Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(3): 145, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372818

RESUMEN

A direct electrochemical sensor based on covalent organic frameworks (COFs)/platinum nanoparticles (PtNPs) composite was fabricated for the detection of ofloxacin (OFX) in water. Firstly, the COF material was synthesized via the condensation reaction of 1,3,5-tris(4-aminophenyl)benzene (TAPB) with terephthalaldehyde (TPA) and integrated with PtNPs by in situ reduction. Then, TAPB-TPA-COFs/PtNPs composite was loaded onto the surface of the glassy carbon electrode (GCE) by drip coating to construct the working electrode (TAPB-TPA-COFs/PtNPs/GCE). The electrochemical performance of TAPB-TPA-COFs/PtNPs/GCE showed a significant improvement compared with that of TAPB-TPA-COFs/GCE, leading to a 3.2-fold increase in the electrochemical signal for 0.01 mM OFX. Under optimal conditions, the TAPB-TPA-COFs/PtNPs/GCE exhibited a wide linear range of 9.901 × 10-3-1.406 µM and 2.024-15.19 µM with a detection limit of 2.184 × 10-3 µM. The TAPB-TPA-COFs/PtNPs/GCE-based electrochemical sensor with excellent performance provides great potential for the rapid and trace detection of residual OFX.

2.
Nanomaterials (Basel) ; 13(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36770354

RESUMEN

A novel direct electrochemical sensor, based on a pyridine diketopyrrolopyrrole/graphene oxide nanocomposite-modified glass carbon electrode (PDPP/GO/GCE), was developed herein for chloramphenicol (CAP) detection. In this research, PDPP was grafted onto GO by C-N bonds and π-π conjugation, which were synergistically confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The morphology study shows that PDPP was uniformly dispersed on the GO in the form of particles. The constructed PDPP/GO/GCE showed the strongest response signal to CAP in the evaluation of electrocatalytic activity by cyclic voltammetry compared to that of GO-modified and unmodified GCE, revealing that the introduction of PDPP can effectively improve the electrocatalytic activity of sensors. Moreover, PDPP/GO/GCE had a noticeable current signal when the concentration of CAP was as low as 0.001 uM and had a wide line range (0.01-780 uM) with a low limit of detection (1.64 nM). The sensor properties of the as-obtained PDPP/GO/GCE involved anti-interference, reproducibility, and stability, which were also evaluated and revealed satisfactory results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA