Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(31): e2401648, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38874068

RESUMEN

Efficient topical drug delivery remains a significant challenge in glaucoma management. Although nanoparticle formulations offer considerable promise, their complex preparation processes, co-delivery issues, and batch consistency have hindered their potential. A scalable fabrication strategy is developed here for preparing solid drug nanoparticles (SDNs) with enhanced drug delivery efficiency. Utilizing hydrophobic antiglaucoma drugs brimonidine (BM) and betaxolol (BX), uniform fixed combination BM/BX SDNs are fabricated through a continuous process, improving batch-to-batch consistency for combined glaucoma treatment. With trehalose being used as a lyoprotectant, BM/BX SDNs can be stored as dry powder and easily reconstituted in phosphate buffered saline. Importantly, reconstituted BM/BX SDNs form clear, homogenous solutions, and exhibit negligible cytotoxicity and irritation, making them well-suited for topical administration as eyedrops. Ex vivo and in vivo studies demonstrated that topically applied BM/BX SDNs permeate through the cornea significantly (about two fold to three fold) compared to their hydrophilic counterparts, i.e., brimonidine tartrate, and betaxolol hydrogen chloride. Notably, BM/BX SDNs displayed consistent intraocular pressure lowering effects in vivo in both normotensive rats and glaucoma mice. Collectively, this study demonstrates the potential of the scalable fabrication strategy and the resultant BM/BX SDNs for improving glaucoma management through eyedrops.


Asunto(s)
Betaxolol , Tartrato de Brimonidina , Glaucoma , Presión Intraocular , Nanopartículas , Animales , Glaucoma/tratamiento farmacológico , Presión Intraocular/efectos de los fármacos , Tartrato de Brimonidina/administración & dosificación , Tartrato de Brimonidina/farmacología , Nanopartículas/química , Betaxolol/administración & dosificación , Modelos Animales de Enfermedad , Ratas , Sistemas de Liberación de Medicamentos/métodos , Antihipertensivos/administración & dosificación , Antihipertensivos/farmacología , Ratones , Soluciones Oftálmicas/administración & dosificación
2.
Pharmaceutics ; 16(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38543222

RESUMEN

Wet media milling is a fully industrialized technology for the manufacturing of drug nanocrystal suspensions. This work describes the development of an advanced control strategy and an associated design space for a manufacturing process at a commercial scale. Full-scale experiments and mechanistic process modeling have been used to establish a physically reasonable control strategy of factors relevant to the quality attributes of the nanocrystal suspension. The design space has been developed based on a mature mechanistic process model of the wet media milling procedure. It presents the process-product attribute relationship between a multidimensional range of measured process parameters and a range of the product-quality attribute mean particle sizes. The control strategy allows for simple, robust, and sound scientific process control as well as the operational flexibility of the suspension batch size. This is an industrial case study of control strategy and design-space definition with the crucial contribution of mechanistic process modeling for an intended commercial manufacturing process.

3.
Pharmaceutics ; 16(3)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38543247

RESUMEN

We examined the evolution of fenofibrate (FNB, drug) particle size distribution (PSD) during the production of nanosuspensions via wet stirred media milling (WSMM) with a cell-based population balance model (PBM). Our objective was to elucidate the potential impacts of batch size, suspension volumetric flow rate, and imperfect mixing in a recirculating WSMM. Various specific breakage rate functions were fitted to experimental PSD data at baseline conditions assuming perfect mixing. Then, the best function was used to simulate the PSD evolution at various batch sizes and flow rates to validate the model. A novel function, which is a product of power-law and logistic functions, fitted the evolution the best, signifying the existence of a transition particle size commensurate with a grinding limit. Although larger batches yielded coarser and wider PSDs, the suspensions had identical PSDs when milled for the same effective milling time. The flow rate had an insignificant influence on the PSD. Furthermore, the imperfect mixing in the mill chamber was simulated by considering more than one cell and different back-mixing flow ratios. The effects were weak and restricted to the first few turnovers. These insights contribute to our understanding of recirculating WSMM, providing valuable guidance for process development.

4.
Adv Sci (Weinh) ; 11(17): e2302872, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38445882

RESUMEN

Glioblastoma (GBM) is hard to treat due to cellular invasion into functioning brain tissues, limited drug delivery, and evolved treatment resistance. Recurrence is nearly universal even after surgery, chemotherapy, and radiation. Photodynamic therapy (PDT) involves photosensitizer administration followed by light activation to generate reactive oxygen species at tumor sites, thereby killing cells or inducing biological changes. PDT can ablate unresectable GBM and sensitize tumors to chemotherapy. Verteporfin (VP) is a promising photosensitizer that relies on liposomal carriers for clinical use. While lipids increase VP's solubility, they also reduce intracellular photosensitizer accumulation. Here, a pure-drug nanoformulation of VP, termed "NanoVP", eliminating the need for lipids, excipients, or stabilizers is reported. NanoVP has a tunable size (65-150 nm) and 1500-fold higher photosensitizer loading capacity than liposomal VP. NanoVP shows a 2-fold increase in photosensitizer uptake and superior PDT efficacy in GBM cells compared to liposomal VP. In mouse models, NanoVP-PDT improved tumor control and extended animal survival, outperforming liposomal VP and 5-aminolevulinic acid (5-ALA). Moreover, low-dose NanoVP-PDT can safely open the blood-brain barrier, increasing drug accumulation in rat brains by 5.5-fold compared to 5-ALA. NanoVP is a new photosensitizer formulation that has the potential to facilitate PDT for the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Sistemas de Liberación de Medicamentos , Fotoquimioterapia , Fármacos Fotosensibilizantes , Verteporfina , Animales , Fotoquimioterapia/métodos , Verteporfina/farmacología , Verteporfina/uso terapéutico , Ratones , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Glioblastoma/tratamiento farmacológico , Nanopartículas/química , Modelos Animales de Enfermedad , Humanos , Ratas , Liposomas , Línea Celular Tumoral , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos
5.
Int J Pharm ; 651: 123743, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38151103

RESUMEN

HYPOTHESIS: The stabilization and isolation to dryness of drug nanoparticles has always been a challenge for nano-medicine production. In the past, the use of montmorillonite (MMT) clay carrier particles to adsorb drug nanoparticles and maintain their high surface area to volume ratio after isolation to dryness has proven to be effective. We hypothesise that the distribution of hydrophilic and hydrophobic patches on the clay's surface as well as its porosity/roughness, hinder the agglomeration of the drug nanoparticles to the extent that they retain their high surface area to volume ratio and display fast dissolution profiles. EXPERIMENTS: In this work, the distribution of hydrophobicity and hydrophilicity, and the porosity/roughness, of the surface of selected silica carrier particles were varied and the impact of these variations on drug nanoparticle attachment to the carrier particle and subsequent dissolution profiles was studied. FINDINGS: The fastest dissolution profiles at the highest drug nanoparticle loadings were obtained with a periodic mesoporous organosilane carrier particle which had a homogeneous distribution of hydrophobic and hydrophilic surface properties. Carrier particles with rough/porous surfaces and a combination of hydrophobic and hydrophilic patches resulted in nanocomposite powders with faster dissolution behaviour than carrier particles with predominantly either a hydrophobic or hydrophilic surface, or with non-porous/smoother surfaces.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Arcilla , Solubilidad , Nanopartículas/química , Dióxido de Silicio/química , Propiedades de Superficie , Tamaño de la Partícula
6.
Nanomaterials (Basel) ; 13(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686927

RESUMEN

We prepared hybrid nanocrystal-amorphous solid dispersions (HyNASDs) to examine their supersaturation capability in the release of a poorly soluble drug, itraconazole (ITZ), a slow crystallizer during dissolution. The HyNASD formulations included a polymer (HPC: hydroxypropyl cellulose, Sol: Soluplus, or VA64: Kollidon-VA64) and a surfactant (SDS: sodium dodecyl sulfate). Additionally, the dissolution performance of the HyNASDs and ASDs was compared. To this end, wet-milled aqueous nanosuspensions containing a 1:5 ITZ:polymer mass ratio with/without SDS as well as solutions of the same ratio without SDS in dichloromethane were spray-dried. XRPD-DSC confirmed that ASDs were formed upon spray drying the solution-based feeds, whereas HyNASDs (~5-30% amorphous) were formed with the nanosuspension-based feeds. SDS aided to stabilize the ITZ nanosuspensions and increase the amorphous content in the spray-dried powders. During dissolution, up to 850% and 790% relative supersaturation values were attained by HyNASDs with and without SDS, respectively. Due to the stronger molecular interaction between ITZ-Sol than ITZ-HPC/VA64 and micellar solubilization by Sol, Sol-based HyNASDs outperformed HPC/VA64-based HyNASDs. While the ASD formulations generated greater supersaturation values (≤1670%) than HyNASDs (≤790%), this extent of supersaturation from a largely nanocrystalline formulation (HyNASD) has not been achieved before. Overall, HyNASDs could boost drug release from nanoparticle-based formulations and may render them competitive to ASDs.

7.
Pharmaceutics ; 15(9)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37765182

RESUMEN

The impacts of bead sizes and bead mixtures on breakage kinetics, the number of milling cycles applied to prevent overheating, and power consumption during the nanomilling of drug (griseofulvin) suspensions were investigated from both an experimental and theoretical perspective. Narrowly sized zirconia beads with nominal sizes of 100, 200, and 400 µm and their half-and-half binary mixtures were used at 3000 and 4000 rpm with two bead loadings of 0.35 and 0.50. Particle size evolution was measured during the 3 h milling experiments using laser diffraction. An nth-order breakage model was fitted to the experimental median particle size evolution, and various microhydrodynamic parameters were calculated. In general, the beads and their mixtures with smaller median sizes achieved faster breakage. While the microhydrodynamic model explained the impacts of process parameters, it was limited in describing bead mixtures. For additional test runs performed, the kinetics model augmented with a decision tree model using process parameters outperformed that augmented with an elastic-net regression model using the microhydrodynamic parameters. The evaluation of the process merit scores suggests that the use of bead mixtures did not lead to notable process improvement; 100 µm beads generally outperformed bead mixtures and coarser beads in terms of fast breakage, low power consumption and heat generation, and low intermittent milling cycles.

8.
Eur J Pharm Sci ; 188: 106497, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37329925

RESUMEN

Semi-solid extrusion (SSE) 3D printing enables flexible designs and dose sizes to be printed on demand and is a suitable tool for fabricating personalized dosage forms. Controlled Expansion of Supercritical Solution (CESS®) is a particle size reduction technology, and it produces particles of a pure active pharmaceutical ingredient (API) in a dry state, suspendable in the printing ink. In the current study, as a model API of poorly water-soluble drug, nanoformed piroxicam (nanoPRX) prepared by CESS® was accommodated in hydroxypropyl methylcellulose- or hydroxypropyl cellulose-based ink formulations to warrant the printability in SSE 3D printing. Importantly, care must be taken when developing nanoPRX formulations to avoid changes in their polymorphic form or particle size. Printing inks suitable for SSE 3D printing that successfully stabilized the nanoPRX were developed. The inks were printed into films with escalating doses with exceptional accuracy. The original polymorphic form of nanoPRX in the prepared dosage forms was not affected by the manufacturing process. In addition, the conducted stability study showed that the nanoPRX in the prepared dosage form remained stable for at least three months from printing. Overall, the study rationalizes that with nanoparticle-based printing inks, superior dose control for the production of personalized dosage forms of poorly water-soluble drugs at the point-of-care can be achieved.


Asunto(s)
Piroxicam , Impresión Tridimensional , Tecnología , Excipientes , Agua
9.
Pharmaceutics ; 14(12)2022 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36559333

RESUMEN

Although temperature can significantly affect the stability and degradation of drug nanosuspensions, temperature evolution during the production of drug nanoparticles via wet stirred media milling, also known as nanomilling, has not been studied extensively. This study aims to establish both descriptive and predictive capabilities of a semi-theoretical lumped parameter model (LPM) for temperature evolution. In the experiments, the mill was operated at various stirrer speeds, bead loadings, and bead sizes, while the temperature evolution at the mill outlet was recorded. The LPM was formulated and fitted to the experimental temperature profiles in the training runs, and its parameters, i.e., the apparent heat generation rate Qgen and the apparent overall heat transfer coefficient times surface area UA, were estimated. For the test runs, these parameters were predicted as a function of the process parameters via a power law (PL) model and machine learning (ML) model. The LPM augmented with the PL and ML models was used to predict the temperature evolution in the test runs. The LPM predictions were also compared with those of an enthalpy balance model (EBM) developed recently. The LPM had a fitting capability with a root-mean-squared error (RMSE) lower than 0.9 °C, and a prediction capability, when augmented with the PL and ML models, with an RMSE lower than 4.1 and 2.1 °C, respectively. Overall, the LPM augmented with the PL model had both good descriptive and predictive capability, whereas the one with the ML model had a comparable predictive capability. Despite being simple, with two parameters and obviating the need for sophisticated numerical techniques for its solution, the semi-theoretical LPM generally predicts the temperature evolution similarly or slightly better than the EBM. Hence, this study has provided a validated, simple model for pharmaceutical engineers to simulate the temperature evolution during the nanomilling process, which will help to set proper process controls for thermally labile drugs.

10.
Nanomaterials (Basel) ; 12(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35564110

RESUMEN

Traditional and supercritical CO2 assisted processes are frequently used to produce microparticles formed by a biopolymer containing an active principle to improve the bioavailability of the active principle. However, information about the internal organization of these microparticles is still scarce. In this work, a suspension of dextran + Fe3O4 nanoparticles (model system) and a solution of polyvinylpyrrolidone (PVP) + curcumin were used to produce spherical microparticles by supercritical CO2 processing. Periodic dynamic light scattering measurements were used to analyze the evolution of the microparticles dissolution, size, and size distribution of the guest active principle in the polymeric matrix. It was found that curcumin was dispersed in the form of nanoparticles in the PVP microparticles, whose size largely depended on its relative concentration. These results were validated by transmission electron microscopy and scanning electron microscopy of the PVP microparticles and curcumin nanoparticles, before and after the dissolution tests.

11.
Mol Pharm ; 19(1): 188-199, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34843257

RESUMEN

Amorphous drug nanoparticles usually exhibit low storage stability. A comprehensive understanding of the molecular states and physicochemical properties of the product is indispensable for designing stable formulations. In the present study, an amorphous cyclosporin A (CyA) nanosuspension with a mean particle size of approximately 370 nm was prepared by wet bead milling with poloxamer 407 (P407). Interestingly, the prepared amorphous CyA nanoparticles were transformed into uniform CyA nanocrystals with a reduced mean particle size of approximately 200 nm during storage at 25 °C. The CyA nanocrystals were stably maintained for at least 1 month. The particle morphologies and molecular structures of the CyA nanosuspensions before and after storage were thoroughly characterized by cryogenic transmission electron microscopy and magic-angle spinning nuclear magnetic resonance spectroscopy, respectively. They revealed that the freshly prepared amorphous CyA nanoparticles (∼370 nm) were secondary particles composed of aggregated primary particles with an estimated size of 50 nm. A portion of P407 was found to be entrapped at the gaps between the primary particles due to aggregation, while most of P407 was dissolved in the solution either adsorbing at the solid/liquid interface or forming polymeric micelles. The entrapped P407 is considered to play an important role in the destabilization of the amorphous CyA nanoparticles. The resultant CyA nanocrystals (∼200 nm) were uniform single crystals of Form 2 hydrate and showed corner-truncated bipyramidal features. Owing to the narrow particle size distribution of the CyA nanocrystals, the rate of Ostwald ripening was slow, giving long-term stability to the CyA nanocrystals. This study provides new insights into the destabilization mechanism of amorphous drug nanoparticles.


Asunto(s)
Ciclosporina/química , Nanopartículas/química , Poloxámero , Ciclosporina/administración & dosificación , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Transmisión , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Solubilidad , Soluciones
12.
Curr Pharm Des ; 28(2): 104-115, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34348617

RESUMEN

With the increasing worldwide rate of chronic diseases, such as cancer, the development of novel techniques to improve the efficacy of therapeutic agents is highly demanded. Nanoparticles are especially well suited to encapsulate drugs and other therapeutic agents, bringing additional advantages, such as less frequent dosage requirements, reduced side effects due to specific targeting, and therefore increased patient compliance. However, with the increasing use of nanoparticles and their recent launch on the pharmaceutical market, it is important to achieve high-quality control of these advanced systems. In this review, we discuss the properties of different nanoparticles, the pharmacokinetics, the biosafety issues of concern, and conclude with novel nanotherapeutics and nanotheragnostics for cancer drug delivery.


Asunto(s)
Nanopartículas , Neoplasias , Biofarmacia , Contención de Riesgos Biológicos , Sistemas de Liberación de Medicamentos , Humanos , Nanomedicina/métodos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico
13.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34830298

RESUMEN

Nanosizing is an approach to improve the dissolution rate of poorly soluble drugs. The first aim of this work was to develop nanosuspension of cilostazol with liquid antisolvent precipitation (LASP) and its combination with ultrasound. Second, to systematically study the effect of bottom-up processing factors on precipitated particles' size and identify the optimal settings for the best reduction. After solvent and stabilizer screening, in-depth process characterization and optimization was performed using Design of Experiments. The work discusses the influence of critical factors found with statistical analysis: feed concentration, stabilizer amount, stirring speed and ultrasound energy governed by time and amplitude. LASP alone only generated particle size of a few microns, but combination with ultrasound was successful in nanosizing (d10 = 0.06, d50 = 0.33, d90 = 1.45 µm). Micro- and nanosuspension's stability, particle morphology and solid state were studied. Nanosuspension displayed higher apparent solubility than equilibrium and superior dissolution rate over coarse cilostazol and microsuspension. A bottom-up method of precipitation-sonication was demonstrated to be a successful approach to improve the dissolution characteristics of poorly soluble, BCS class II drug cilostazol by reducing its particle size below micron scale, while retaining nanosuspension stability and unchanged crystalline form.


Asunto(s)
Precipitación Química , Cilostazol/química , Nanopartículas/química , Sonicación/métodos , Ondas Ultrasónicas , Cristalización , Composición de Medicamentos/métodos , Excipientes/química , Tamaño de la Partícula , Solubilidad , Solventes/química , Suspensiones , Temperatura
14.
Chembiochem ; 22(22): 3184-3189, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34468067

RESUMEN

To overcome high toxicity, low bioavailability and poor water solubility of chemotherapeutics, a variety of drug carriers have been designed. However, most carriers are severely limited by low drug loading capacity and adverse side effects. Here, a new type of metal-drug nanoparticles (MDNs) was designed and synthesized. The MDNs self-assembled with Fe(III) ions and drug molecules through coordination, resulting in nanoparticles with high drug loading. To assist systemic delivery and prolong circulation time, the obtained MDNs were camouflaged with red blood cell (RBCs) membranes (RBCs@Fe-DOX MDNs) to improve their stability and dispersity. The RBCs@Fe-DOX MDNs presented pH-responsive release functionalities, resulting in drug release accelerated in acidic tumor microenvironments. The outstanding in vitro and in vivo antitumor therapeutic outcome was realized by RBCs@Fe-DOX MDNs. This study provides an innovative design guideline for chemotherapy and demonstrates the great capacity of nanomaterials in anticancer treatments.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Membrana Celular/química , Doxorrubicina/farmacología , Eritrocitos/química , Compuestos Férricos/farmacología , Nanopartículas/química , Animales , Antibióticos Antineoplásicos/síntesis química , Antibióticos Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Férricos/química , Concentración de Iones de Hidrógeno , Ratones , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Tamaño de la Partícula
15.
Int J Pharm ; 607: 120984, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34389423

RESUMEN

Probucol (PBC)/hypromellose (HPMC)/sodium dodecyl sulfate (SDS) ternary solid dispersions (SDs) of various weight ratios were prepared and evaluated to unveil the effect of HPMC and SDS on the formation of amorphous PBC nanoparticles. The morphological variation of the PBC nanoparticles prepared using SDs of different compositions was determined using dynamic light scattering and cryogenic transmission electron microscopy (cryo-TEM). Statistical analysis of particle size versus roundness of PBC nanoparticles was carried out based on cryo-TEM images. A clear correlation was observed between the morphologies of the PBC nanoparticles and the amounts of HPMC and SDS, either admixed in SDs or pre-dissolved in an aqueous solution. The admixed HPMC in SDs was demonstrated to play the major role in determining the primary particle sizes of discrete amorphous PBC nanoparticles. Based on 13C solid-state NMR spectroscopy, this phenomenon should be due to the enlarged size of the PBC-rich domains in SDs, which depended on the decreasing amounts of admixed HPMC. Although the pre-dissolved part of HPMC had less impact on the primary particle sizes, it was found to inhibit the particle agglomeration and recrystallization of amorphous PBC nanoparticles. On the other hand, sufficient SDS admixed in SDs could suppress the size enhancement of the PBC-rich domains during water immersion and nanoparticle evolution (agglomeration and crystallization) after aqueous dispersion. The pre-dissolved SDS could restrain the agglomeration of amorphous PBC nanoparticles, ultimately forming hundreds of irregular nanometer-order structures. Since the increase in size during water immersion, their sizes were still slightly larger than those obtained with a high portion of admixed SDS. The findings of this study clarified the usefulness and necessity of adding polymers and surfactants to SDs to fabricate drug nanoparticle formulations.


Asunto(s)
Nanopartículas , Preparaciones Farmacéuticas , Derivados de la Hipromelosa , Tamaño de la Partícula , Solubilidad , Agua
16.
Biomaterials ; 275: 120897, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34052523

RESUMEN

Immune checkpoint blockade therapy, particularly the use of engineered monoclonal antibodies against programmed cell death protein 1 (α-PD1) for activating T cells to kill cancer cells, becomes an effective strategy for cancer treatment. Despite its durable clinical responses, the modest response rates largely restrict the extensive implementation of this approach. Here, a combination of chemotherapy and photodynamic therapy to augment antitumor responses of α-PD1 has been achieved by core-shell metal ion-drug nanoparticles. The core and shell are separately formed by self-assembly of manganese ions with chemotherapeutic doxorubicin and photosensitizer chlorin e6, resulting in nanoparticles with drug loading up to 90 weight%. To assist systemic delivery and prolong circulation time, the obtained nanoparticles are coated with red blood cell membranes that can improve their dispersity and stability. Following intravenous injection into immunocompetent tumor-bearing mice, the coated nanoparticles initiate enhanced antitumor responses of α-PD1 against both primary and distant tumors. In addition, the presence of manganese ions offers strong contrast in T1-weighted magnetic resonance imaging of tumors. Multimodal core-shell metal ion-drug nanoparticles suggest an alternative to boost anticancer responses and open a window for improving the response rates of immune checkpoint blockade therapy.


Asunto(s)
Nanopartículas Multifuncionales , Nanopartículas , Neoplasias , Preparaciones Farmacéuticas , Fotoquimioterapia , Animales , Línea Celular Tumoral , Doxorrubicina , Ratones , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes
17.
Pharmaceutics ; 13(4)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920184

RESUMEN

Nanoprecipitation is one of the most versatile methods to produce pure drug nanoparticles (PDNPs) owing to the ability to optimize the properties of the product. Nevertheless, nanoprecipitation may result in broad particle size distribution, low physical stability, and batch-to-batch variability. Microfluidics has emerged as a powerful tool to produce PDNPs in a simple, reproducible, and cost-effective manner with excellent control over the nanoparticle size. In this work, we designed and fabricated T- and Y-shaped Si-made microfluidic devices and used them to produce PDNPs of three kinase inhibitors of different lipophilicity and water-solubility, namely imatinib, dasatinib and tofacitinib, without the use of colloidal stabilizers. PDNPs display hydrodynamic diameter in the 90-350 nm range as measured by dynamic light scattering and a rounded shape as visualized by high-resolution scanning electron microscopy. Powder X-ray diffraction and differential scanning calorimetry confirmed that this method results in highly amorphous nanoparticles. In addition, we show that the flow rate of solvent, the anti-solvent, and the channel geometry of the device play a key role governing the nanoparticle size.

18.
Int J Pharm ; 597: 120199, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33486046

RESUMEN

This work investigated the technical feasibility of preparing, stabilizing and isolating poorly water-soluble drug nanoparticles via a small-scale antisolvent precipitation process operating in semi-continuous mode. Specifically, a novel semi-continuous process was demonstrated for the carrier particle mediated production, stabilization and isolation of valsartan nanoparticles into a solid form using montmorillonite clay particles as the carrier. The semi-continuous process operated robustly for the full duration of the experiment (~16 min) and steady-state conditions were reached after ~5 min. Nanoparticles of valsartan (51 ± 1 nm) were successfully prepared, stabilized and isolated with the help of montmorillonite (MMT) or protamine functionalized montmorillonite (PA-MMT) into the dried form by this semi-continuous route. The dissolution profile of the isolated valsartan nanocomposite solids was similar to that of valsartan nanocomposite solids produced via the corresponding laboratory scale batch mode process, indicating that the product quality (principally the nanoscale particle size and solid-state form) is retained during the semi-continuous processing of the nanoparticles. Furthermore, tablets produced via direct compression of the isolated valsartan nanocomposite solids displayed a dissolution profile comparable with that of the powdered nanocomposite material. PXRD, DSC, SSNMR and dissolution studies indicate that the valsartan nanoparticles produced via this semi-continuous process were amorphous and exhibited shelf-life stability equivalent to > 10 months.


Asunto(s)
Nanopartículas , Tamaño de la Partícula , Solubilidad , Comprimidos , Valsartán
19.
AAPS PharmSciTech ; 22(1): 2, 2020 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-33222036

RESUMEN

Drug nanocrystals have been used for a wide range of drug delivery platforms in the pharmaceutical industry, especially for bioavailability enhancement of poorly water-soluble drugs. Wet stirred media milling (WSMM) is the most widely used process for producing dense, stable suspensions of drug nanoparticles, also referred to as nanosuspensions. Despite a plethora of review papers on the production and applications of drug nanosuspensions, modeling of WSMM has not been thoroughly covered in any review paper before. The aim of this review paper is to briefly expose the pharmaceutical scientists and engineers to various modeling approaches, mostly mechanistic, including computational fluid dynamics (CFD), discrete element method (DEM), population balance modeling (PBM), coupled methods, the stress intensity-number model (SI-SN model), and the microhydrodynamic (MHD) model with a main focus on the MHD model for studying the WSMM process. A total of 71 studies, 30 on drugs and 41 on other materials, were reviewed. Analysis of the pharmaceutics literature reveals that WSMM modeling is largely based on empirical, statistically based modeling approaches, and mechanistic modeling could help pharmaceutical engineers develop a fundamental process understanding. After a review of the salient features and various pros-cons of each modeling approach, recent advances in microhydrodynamic modeling and process insights gained therefrom were highlighted. The SI-SN and MHD models were analyzed and critiqued objectively. Finally, the review points out potential research directions such as more mechanistic and accurate CFD-DEM-PBM simulations and the coupling of the MHD-PBM models with the CFD.


Asunto(s)
Composición de Medicamentos/métodos , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Tamaño de la Partícula , Solubilidad , Suspensiones , Agua/química
20.
Nanomedicine (Lond) ; 15(22): 2201-2217, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32914691

RESUMEN

Research in cancer therapy is moving towards the use of biomolecules in combination with conventional approaches for improved disease outcome. Among the biomolecules explored, peptides are strong contenders due to their small size, high specificity, low systemic toxicity and wide inter/intracellular targets. The use of nanoformulations for such combination approaches can lead to further improvement in efficacy by reducing off-target cytotoxicity, increasing circulation time, tumor penetration and accumulation. This review focuses on nanodelivery systems for peptide-based combinations with chemo, immuno, radiation and hormone therapy. It gives an overview of the latest therapeutic research being conducted using combination nanoformulations with anticancer peptides, cell penetrating/tumor targeting peptides, peptide nanocarriers, peptidomimetics, peptide-based hormones and peptide vaccines. The challenges hindering clinical translation are also discussed.


Asunto(s)
Péptidos de Penetración Celular , Nanopartículas , Neoplasias , Portadores de Fármacos/uso terapéutico , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA