoma
15.
Prague Med Rep ; 120(4): 124-130, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31935347

RESUMEN

Asphyxiating thoracic dysplasia (ATD) represents a heterogeneous group of skeletal dysplasias with short ribs, narrow chest and reduced thoracic capacity. Mutations in several genes including IFT80, DYNC2H1, TTC21B and WDR19 have been found in patients with ATD. Both severe and milder course of the disease were described in correlation with secondary involvement of lung's function. Two children with attenuated form of ATD are described. Their anthropometric parameters for birth weight, length and head circumference were normal but narrow thorax was observed in both of them in early infancy with chest circumference < -3 SD (standard deviation) in comparison to age related controls. The postnatal adaptation and development of both children was uneventful except for mild tachypnoea in one of them which persisted till the age of 6 months. In both children, radiographs revealed narrow upper half of the chest with shorter ribs and atypical configuration of pelvis with horizontally running acetabula and coarse internal edges typical for ATD. Molecular analyses using whole exome sequencing in one family revealed that the patient is compound heterozygote in DYNC2H1 gene for a frame-shift mutation c.4458delT resulting in premature stop-codon p.Phe1486Leufs*11 and a missense mutation c.9044A>G (p.Asp3015Gly). The second family refused the DNA analysis. Regular monitoring of anthropometric parameters during childhood is of big importance both in health and disease. In addition, measurement of the chest circumference should be included, at least at birth and during infancy.


Asunto(s)
Dineínas Citoplasmáticas/genética , Síndrome de Ellis-Van Creveld , Niño , Síndrome de Ellis-Van Creveld/genética , Humanos , Mutación
16.
Taiwan J Obstet Gynecol ; 57(1): 123-127, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29458881

RESUMEN

OBJECTIVE: We present the perinatal imaging findings and molecular genetic analysis in a fetus with short-rib polydactyly syndrome (SRPS) type III or short-rib thoracic dysplasia 3 with or without polydactyly (SRTD3). CASE REPORT: A 29-year-old, primigravid woman was referred for genetic counseling at 15 weeks of gestation because of abnormal ultrasound findings of short limbs, a narrow chest and bilateral polydactyly of the hands and feet, consistent with a diagnosis of SRPS type III. Chorionic villus sampling was performed, and targeted next-generation sequencing (NGS) was applied to analyze a panel of 25 genes including CEP120, DYNC2H1, DYNC2LI1, EVC, EVC2, FGFR2, FGFR3, HOXD10, IFT122, IFT140, IFT172, IFT52, IFT80, KIAA0586, NEK1, PAPSS2, SLC26A2, SOX9, TCTEX1D2, TCTN3, TTC21B, WDR19, WDR34, WDR35 and WDR60. The NGS analysis identified novel mutations in the DYNC2H1 gene. The fetus was compound heterozygous for a missense mutation c.8077G > T (p.Asp2693Tyr) of paternal origin in DYNC2H1 and a frameshift mutation c.11741_11742delTT (p.Phe3914X) of maternal origin in DYNC2H1. The fetus had a karyotype of 46,XY, and postnatally manifested characteristic SRPS type III phenotype. CONCLUSION: Targeted NGS is useful in genetic diagnosis of fetal skeletal dysplasia and SRPS, and the information acquired is helpful in genetic counseling.


Asunto(s)
Dineínas Citoplasmáticas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Síndrome de Costilla Pequeña y Polidactilia/genética , Ultrasonografía Prenatal/métodos , Adulto , Muestra de la Vellosidad Coriónica/métodos , Femenino , Feto/diagnóstico por imagen , Humanos , Mutación , Polidactilia/complicaciones , Polidactilia/genética , Embarazo , Síndrome de Costilla Pequeña y Polidactilia/diagnóstico
17.
Birth Defects Res ; 110(4): 364-371, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29359448

RESUMEN

BACKGROUND: Genetic skeletal disorders (GSDs) are clinically and genetically heterogeneous with more than 350 genes accounting for the diversity of disease phenotypes. Prenatal diagnosis of these disorders has been challenging because of the limited but variable prenatal phenotypes, highlighting the need of a novel genetic approach. Short-rib polydactyly syndrome (SRPS) Type III is an autosomal recessive GSD characterized by extreme narrowness of the thorax, severely shortened tubular bones, polydactyly and multiple malformations. METHODS: Cytogenetic and molecular analyses using GTG-banding, single nucleotide polymorphism array and a novel GSDs targeted gene panel sequencing were performed in a 24 weeks fetus with increased biparietal diameter (BPD), short limbs, narrow thorax and polyhydramnios. RESULTS: No chromosomal abnormalities and pathogenic copy number variations (CNVs) were detected in the fetus. Two novel compound heterozygous mutations c.2992C > T and c.12836G > C in the DYNC2H1 gene were identified by targeted genes panel sequencing. A literature review was performed to delineate the prenatal phenotype of SRPS Type III. CONCLUSION: This is the first report of prenatal diagnosis of DYNC2H1 mutations causing SRPS Type III in a fetus with increased BPD associated with polyhydramnios in China. Our findings expand the mutation spectrum of DYNC2H1 in this rare disease and demonstrate that targeted gene panel capture followed by next-generation sequencing (NGS) is an efficient and cost-effective method to perform a molecular prenatal diagnosis of a rare genetic skeletal disorder.


Asunto(s)
Dineínas Citoplasmáticas/genética , Feto , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Polihidramnios , Diagnóstico Prenatal , Síndrome de Costilla Pequeña y Polidactilia , Femenino , Humanos , Polihidramnios/diagnóstico , Polihidramnios/genética , Embarazo , Síndrome de Costilla Pequeña y Polidactilia/diagnóstico , Síndrome de Costilla Pequeña y Polidactilia/genética
18.
Clin Respir J ; 12(3): 1017-1020, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28257607

RESUMEN

Asphyxiating thoracic dystrophy, also known as Jeune syndrome, is included in a group of syndromic skeletal ciliopathies associated with mutations in genes encoding proteins involved in the formation or function of motile cilia. Herein, we report a 6-mo-old male admitted to hospital with recurrent lung infections, thoracic dystrophy, and respiratory distress that was diagnosed as Jeune syndrome; DYNC2H1 mutation was detected via genetic analysis and ciliary dysfunction was noted via high-speed video microscopy.


Asunto(s)
Dineínas Citoplasmáticas/genética , ADN/genética , Síndrome de Ellis-Van Creveld/genética , Mutación , Infecciones del Sistema Respiratorio/complicaciones , Cilios/ultraestructura , Trastornos de la Motilidad Ciliar , Dineínas Citoplasmáticas/metabolismo , Análisis Mutacional de ADN , Síndrome de Ellis-Van Creveld/complicaciones , Síndrome de Ellis-Van Creveld/diagnóstico , Resultado Fatal , Humanos , Lactante , Masculino , Microscopía Electrónica de Transmisión , Radiografía Torácica , Recurrencia , Infecciones del Sistema Respiratorio/diagnóstico , Tomografía Computarizada por Rayos X
19.
Clin Genet ; 92(2): 158-165, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27925158

RESUMEN

The short-rib polydactyly syndromes (SRPS) are autosomal recessively inherited, genetically heterogeneous skeletal ciliopathies. SRPS phenotypes were historically categorized as types I-IV, with type I first delineated by Saldino and Noonan in 1972. Characteristic findings among all forms of SRP include short horizontal ribs, short limbs and polydactyly. The SRP type I phenotype is characterized by a very small thorax, extreme micromelia, very short, poorly mineralized long bones, and multiple organ system anomalies. To date, the molecular basis of this most severe type of SRP, also known as Saldino-Noonan syndrome, has not been determined. We identified three SRP cases that fit the original phenotypic description of SRP type I. In all three cases, exome sequence analysis revealed compound heterozygosity for mutations in DYNC2H1, which encodes the main component of the retrograde IFT A motor, cytoplasmic dynein 2 heavy chain 1. Thus SRP type I, II, III and asphyxiating thoracic dystrophy (ATD), which also result from DYNC2H1 mutations. Herein we describe the phenotypic features, radiographic findings, and molecular basis of SRP type I.


Asunto(s)
Dineínas Citoplasmáticas/genética , Síndrome de Ellis-Van Creveld/genética , Predisposición Genética a la Enfermedad , Síndrome de Costilla Pequeña y Polidactilia/genética , Síndrome de Ellis-Van Creveld/diagnóstico por imagen , Síndrome de Ellis-Van Creveld/fisiopatología , Femenino , Feto/diagnóstico por imagen , Feto/fisiopatología , Heterogeneidad Genética , Humanos , Recién Nacido , Mutación , Fenotipo , Embarazo , Radiografía , Síndrome de Costilla Pequeña y Polidactilia/diagnóstico por imagen , Síndrome de Costilla Pequeña y Polidactilia/fisiopatología , Secuenciación del Exoma
20.
J Bone Miner Metab ; 35(6): 649-658, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28012008

RESUMEN

Several studies indicated bone mineral density (BMD) and alcohol intake might share common genetic factors. The study aimed to explore potential SNPs/genes related to both phenotypes in US Caucasians at the genome-wide level. A bivariate genome-wide association study (GWAS) was performed in 2069 unrelated participants. Regular drinking was graded as 1, 2, 3, 4, 5, or 6, representing drinking alcohol never, less than once, once or twice, three to six times, seven to ten times, or more than ten times per week respectively. Hip, spine, and whole body BMDs were measured. The bivariate GWAS was conducted on the basis of a bivariate linear regression model. Sex-stratified association analyses were performed in the male and female subgroups. In males, the most significant association signal was detected in SNP rs685395 in DYNC2H1 with bivariate spine BMD and alcohol drinking (P = 1.94 × 10-8). SNP rs685395 and five other SNPs, rs657752, rs614902, rs682851, rs626330, and rs689295, located in the same haplotype block in DYNC2H1 were the top ten most significant SNPs in the bivariate GWAS in males. Additionally, two SNPs in GRIK4 in males and three SNPs in OPRM1 in females were suggestively associated with BMDs (of the hip, spine, and whole body) and alcohol drinking. Nine SNPs in IL1RN were only suggestively associated with female whole body BMD and alcohol drinking. Our study indicated that DYNC2H1 may contribute to the genetic mechanisms of both spine BMD and alcohol drinking in male Caucasians. Moreover, our study suggested potential pleiotropic roles of OPRM1 and IL1RN in females and GRIK4 in males underlying variation of both BMD and alcohol drinking.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Densidad Ósea/genética , Pleiotropía Genética , Estudio de Asociación del Genoma Completo , Población Blanca/genética , Adulto , Femenino , Haplotipos/genética , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA