Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Water Res ; 258: 121830, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823285

RESUMEN

Distance-decay (DD) equations can discern the biogeographical pattern of organisms and genes in a better way with advanced statistical methods. Here, we developed a data Compilation, Arrangement, and Statistics framework to advance quantile regression (QR) into the generation of DD equations for antibiotic resistance genes (ARGs) across various spatial scales using freshwater reservoirs as an illustration. We found that QR is superior at explaining dissemination potential of ARGs to the traditionally used least squares regression (LSR). This is because our model is based on the 'law of limiting factors', which reduces influence of unmeasured factors that reduce the efficacy of the LSR method. DD equations generated from the 99th QR model for ARGs were 'Sall = 90.03e-0.01Dall' in water and 'Sall = 92.31e-0.011Dall' in sediment. The 99th QR model was less impacted by uneven sample sizes, resulting in a better quantification of ARGs dissemination. Within an individual reservoir, the 99th QR model demonstrated that there is no dispersal limitation of ARGs at this smaller spatial scale. The QR method not only allows for construction of robust DD equations that better display dissemination of organisms and genes across ecosystems, but also provides new insights into the biogeography exhibited by key parameters, as well as the interactions between organisms and environment.


Asunto(s)
Farmacorresistencia Microbiana , Agua Dulce , Agua Dulce/microbiología , Farmacorresistencia Microbiana/genética , Antibacterianos/farmacología
2.
Front Microbiol ; 8: 632, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28450856

RESUMEN

Currency is possibly one of the main media transmitting pathogens and drug resistance due to its wide circulation in daily life. In this study, we made a comprehensive characterization of the bacterial community present on banknotes collected from different geographical regions of Hong Kong (HK) by performing in vitro characterization of the bacterial presence and resistome profile, as well as metagenomic analysis including microbial diversity, the prevalence of potential pathogens, the dissemination potential of antibiotic-resistance genes (ARGs), among others. When comparing the bacterial community of HK banknotes with other HK environmental samples, including water and marine sediment, we revealed that HK banknotes cover nearly 50% of total genera found in all the environmental samples, implying that banknotes harbor diverse bacteria originated from a variety of environments. Furthermore, the banknotes have higher abundance of potential pathogenic species (~5 times more) and ARGs (~5 times more) with higher dissemination potential (~48 times more) compared with other environmental samples. These findings unveiled the capabilities of this common medium of exchange to accommodate various bacteria, and transmit pathogens and antibiotic resistance. Furthermore, the observed independence of microbiome profile from the city's topological indices led us to formulate a hypothesis that due to their high circulation banknotes may harbor a homogenized microbiome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA