Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Med Biol Eng Comput ; 62(10): 3107-3122, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38777935

RESUMEN

Anatomical airway labeling is crucial for precisely identifying airways displaying symptoms such as constriction, increased wall thickness, and modified branching patterns, facilitating the diagnosis and treatment of pulmonary ailments. This study introduces an innovative airway labeling methodology, BranchLabelNet, which accounts for the fractal nature of airways and inherent hierarchical branch nomenclature. In developing this methodology, branch-related parameters, including position vectors, generation levels, branch lengths, areas, perimeters, and more, are extracted from a dataset of 1000 chest computed tomography (CT) images. To effectively manage this intricate branch data, we employ an n-ary tree structure that captures the complicated relationships within the airway tree. Subsequently, we employ a divide-and-group deep learning approach for multi-label classification, streamlining the anatomical airway branch labeling process. Additionally, we address the challenge of class imbalance in the dataset by incorporating the Tomek Links algorithm to maintain model reliability and accuracy. Our proposed airway labeling method provides robust branch designations and achieves an impressive average classification accuracy of 95.94% across fivefold cross-validation. This approach is adaptable for addressing similar complexities in general multi-label classification problems within biomedical systems.


Asunto(s)
Algoritmos , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/diagnóstico por imagen , Sistema Respiratorio/diagnóstico por imagen , Sistema Respiratorio/anatomía & histología , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA