Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.162
Filtrar
Más filtros

Intervalo de año de publicación
1.
Methods Mol Biol ; 2850: 329-343, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363080

RESUMEN

Phage engineering is an emerging technology due to the promising potential application of phages in medical and biotechnological settings. Targeted phage mutagenesis tools are required to customize the phages for a specific application and generate, in addition to that, so-called designer phages. CRISPR-Cas technique is used in various organisms to perform targeted mutagenesis. Yet, its efficacy is notably limited for phage mutagenesis due to the highly abundant phage DNA modifications. Addressing this challenge, we have developed a novel approach that involves the temporal removal of phage DNA cytosine modifications, allowing for effective CRISPR-Cas targeting and subsequent introduction of mutations into the phage genome. The removal of cytosine modification relies on the catalytic activity of a eukaryotic ten-eleven translocation methylcytosine (TET) dioxygenase. TET enzymes iteratively de-modify methylated or hydroxymethylated cytosines on phage DNA. The temporal removal of cytosine modification ultimately enables efficient DNA cleavage by Cas enzymes and facilitates mutagenesis. To streamline the application of the coupled TET-CRISPR-Cas system, we use Golden Gate cloning for fast and efficient assembly of a vector that comprises a TET oxidase and a donor DNA required for scarless site-specific phage mutagenesis. Our approach significantly advances the engineering of modified phage genomes, enabling the efficient generation of customized phages for specific applications.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Mutagénesis , Bacteriófagos/genética , Citosina/metabolismo , Edición Génica/métodos , Vectores Genéticos/genética
2.
Chin J Integr Med ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356429

RESUMEN

OBJECTIVE: To investigate the therapeutic effect of Xiangshao Granules (XSG) on post-stroke depression (PSD) and explore the underlying mechanisms. METHODS: Forty-three C57BL/6J mice were divided into 3 groups: sham (n=15), PSD+vehicle (n=14), and PSD+XSG (n=14) groups according to a random number table. The PSD models were constructed using chronic unpredictable mild stress (CUMS) after middle cerebral artery occlusion (MCAO). The sham group only experienced the same surgical operation, but without MACO and CUMS stimulation. The XSG group received XSG (60 mg/kg per day) by gavage for 4 weeks. The mice in the sham and vehicle groups were given the same volume of 0.9% saline at the same time. The body weight and behavior tests including open field test, sucrose preference test, tail suspension test, and elevated plus-maze test, were used to validate the PSD mouse model. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining were used to evaluate the anti-inflammatory effects of XSG. The potential molecular mechanisms were explored and verified through network pharmacology analysis, Nissl staining, Western blot, ELISA, and RT-qPCR, respectively. RESULTS: The body weight and behavior tests showed that MCAO combined with CUMS successfully established the PSD models. XSG alleviated neuronal damage, reduced the expressions of pro-apoptotic proteins Caspase-3 and B-cell lymphoma-2 (BCL-2)-associated X (BAX), and increased the expression of anti-apoptotic protein BCL-2 in PSD mice (P<0.05 or P<0.01). XSG inhibited microglial activation and the expressions of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin (IL)-1 ß, and IL-6 via the toll-like receptor 4/nuclear factor kappa-B signaling pathway in PSD mice (P<0.05 or P<0.01). Furthermore, XSG decreased the expression of indoleamine 2,3-dioxygenase1 (IDO1) and increased the concentration of 5-hydroxytryptamine in PSD mice (P<0.05 or P<0.01). CONCLUSION: XSG could reverse the anxiety/depressionlike behaviors and reduce the neuronal injury in the hippocampus and prefrontal cortex of PSD mice, which may be a potential therapeutic agent for PSD.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39356986

RESUMEN

Immunotherapy has fundamentally transformed the clinical cancer treatment landscape; however, achieving intricate and multifaceted modulation of the immune systems remains challenging. Here, a multipathway coordination of immunogenic cell death (ICD), autophagy, and indoleamine 2,3-dioxygenase-1 (IDO1) was achieved by a biomimetic nano-immunomodulator assembled from a chemotherapeutic agent (doxorubicin, DOX), small interfering RNA (siRNA) molecules targeting IDO1 (siIDO1), and the zeolitic imidazolate framework-8 (ZIF-8). After being camouflaged with a macrophage membrane, the biomimetic nanosystem, named mRDZ, enriched in tumors, which allowed synergistic actions of its components within tumor cells. The chemotherapeutic intervention led to a compensatory upregulation in the expression of IDO1, consequently exerting an inhibitory effect on the reactive oxygen species (ROS) and autophagic responses triggered by DOX and ZIF-8. Precise gene silencing of IDO1 by siIDO1 alleviated its suppressive influence, thereby facilitating increased ROS production and improved autophagy, ultimately bolstering tumor immunogenicity. mRDZ exhibited strong capability to boost potent local and systemic antitumor immune responses with a feature of memory, which led to the effective suppression of the growth, lung metastasis, and recurrence of the tumor. Serving as an exemplary model for the straightforward and potent reshaping of the immune system against tumors, mRDZ offers valuable insights into the development of immunomodulatory nanomaterials for cancer therapy.

4.
Sci Rep ; 14(1): 23171, 2024 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-39369035

RESUMEN

Micropollutants, such as heavy metals and pesticides, inhibit microbial growth, threatening ecosystems. Yet, the mechanism behind mycoremediation of the pesticide lindane and multiple metals (Cd, Total Cr, Cu, Ni, Pb, Zn) remains poorly understood. In our study, we investigated cellular responses in Aspergillus fumigatus PD-18 using LC-MS/MS, identifying 2190 proteins, 1147 of which were consistently present under both stress conditions. Specifically, Cu-Zn superoxide dismutase and heat shock proteins were up-regulated to counter oxidative stress and protein misfolding. Proteins involved in intracellular trafficking, secretion, and vesicular transport; RNA processing and modification showed enhanced abundance and regulating stress response pathways. Additionally, haloalkane dehalogenase and homogentisate 1,2-dioxygenase played pivotal roles in lindane mineralization. Bioinformatics analysis highlighted enriched pathways such as Glyoxylate and dicarboxylate metabolism and Purine metabolism, that are crucial for combating adverse environments. We identified the hub protein 26 S proteasome regulatory subunit complex as potential biomarker and remedial targets for mycoremediation of wastewater, suggesting practical applications for environmental remediation.


Asunto(s)
Biodegradación Ambiental , Plaguicidas , Proteómica , Proteómica/métodos , Plaguicidas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Metales Pesados/metabolismo , Hexaclorociclohexano/metabolismo , Espectrometría de Masas en Tándem
5.
FEBS J ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375930

RESUMEN

Indoleamine 2,3-dioxygenase (IDO) is a monomeric heme enzyme that catalyzes the oxidative cleavage of tryptophan (L-Trp) to form N-formyl-kynurenine. Similar to other heme proteins, IDO only binds to O2 when the heme iron is ferrous (FeII), thereby rendering the enzyme active. Thus, ascorbate (Asc, a reducing agent) and methylene blue (MB, an electron carrier) are commonly added to in vitro IDO assay systems. However, Asc and MB have been recently reported to significantly impact the measurement of the enzymatic parameters of vertebrate IDO. Aspergillus fumigatus is a filamentous fungus and the most common cause of invasive aspergillosis; it has three IDO genes (IDOα, IDOß, and IDOγ). The FeII-O2 IDOs of A. fumigatus, particularly FeII-O2 IDOγ, have relatively long half-lives in their autoxidation; however, the autoxidation was accelerated by Asc. Similar to vertebrate IDOs, Asc acted as a competitive (or mixed-competitive) inhibitor of the IDOs of A. fumigatus. A positive correlation (in the order of IDOγ > IDOß > IDOα) was observed between the inhibitory sensitivity of the IDOs to Asc and the facilitation of their autoxidation by Asc. The FeII-O2 IDO can repeat the dioxygenase reaction as long as it reacts with L-Trp; however, substrate-free FeII-O2 IDO is converted into inactive FeIII-IDO by autoxidation. Thus, L-Trp (which keeps the IDO active) competes with Asc (which inactivates IDO by accelerating autoxidation). This is probably why Asc, which is structurally quite different from L-Trp, appears to function as a competitive (or mixed-competitive) inhibitor of IDOs.

6.
Nat Prod Res ; : 1-10, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377375

RESUMEN

Alzheimer's disease is a significant concern due to its high prevalence and the limitations of current treatments. In our research, we investigated Mauritia flexuosa, a medicinal plant traditionally used for headaches, to identify active compounds with potential anti-Alzheimer's effects. Three pentacyclic triterpenes were isolated through column chromatography and characterised from the dichloromethane/methanol extract from Mauritia flexuosa (DCMEMf), with (3ß)-3-hydroxy-11-oxours-12-en-28-oic acid (3) showing the highest in vitro activity in the HMC3 and SVG p12 cell lines. Compound 3 inhibited the pharmacological targets NF-κB, PGE2, IDO1, and EGFR with IC50 values of 9.83, 3.86, 1.63 µM, and 49.57 nM, respectively, attributed to a hydroxyl group at the C-3 position of its structure. These findings suggest the potential of these compounds in treating neurological diseases, including headaches, and offer promising prospects for the development of new therapies against Alzheimer's.

7.
Theranostics ; 14(12): 4787-4805, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239507

RESUMEN

Rationale: Immunosuppressive tumor microenvironment (iTME) plays an important role in carcinogenesis, and some macrophage subsets are associated with iTME generation. However, the sub-population characterization of macrophages in oral carcinogenesis remains largely unclear. Here, we investigated the immunosuppressive status with focus on function of a macrophage subset that expressed indoleamine 2,3 dioxygenase 1 (Macro-IDO1) in oral carcinogenesis. Methods: We built a single cell transcriptome atlas from 3 patients simultaneously containing oral squamous cell carcinoma (OSCC), precancerous oral leukoplakia (preca-OLK) and paracancerous tissue (PCA). Through single-cell RNA sequencing and further validation using multicolor immunofluorescence staining and the in vitro/in vivo experiments, the immunosuppressive cell profiles were built and the role of a macrophage subset that expressed indoleamine 2,3 dioxygenase 1 (Macro-IDO1) in the malignant transformation of oral leukoplakia was evaluated. Results: The iTME formed at preca-OLK stage, as evidenced by increased exhausted T cells, Tregs and some special subsets of macrophages and fibroblasts. Macro-IDO1 was predominantly enriched in preca-OLK and OSCC, distributed near exhausted T cells and possessed tumor associated macrophage transformation potentials. Functional analysis revealed the established immunosuppressive role of Macro-IDO1 in preca-OLK and OSCC: enriching the immunosuppression related genes; having an established level of immune checkpoint score; exerting strong immunosuppressive interaction with T cells; positively correlating with the CD8-exhausted. The immunosuppression related gene expression of macrophages also increased in preca-OLK/OSCC compared to PCA. The use of the IDO1 inhibitor reduced 4NQO induced oral carcinogenesis in mice. Mechanistically, IFN-γ-JAK-STAT pathway was associated with IDO1 upregulation in OLK and OSCC. Conclusions: These results highlight that Macro-IDO1-enriched in preca-OLK possesses a strong immunosuppressive role and contributes to oral carcinogenesis, providing a potential target for preventing precancerous legions from transformation into OSCC.


Asunto(s)
Transformación Celular Neoplásica , Indolamina-Pirrol 2,3,-Dioxigenasa , Leucoplasia Bucal , Macrófagos , Neoplasias de la Boca , Análisis de la Célula Individual , Microambiente Tumoral , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Leucoplasia Bucal/inmunología , Leucoplasia Bucal/genética , Leucoplasia Bucal/patología , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Ratones , Microambiente Tumoral/inmunología , Transformación Celular Neoplásica/genética , Neoplasias de la Boca/inmunología , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN , Masculino , Tolerancia Inmunológica , Femenino , Carcinogénesis/inmunología , Carcinogénesis/genética
8.
Eur J Med Chem ; 279: 116852, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276584

RESUMEN

Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) play a pivotal role in regulating kynurenine catabolism pathway and immunosuppressive environment, which are promising drug targets for cancer immunotherapy. In this work, a variety of isoquinoline derivatives were designed, synthesized and evaluated for the inhibitory activity against IDO1 and TDO. The enzymatic assay and structure-activity relationship studies led to the most potent compound 43b with IC50 values of 0.31 µM for IDO1 and 0.08 µM for TDO, respectively. Surface plasmon resonance (SPR) revealed direct binding affinity of compound 43b to IDO1 and TDO and molecular docking studies were performed to predict the possible binding mode. Further pharmacokinetic study and biological evaluation in vivo showed that 43b displayed acceptable pharmacokinetic profiles and potent antitumor efficacy with low toxicity in B16-F10 tumor model, which might provide some insights into the discovery of novel IDO1/TDO inhibitors for cancer immunotherapy.

9.
Methods Enzymol ; 704: 233-258, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39300649

RESUMEN

Kainoid natural products are a series of potent ionotropic glutamate receptor agonists produced by a variety of divergent marine micro- and macro-algae. The key biosynthetic step in the construction of the pyrrolidine ring pharmacophore involves a unique branch of non-heme iron α-ketoglutarate dependent dioxygenases (Fe/αKGs) termed the kainoid synthases. These Fe/αKG homologs catalyze a stereoselective C-H abstraction followed by a radical carbon-carbon bond reaction to form the bioactive core on N-prenylated L-glutamic acid substrates. In this article, we describe the expression, purification, and biochemical characterization of four divergent kainoid synthases (DabC, RadC1, DsKabC, GfKabC). Furthermore, we compare and contrast their substrate preferences and product distributions, and provide some preliminary insight into how to repurpose these enzymes for whole cell biocatalysis.


Asunto(s)
Proteínas Recombinantes , Especificidad por Sustrato , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Expresión Génica , Clonación Molecular/métodos
10.
Methods Enzymol ; 704: 3-25, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39300653

RESUMEN

Extradiol dioxygenases are a class of non-heme iron-dependent enzymes found in eukaryotes and prokaryotes that play a vital role in the aerobic catabolism of aromatic compounds. They are generally divided into three evolutionarily independent superfamilies with different protein folds. Our recent studies have shed light on the catalytic mechanisms and structure-function relationships of two specific extradiol dioxygenases: 3-hydroxyanthranilate-3,4-dioxygenase, a Type III enzyme essential in mammals for producing a precursor for nicotinamide adenine dinucleotide, and L-3,4-dihydroxyphenylalanine dioxygenase, an uncommon form of Type I enzymes involved in natural product biosynthesis. This work details the expression and isolation methods for these extradiol dioxygenases and introduces approaches to achieve homogeneity and high occupancy of the enzyme metal centers. Techniques such as ultraviolet-visible and electron paramagnetic resonance spectroscopies, as well as oxygen electrode measurements, are discussed for probing the interaction of the non-heme iron center with ligands and characterizing enzymatic activities. Moreover, protein crystallization has been demonstrated as a powerful tool to study these enzymes. We highlight in crystallo reactions and single-crystal spectroscopic methods to further elucidate enzymatic functions and protein dynamics.


Asunto(s)
Cristalino , Cristalino/enzimología , Cristalino/metabolismo , Animales , Oxigenasas/metabolismo , Oxigenasas/química , Oxigenasas/genética , Espectroscopía de Resonancia por Spin del Electrón/métodos , Dioxigenasas/metabolismo , Dioxigenasas/química , Dioxigenasas/genética
11.
Methods Enzymol ; 704: 39-58, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39300656

RESUMEN

Non-heme iron oxygenases constitute a versatile enzyme family that is crucial for incorporating molecular oxygen into diverse biomolecules. Despite their importance, only a limited number of these enzymes have been structurally and functionally characterized. Surprisingly, there remains a significant gap in understanding how these enzymes utilize a typical architecture and reaction mechanism to catalyze a wide range of reactions. Improving our understanding of these catalysts holds promise for advancing both fundamental enzymology and practical applications. This chapter aims to outline methods for heterologous expression, enzyme preparation, in vitro enzyme assays, and crystallization of biphenyl dioxygenase, phthalate dioxygenase and terephthalate dioxygenase. These enzymes catalyze the dihydroxylation of biphenyl, phthalate and terephthalate molecules, serving as a model for functional and structural analysis of other non-heme iron oxygenases.


Asunto(s)
Compuestos de Bifenilo , Cristalización , Ácidos Ftálicos , Ácidos Ftálicos/química , Ácidos Ftálicos/metabolismo , Compuestos de Bifenilo/química , Cinética , Cristalización/métodos , Dioxigenasas/química , Dioxigenasas/metabolismo , Dioxigenasas/genética , Hierro/química , Hierro/metabolismo , Cristalografía por Rayos X/métodos , Pruebas de Enzimas/métodos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Oxigenasas
12.
Methods Enzymol ; 703: 167-192, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39260995

RESUMEN

Rieske non-heme iron-dependent oxygenases (ROs) are a versatile group of enzymes traditionally associated with the degradation of aromatic xenobiotics. In addition, ROs have been found to play key roles in natural product biosynthesis, displaying a wide catalytic diversity with typically high regio- and stereo- selectivity. However, the detailed characterization of ROs presents formidable challenges due to their complex structural and functional properties, including their multi-component composition, cofactor dependence, and susceptibility to reactive oxygen species. In addition, the substrate availability of natural product biosynthetic intermediates, the limited solubility of aromatic hydrocarbons, and the radical-mediated reaction mechanism can further complicate functional assays. Despite these challenges, ROs hold immense potential as biocatalysts for pharmaceutical applications and bioremediation. Using cumene dioxygenase (CDO) from Pseudomonas fluorescens IP01 as a model enzyme, this chapter details techniques for characterizing ROs that oxyfunctionalize aromatic hydrocarbons. Moreover, potential pitfalls, anticipated complications, and proposed solutions for the characterization of novel ROs are described, providing a framework for future RO research and strategies for studying this enzyme class. In particular, we describe the methods used to obtain CDO, from construct design to expression conditions, followed by a purification procedure, and ultimately activity determination through various activity assays.


Asunto(s)
Oxigenasas , Pseudomonas fluorescens , Pseudomonas fluorescens/enzimología , Oxigenasas/metabolismo , Oxigenasas/química , Dioxigenasas/metabolismo , Dioxigenasas/química , Dioxigenasas/genética , Pruebas de Enzimas/métodos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Complejo III de Transporte de Electrones
13.
J Nanobiotechnology ; 22(1): 542, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39238020

RESUMEN

Phototherapy is a promising antitumor modality, which consists of photothermal therapy (PTT) and photodynamic therapy (PDT). However, the efficacy of phototherapy is dramatically hampered by local hypoxia in tumors, overexpression of indoleamine 2,3-dioxygenase (IDO) and programmed cell death ligand-1 (PD-L1) on tumor cells. To address these issues, self-assembled multifunctional polymeric micelles (RIMNA) were developed to co-deliver photosensitizer indocyanine green (ICG), oxygenator MnO2, IDO inhibitor NLG919, and toll-like receptor 4 agonist monophosphoryl lipid A (MPLA). It is worth noting that RIMNA polymeric micelles had good stability, uniform morphology, superior biocompatibility, and intensified PTT/PDT effect. What's more, RIMNA-mediated IDO inhibition combined with programmed death receptor-1 (PD-1)/PD-L1 blockade considerably improved immunosuppression and promoted immune activation. RIMNA-based photoimmunotherapy synergized with PD-1 antibody could remarkably inhibit primary tumor proliferation, as well as stimulate the immunity to greatly suppress lung metastasis and distant tumor growth. This study offers an efficient method to reinforce the efficacy of phototherapy and alleviate immunosuppression, thereby bringing clinical benefits to cancer treatment.


Asunto(s)
Neoplasias del Colon , Inmunoterapia , Micelas , Fototerapia , Polímeros , Receptor de Muerte Celular Programada 1 , Animales , Neoplasias del Colon/terapia , Neoplasias del Colon/inmunología , Neoplasias del Colon/tratamiento farmacológico , Ratones , Inmunoterapia/métodos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Polímeros/química , Línea Celular Tumoral , Fototerapia/métodos , Verde de Indocianina/química , Verde de Indocianina/uso terapéutico , Verde de Indocianina/farmacología , Ratones Endogámicos BALB C , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Femenino , Humanos , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Lípido A/análogos & derivados
14.
Sheng Wu Gong Cheng Xue Bao ; 40(9): 2786-2796, 2024 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-39319707

RESUMEN

2-ketoglutarate (2-KG)/Fe2+-dependent dioxygenases can catalyze the highly specific regio- and stereoselective functionalization of C(sp3)-H bond of complex compounds under mild reaction conditions. Hyoscyamine 6ß-hydroxylase (H6H), a member of these dioxygenases, catalyzes two consecutive oxidation reactions in the synthesis of scopolamine. The first reaction is the hydroxylation of hyoscyamine to 6ß-hydroxyhyoscyamine and the second is epoxidation of 6ß-hydroxyhyoscyamine. This paper introduces the catalytic mechanism, substrate scope, and application of H6H and evaluates the possibility of this enzyme as a biocatalyst for the functionalization of C(sp3)-H bond in complex compounds with different structural characteristics via hydroxylation or epoxidation, providing a theoretical basis for modification and application of this enzyme.


Asunto(s)
Oxigenasas de Función Mixta , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/química , Escopolamina , Oxidación-Reducción , Hidroxilación
15.
J Agric Food Chem ; 72(40): 22063-22072, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39318349

RESUMEN

While frequently used herbicides display limited efficacy against herbicide-resistant weeds, it becomes imperative to explore novel herbicides that ensure both effective weed management and environmental safety. Though 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitory herbicides like mesotrione are prevalent in maize weed management, their integration into rice production is hindered due to the inherent sensitivity of rice HPPD (OsHPPD). In this study, a mutant allele of OsHPPD featuring six amino acid substitutions, termed OsHPPD-6M, maintains enzymatic activity in 200 µm mesotrione while the wild type can only withstand 1 µm. Enzymatic assays in vitro indicated that the HPPD activity of OsHPPD-6M surpassed that of the WT by 2-fold through enhanced substrate-binding. Its overexpression in transgenic rice conferred greater tolerance to mesotrione, topramezone, and isoxaflutole by 36.7-, 41.6-, and 37.1-fold relative to that in the WT rice. Interestingly, these 6M-OE plants demonstrated substantially elevated contents of carotenoids compared to WT plants without a significant impact on agronomic traits.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Carotenoides , Resistencia a los Herbicidas , Herbicidas , Oryza , Proteínas de Plantas , Plantas Modificadas Genéticamente , Oryza/genética , Oryza/metabolismo , Oryza/enzimología , Oryza/química , 4-Hidroxifenilpiruvato Dioxigenasa/genética , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , 4-Hidroxifenilpiruvato Dioxigenasa/antagonistas & inhibidores , 4-Hidroxifenilpiruvato Dioxigenasa/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Herbicidas/farmacología , Herbicidas/química , Herbicidas/metabolismo , Resistencia a los Herbicidas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/química , Carotenoides/metabolismo , Mutagénesis , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Ciclohexanonas/farmacología , Ciclohexanonas/química , Ciclohexanonas/metabolismo , Malezas/genética , Malezas/efectos de los fármacos , Malezas/metabolismo , Malezas/enzimología
16.
Biomolecules ; 14(9)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39334883

RESUMEN

This review deals with the functional characteristics and biological roles of enzymes participating in DNA methylation and demethylation as key factors in epigenetic regulation of gene expression. The set of enzymes that carry out such processes in human cells is limited to representatives of two families, namely DNMT (DNA methyltransferases) and TET (DNA dioxygenases). The review presents detailed information known today about each functionally important member of these families and describes the catalytic activity and roles in the mammalian body while also providing examples of dysregulation of the expression and/or activity of these enzymes in conjunction with the development of some human disorders, including cancers, neurodegenerative diseases, and developmental pathologies. By combining the up-to-date information on the dysfunction of various enzymes that control the DNA "methylome" in the human body, we hope not only to draw attention to the importance of the maintenance of a required DNA methylation level (ensuring epigenetic regulation of gene expression and normal functioning of the entire body) but also to help identify new targets for directed control over the activity of the enzymes that implement the balance between processes of DNA methylation and demethylation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN , Dioxigenasas , Epigénesis Genética , Humanos , Dioxigenasas/metabolismo , Dioxigenasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Animales
17.
Int Immunopharmacol ; 142(Pt A): 113062, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244898

RESUMEN

Indoleamine 2,3-dioxygenase-1 (IDO-1) is an enzyme that catalyzes the metabolism of tryptophan (Trp). It is expressed in limited amounts in normal tissues but significantly upregulated during inflammation and infection. Various inflammatory factors, especially IFN-γ, can induce the expression of IDO-1. While extensive research has been conducted on the role of IDO-1 in tumors, its specific role in complex central nervous system tumors such as glioblastoma (GBM) remains unclear. This study aims to explore the role of IDO-1 in the development of GBM and analyze its association with tryptophan levels and CD8+T cell exhaustion in the tumor region. To achieve this, we constructed an orthotopic mouse glioblastoma tumor model to investigate the specific mechanisms between IDO-1, GBM, and CD8+T cell exhaustion. Our results showed that IDO-1 can promote CD8+T cell exhaustion by reducing tryptophan levels. When IDO-1 was knocked down in glioblastoma cells, other cells within the tumor microenvironment upregulated IDO-1 expression to compensate for the loss and enhance immunosuppressive effects. Therefore, the data suggest that the GBM microenvironment controls tryptophan levels by regulating IDO-1 expression, which plays a critical role in immune suppression. These findings support the use of immune therapy in combination with IDO-1 inhibitors or tryptophan supplementation as a potential treatment strategy.


Asunto(s)
Linfocitos T CD8-positivos , Glioblastoma , Indolamina-Pirrol 2,3,-Dioxigenasa , Triptófano , Microambiente Tumoral , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Glioblastoma/inmunología , Glioblastoma/metabolismo , Triptófano/metabolismo , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Humanos , Ratones , Microambiente Tumoral/inmunología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Ratones Endogámicos C57BL , Agotamiento de Células T
18.
Methods Enzymol ; 703: 147-166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39260994

RESUMEN

Mammalian cysteamine dioxygenase (ADO), a mononuclear non-heme Fe(II) enzyme with three histidine ligands, plays a key role in cysteamine catabolism and regulation of the N-degron signaling pathway. Despite its importance, the catalytic mechanism of ADO remains elusive. Here, we describe an HPLC-MS assay for characterizing thiol dioxygenase catalytic activities and a metal-substitution approach for mechanistic investigation using human ADO as a model. Two proposed mechanisms for ADO differ in oxygen activation: one involving a high-valent ferryl-oxo intermediate. We hypothesized that substituting iron with a metal that has a disfavored tendency to form high-valent states would discriminate between mechanisms. This chapter details the expression, purification, preparation, and characterization of cobalt-substituted ADO. The new HPLC-MS assay precisely measures enzymatic activity, revealing retained reactivity in the cobalt-substituted enzyme. The results obtained favor the concurrent dioxygen transfer mechanism in ADO. This combined approach provides a powerful tool for studying other non-heme iron thiol oxidizing enzymes.


Asunto(s)
Espectrometría de Masas , Cromatografía Líquida de Alta Presión/métodos , Humanos , Espectrometría de Masas/métodos , Cobalto/química , Cobalto/metabolismo , Dioxigenasas/metabolismo , Dioxigenasas/química , Pruebas de Enzimas/métodos , Oxígeno/metabolismo , Oxidación-Reducción , Cromatografía Líquida con Espectrometría de Masas
19.
Inflammopharmacology ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39261408

RESUMEN

Cysteamine (CA) induces duodenal ulcers in rodents (Selye and Szabo, Nature 244:458-459, 1973). Cysteine (Cys), a precursor for the formation of CA (via catabolism of coenzyme A), does not cause lesions in the duodenum (Szabo et al., J Pharmacol Exp Ther 223:68-76, 1982). CA also has antimutagenic and anticancer pharmacology (Fujisawa et al., PLoS ONE 7, 2012; Lee, Adv Pharmacol Pharm Sci 2023:2419444, 2023). We propose a mechanism of CA-induced cell death dependent on oxygen and CA dioxygenase (ADO) that can explain the 50-year-old mystery as to why CA is, but Cys is not, ulcerogenic. Those cells expressing coenzyme A-catabolizing enzymes are subject to a unique type of oxygen- and enzyme-bound-Fe2+-dependent death, type II ferroptosis.

20.
Methods Enzymol ; 703: 121-145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39260993

RESUMEN

Thiol dioxygenases (TDOs) are non­heme Fe(II)­dependent enzymes that catalyze the O2-dependent oxidation of thiol substrates to their corresponding sulfinic acids. Six classes of TDOs have thus far been identified and two, cysteine dioxygenase (CDO) and cysteamine dioxygenase (ADO), are found in eukaryotes. All TDOs belong to the cupin superfamily of enzymes, which share a common ß­barrel fold and two cupin motifs: G(X)5HXH(X)3-6E(X)6G and G(X)5-7PXG(X)2H(X)3N. Crystal structures of TDOs revealed that these enzymes contain a relatively rare, neutral 3­His iron­binding facial triad. Despite this shared metal-binding site, TDOs vary greatly in their secondary coordination spheres. Site­directed mutagenesis has been used extensively to explore the impact of changes in secondary sphere residues on substrate specificity and enzymatic efficiency. This chapter summarizes site-directed mutagenesis studies of eukaryotic TDOs, focusing on the tools and practicality of non­standard amino acid incorporation.


Asunto(s)
Aminoácidos , Dioxigenasas , Mutagénesis Sitio-Dirigida , Dioxigenasas/química , Dioxigenasas/metabolismo , Dioxigenasas/genética , Aminoácidos/metabolismo , Aminoácidos/química , Especificidad por Sustrato , Cisteína-Dioxigenasa/química , Cisteína-Dioxigenasa/metabolismo , Cisteína-Dioxigenasa/genética , Compuestos de Sulfhidrilo/metabolismo , Compuestos de Sulfhidrilo/química , Humanos , Animales , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA