Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
PNAS Nexus ; 3(9): pgae355, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39285933

RESUMEN

While glioblastoma (GBM) progression is associated with extensive extracellular matrix (ECM) secretion, the causal contributions of ECM secretion to invasion remain unclear. Here we investigate these contributions by combining engineered materials, proteomics, analysis of patient data, and a model of bevacizumab-resistant GBM. We find that GBM cells cultured in engineered 3D hyaluronic acid hydrogels secrete ECM prior to invasion, particularly in the absence of exogenous ECM ligands. Proteomic measurements reveal extensive secretion of collagen VI, and collagen VI-associated transcripts are correspondingly enriched in microvascular proliferation regions of human GBMs. We further show that bevacizumab-resistant GBM cells deposit more collagen VI than their responsive counterparts, which is associated with marked cell-ECM stiffening. COL6A3 deletion in GBM cells reduces invasion, ß-catenin signaling, and expression of mesenchymal markers, and these effects are amplified in hypoxia. Our studies strongly implicate GBM cell-derived collagen VI in microenvironmental remodeling to facilitate invasion.

2.
Biomedicines ; 12(9)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39335453

RESUMEN

Chronic diabetic foot ulcers (DFUs) are a significant complication of diabetes mellitus, often leading to amputation, increased morbidity, and a substantial financial burden. Even with the advancements in the treatment of DFU, the risk of amputation still exists, and this occurs due to the presence of gangrene and osteomyelitis. Nonhealing in a chronic DFU is due to decreased angiogenesis, granulation tissue formation, and extracellular matrix remodeling in the presence of persistent inflammation. During wound healing, the proliferation and migration of fibroblasts, smooth muscle cells, and keratinocytes play a critical role in extracellular matrix (ECM) remodeling, angiogenesis, and epithelialization. The molecular factors regulating the migration, proliferation, and differentiation of these cells are scarcely discussed in the literature. The literature review identifies the key factors influencing the proliferation, migration, and differentiation of fibroblasts, keratinocytes, and vascular smooth muscle cells (VSMCs), which are critical in wound healing. This is followed by a discussion on the various novel factors regulating the migration, proliferation, and differentiation of these cells but not in the context of wound healing; however, they may play a role. Using a network analysis, we examined the interactions between various factors, and the findings suggest that the novel factors identified may play a significant role in promoting angiogenesis, granulation tissue formation, and extracellular matrix remodeling during wound healing or DFU healing. However, these interactions warrant further investigation to establish their role alone or synergistically.

3.
Trends Biotechnol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39112274

RESUMEN

Cellular, extracellular matrix (ECM), and spatial heterogeneity of tumor microenvironments (TMEs) regulate disease progression and treatment efficacy. Developing in vitro models that recapitulate the TME promises to accelerate studies of tumor biology and identify new targets for therapy. Here, we used extrusion-based, multi-nozzle 3D bioprinting to spatially pattern triple-negative MDA-MB-231 breast cancer cells, endothelial cells (ECs), and human mammary cancer-associated fibroblasts (HMCAFs) with biomimetic ECM inks. Bioprinted models captured key features of the spatial architecture of human breast tumors, including varying-sized dense regions of cancer cells and surrounding microvessel-rich stroma. Angiogenesis and ECM stiffening occurred in the stromal area but not the cancer cell-rich (CCR) regions, mimicking pathological changes in patient samples. Transcriptomic analyses revealed upregulation of angiogenesis-related and ECM remodeling-related signatures in the stroma region and identified potential ligand-receptor (LR) mediators of these processes. Breast cancer cells in distinct parts of the bioprinted TME showed differing sensitivities to chemotherapy, highlighting environmentally mediated drug resistance. In summary, our 3D-bioprinted tumor model will act as a platform to discover integrated functions of the TME in cancer biology and therapy.

4.
Cell Rep ; 43(8): 114527, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39046873

RESUMEN

The paracrine actions of adipokine plasminogen activator inhibitor-1 (PAI-1) are implicated in obesity-associated tumorigenesis. Here, we show that PAI-1 mediates extracellular matrix (ECM) signaling via epigenetic repression of DKK1 in endometrial epithelial cells (EECs). While the loss of DKK1 is known to increase ß-catenin accumulation for WNT signaling activation, this epigenetic repression causes ß-catenin release from transmembrane integrins. Furthermore, PAI-1 elicits the disengagement of TIMP2 and SPARC from integrin-ß1 on the cell surface, lifting an integrin-ß1-ECM signaling constraint. The heightened interaction of integrin-ß1 with type 1 collagen (COL1) remodels extracellular fibrillar structures in the ECM. Consequently, the enhanced nanomechanical stiffness of this microenvironment is conducive to EEC motility and neoplastic transformation. The formation of extensively branched COL1 fibrils is also observed in endometrial tumors of patients with obesity. The findings highlight PAI-1 as a contributor to enhanced integrin-COL1 engagement and extensive ECM remodeling during obesity-associated neoplastic development.


Asunto(s)
Matriz Extracelular , Integrina beta1 , Obesidad , Inhibidor 1 de Activador Plasminogénico , beta Catenina , Humanos , Obesidad/metabolismo , Obesidad/patología , Femenino , Inhibidor 1 de Activador Plasminogénico/metabolismo , beta Catenina/metabolismo , Integrina beta1/metabolismo , Matriz Extracelular/metabolismo , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Animales , Osteonectina/metabolismo , Osteonectina/genética , Colágeno/metabolismo , Endometrio/metabolismo , Endometrio/patología , Colágeno Tipo I/metabolismo , Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Péptidos y Proteínas de Señalización Intercelular
5.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38984541

RESUMEN

The cardiac extracellular matrix (cECM) is fundamental for organ morphogenesis and maturation, during which time it undergoes remodeling, yet little is known about whether mechanical forces generated by the heartbeat regulate this remodeling process. Using zebrafish as a model and focusing on stages when cardiac valves and trabeculae form, we found that altering cardiac contraction impairs cECM remodeling. Longitudinal volumetric quantifications in wild-type animals revealed region-specific dynamics: cECM volume decreases in the atrium but not in the ventricle or atrioventricular canal. Reducing cardiac contraction resulted in opposite effects on the ventricular and atrial ECM, whereas increasing the heart rate affected the ventricular ECM but had no effect on the atrial ECM, together indicating that mechanical forces regulate the cECM in a chamber-specific manner. Among the ECM remodelers highly expressed during cardiac morphogenesis, we found one that was upregulated in non-contractile hearts, namely tissue inhibitor of matrix metalloproteinase 2 (timp2). Loss- and gain-of-function analyses of timp2 revealed its crucial role in cECM remodeling. Altogether, our results indicate that mechanical forces control cECM remodeling in part through timp2 downregulation.


Asunto(s)
Matriz Extracelular , Corazón , Inhibidor Tisular de Metaloproteinasa-2 , Pez Cebra , Animales , Pez Cebra/embriología , Pez Cebra/metabolismo , Matriz Extracelular/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Corazón/embriología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Morfogénesis , Atrios Cardíacos/embriología , Atrios Cardíacos/metabolismo , Fenómenos Biomecánicos , Regulación del Desarrollo de la Expresión Génica , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/embriología
6.
Methods Mol Biol ; 2811: 207-220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39037661

RESUMEN

Tumor cells often leave the primary tumor mass and get settled in a foreign tissue years before the development of overt metastases, exhibiting the highly inefficient nature of metastatic colony formation. In fact, the tumor cells that disseminate into distant organs and subsequently invade the parenchyma of these organs rarely proceed to found actively growing metastatic colonies. Instead, the majority of these tumor cells undergo prolonged proliferative arrest unless they are swiftly eliminated by the immune system. Together, these observations indicate that the proliferative capacity of the disseminated tumor cells (DTCs) serves as a key determinant of the efficiency of metastasis, highlighting the need to better understand the mechanism governing the proliferation of these cells. Recent studies are unveiling the importance of the interactions between DTCs and the microenvironment of the host tissue in regulating the proliferation of DTCs. However, the details of such interactions remain to be fully delineated. Here I describe the methods for visualizing and analyzing the interactions between DTCs and the extracellular matrix (ECM) components of the host tissue as well as the cytoskeleton of the DTCs that support these interactions. The methods described here will facilitate the study of how DTCs interact with the ECM of their host tissue, which will be crucial for elucidating the mechanism that underlies the regulation of DTC proliferation by the DTC-ECM interactions.


Asunto(s)
Citoesqueleto , Matriz Extracelular , Citoesqueleto/metabolismo , Humanos , Matriz Extracelular/metabolismo , Animales , Línea Celular Tumoral , Microambiente Tumoral , Ratones , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , Proliferación Celular , Neoplasias/patología , Neoplasias/metabolismo , Metástasis de la Neoplasia , Uniones Célula-Matriz/metabolismo
7.
bioRxiv ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39026820

RESUMEN

RBM10 modulates transcriptome-wide cassette exon splicing. Loss-of-function RBM10 mutations are enriched in thyroid cancers with distant metastases. Analysis of transcriptomes and genes mis-spliced by RBM10 loss showed pro-migratory and RHO/RAC signaling signatures. RBM10 loss increases cell velocity. Cytoskeletal and ECM transcripts subject to exon-inclusion events included vinculin (VCL), tenascin C (TNC) and CD44. Knockdown of the VCL exon inclusion transcript in RBM10-null cells reduced cell velocity, whereas knockdown of TNC and CD44 exon-inclusion isoforms reduced invasiveness. RAC1-GTP levels were increased in RBM10-null cells. Mouse Hras G12V /Rbm1O KO thyrocytes develop metastases that are reversed by RBM10 or by combined knockdown of VCL, CD44 and TNC inclusion isoforms. Thus, RBM10 loss generates exon inclusions in transcripts regulating ECM-cytoskeletal interactions, leading to RAC1 activation and metastatic competency. Moreover, a CRISPR-Cas9 screen for synthetic lethality with RBM10 loss identified NFkB effectors as central to viability, providing a therapeutic target for these lethal thyroid cancers.

8.
J Control Release ; 373: 293-305, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019088

RESUMEN

Myopia represents a widespread global public health concern influenced by a combination of environmental and genetic factors. The prevailing theory explaining myopia development revolves around scleral extracellular matrix (ECM) remodeling, characterized by diminished Type I collagen (Col-1) synthesis and increased degradation, resulting in scleral thinning and eye axis elongation. Existing studies underscore the pivotal role of scleral hypoxia in myopic scleral remodeling. This study investigates the peroxidase-like activity and catalytic performance of octahedral Palladium (Pd) nanocrystals, recognized as nanozymes with antioxidative properties. We explore their potential in reducing oxidative stress and alleviating hypoxia in human scleral fibroblasts (HSF) and examine the associated molecular mechanisms. Our results demonstrate the significant peroxidase-like activity of Pd nanocrystals. Furthermore, we observe a substantial reduction in oxidative stress in HSF under hypoxia, mitigating cellular damage. These effects are linked to alterations in Nrf-2/Ho-1 expression, a pathway associated with hypoxic stress. Importantly, our findings indicate that Pd nanocrystals contribute to attenuated scleral matrix remodeling in myopic guinea pigs, effectively slowing myopia progression. This supports the hypothesis that Pd nanocrystals regulate myopia development by controlling oxidative stress associated with hypoxia. Based on these results, we propose that Pd nanocrystals represent a novel and potential treatment avenue for myopia through the modulation of scleral matrix remodeling. This study introduces innovative ideas and directions for the treatment and prevention of myopia.


Asunto(s)
Matriz Extracelular , Hemo-Oxigenasa 1 , Miopía , Factor 2 Relacionado con NF-E2 , Nanopartículas , Paladio , Esclerótica , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Esclerótica/metabolismo , Humanos , Paladio/química , Nanopartículas/química , Nanopartículas/administración & dosificación , Transducción de Señal/efectos de los fármacos , Miopía/metabolismo , Hemo-Oxigenasa 1/metabolismo , Cobayas , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Masculino , Hipoxia/metabolismo , Progresión de la Enfermedad , Células Cultivadas
9.
Cancer Lett ; 596: 217022, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38849014

RESUMEN

We previously reported that extracellular matrix protein 1 isoform a (ECM1a) promotes epithelial ovarian cancer (EOC) through autocrine signaling by binding to cell surface receptors αXß2. However, the role of ECM1a as a secretory molecule in the tumor microenvironment is rarely reported. In this study, we constructed murine Ecm1-knockout mice and human ECM1a-knockin mice and further generated orthotopic or peritoneal xenograft tumor models to mimic the different metastatic stages of EOC. We show that ECM1a induces oncogenic metastasis of orthotopic xenograft tumors, but inhibits early-metastasis of peritoneal xenograft tumors. ECM1a remodels extracellular matrices (ECM) and promotes remote metastases by recruiting and transforming bone marrow mesenchymal stem cells (BMSCs) into platelet-derived growth factor receptor beta (PDGFRß+) cancer-associated fibroblasts (CAFs) and facilitating the secretion of angiopoietin-like protein 2 (ANGPTL2). Competing with ECM1a, ANGPTL2 also binds to integrin αX through the P1/P2 peptides, resulting in negative effects on BMSC differentiation. Collectively, this study reveals the dual functions of ECM1a in remodeling of TME during tumor progression, emphasizing the complexity of EOC phenotypic heterogeneity and metastasis.


Asunto(s)
Proteína 2 Similar a la Angiopoyetina , Fibroblastos Asociados al Cáncer , Proteínas de la Matriz Extracelular , Ratones Noqueados , Neoplasias Ováricas , Microambiente Tumoral , Animales , Femenino , Humanos , Ratones , Proteínas Similares a la Angiopoyetina/metabolismo , Proteínas Similares a la Angiopoyetina/genética , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Carcinoma Epitelial de Ovario/patología , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/genética , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Metástasis de la Neoplasia , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo
10.
Neurosurg Rev ; 47(1): 136, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561568

RESUMEN

This letter offers a nuanced evaluation of the recent study on single-cell transcriptome analysis of ECM-remodeling meningioma cells. While acknowledging the positive aspects, such as enhanced understanding of tumor heterogeneity and identification of potential therapeutic targets, it also highlights potential limitations, including challenges in data interpretation and validation.The focus on ECM-remodeling may inadvertently overshadow other critical aspects of tumor biology, necessitating a more holistic approach. The abstract concludes by emphasizing the importance of considering the broader context of tumor heterogeneity and microenvironmental influences in future research endeavors to improve clinical outcomes for patients with meningioma and other malignancies.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/genética , Meningioma/patología , Análisis de Expresión Génica de una Sola Célula , Matriz Extracelular/patología , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patología
11.
Res Sq ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38464213

RESUMEN

Curvature is a critical factor in cornea mechanobiology, but its impact on phenotypic alterations and extracellular matrix remodeling of cornea stroma remains unclear. In this work, we investigated how curvature influences the corneal stroma using a hydraulically controlled curvature array chip. The responses of stromal cells to low, medium, and high curvatures were observed by preparing three phenotypes of corneal stromal cells: corneal keratocytes, fibroblasts, and myofibroblasts. Keratocytes exhibited phenotypic alterations in response to curvature changes, notably including a decrease in ALDH3 expression and an increase in α-SMA expression. For focal adhesion, corneal fibroblast and myofibroblasts showed enhanced vinculin localization in response to curvature, while corneal keratocytes presented reduced vinculin expression. For cell alignment and ECM expression, most stromal cells under all curvatures showed a radially organized f-actin and collagen fibrils. Interestingly, for corneal fibroblast under medium curvature, we observed orthogonal cell alignment, which is linked to the unique hoop and meridional stress profiles of the curved surface. Furthermore, lumican expression was upregulated in corneal keratocytes, and keratocan expression was increased in corneal fibroblasts and myofibroblasts due to curvature. These results demonstrate that curvature influences both the phenotype of corneal stromal cells and the structural organization of corneal stroma tissue without any external stimuli. This curvature-dependent behavior of corneal stromal cells presents potential opportunities for creating therapeutic strategies for corneal shape dysfunctions.

12.
Front Cell Dev Biol ; 12: 1335636, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544822

RESUMEN

Mechanical properties of the tumor microenvironment play a critical role in cancer progression by activation of cancer mechano-responses. The biophysical interactions between cancer cells and their dynamic microenvironment are attributed to force-dependent alterations in molecular pathways that trigger the structural reorganization of intracellular organelles and their associated genetic modifications. Recent studies underscore the role of oxygen concentration in cancer metastasis. Suppressed oxygen levels promote the development of invasive phenotypes and aggressive proliferation of cancer cells, accompanied by remodeling of tumor microenvironment encompassing the modulation of physical settings of extracellular matrix. This review summarizes the role of biophysical interactions between cancer cells and their surroundings in determining cancer progression. Biophysical interpretation of the tumor microenvironment and cancer progression could provide further insights into the development of novel biomedical technologies for therapeutic cancer treatment.

13.
Life (Basel) ; 14(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38541736

RESUMEN

Type-2 diabetes mellitus (T2DM)-induced sarcopenia is intertwined with diminished insulin sensitivity and extracellular matrix (ECM) remodeling in skeletal muscle and other organs. Physical activities such as aerobic exercise play a crucial role in regulating blood glucose levels, insulin sensitivity, metabolic pathways, oxidative stress, fibrosis, ECM remodeling, and muscle regeneration by modulating differentially expressed protein (DEP) levels. The objectives of our research were to investigate the effect of six weeks of aerobic exercise on the gastrocnemius and soleus muscle of db/db mice's DEP levels compared to those of sedentary db/db mice. A total of eight db/db mice were divided into two groups (n = 4 per group), namely sedentary mice (SED) and exercise-trained mice (ET), of which the latter were subjected to six weeks of a moderate-intensity aerobic exercise intervention for five days per week. After the exercise intervention, biochemical tests, including analyses of blood glucose and HbA1c levels, were performed. Histological analysis using H & E staining on tissue was performed to compare morphological characters. Gastrocnemius and soleus muscles were dissected and processed for proteomic analysis. Data were provided and analyzed based on the DEPs using the label-free quantification (LFQ) algorithm. Functional enrichment analysis and Ingenuity Pathway Analysis (IPA) were employed as bioinformatics tools to elucidate the molecular mechanisms involved in the DEPs and disease progression. Significantly reduced blood glucose and HbA1c levels and an increased cross-sectional area (CSA) of gastrocnemius muscle fibers were seen in the ET group after the exercise interventions due to upregulations of metabolic pathways. Using proteomics data analysis, we found a significant decrease in COL1A1, COL4A2, ENG, and LAMA4 protein levels in the ET gastrocnemius, showing a significant improvement in fibrosis recovery, ECM remodeling, and muscle regeneration via the downregulation of the TGF-ß signaling pathway. Upregulated metabolic pathways due to ET-regulated DEPs in the gastrocnemius indicated increased glucose metabolism, lipid metabolism, muscle regeneration, and insulin sensitivity, which play a crucial role in muscle regeneration and maintaining blood glucose and lipid levels. No significant changes were observed in the soleus muscle due to the type of exercise and muscle fiber composition. Our research suggests that engaging in six weeks of aerobic exercise may have a positive impact on the recovery of T2DM-induced sarcopenia, which might be a potential candidate for mitigation, prevention, and therapeutic treatment in the future.

14.
Neurosurg Rev ; 47(1): 118, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38491247

RESUMEN

Meningiomas are the most common tumours that primarily arise in the central nervous system, but their intratumoural heterogeneity has not yet been thoroughly studied. We aimed to investigate the transcriptome characteristics and biological properties of ECM-remodeling meningioma cells. Single-cell RNA sequencing (ScRNA-seq) data from meningioma samples were acquired and used for analyses. We conducted comprehensive bioinformatics analyses, including screening for differentially expressed genes (DEGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway and Gene Ontology (GO) term enrichment analyses, Gene Set Enrichment Analysis (GSEA), protein-protein interaction (PPI) analysis, and copy number variation (CNV) analysis on single-cell sequencing data from meningiomas. Eighteen cell types, including six meningioma subtypes, were identified in the data. ECM-remodeling meningioma cells (MGCs) were mainly distributed in brain-tumour interface tissues. KEGG and GO enrichment analyses revealed that 908 DEGs were mainly related to cell adhesion, extracellular matrix organization, and ECM-receptor interaction. GSEA analysis demonstrated that homophilic cell adhesion via plasma membrane adhesion molecules was significantly enriched (NES = 2.375, P < 0.001). CNV analysis suggested that ECM-remodeling MGCs showed considerably lower average CNV scores. ECM-remodeling MGCs predominantly localized at the brain-tumour interface area and adhere stably to the basement membrane with a lower degree of malignancy. This study provides novel insights into the malignancy of meningiomas.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Perfilación de la Expresión Génica , Meningioma/genética , Análisis de Expresión Génica de una Sola Célula , Variaciones en el Número de Copia de ADN , Neoplasias Meníngeas/genética
15.
Bioeng Transl Med ; 9(2): e10620, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38435824

RESUMEN

Skin wound healing often leads to scar formation, presenting physical and psychological challenges for patients. Advancements in messenger RNA (mRNA) modifications offer a potential solution for pulsatile cytokine delivery to create a favorable wound-healing microenvironment, thereby preventing cutaneous fibrosis. This study aimed to investigate the effectiveness of human adipose-derived stem cells (hADSCs) enriched with N 1-methylpseudouridine (m1ψ) modified transforming growth factor-ß3 (TGF-ß3) and interleukin-10 (IL-10) mRNA in promoting scar-free healing in preclinical models. The results demonstrated that the modified mRNA (modRNA)-loaded hADSCs efficiently and temporarily secreted TGF-ß3 and IL-10 proteins. In a dorsal injury model, hADSCs loaded with modRNA TGF-ß3 and IL-10 exhibited multidimensional therapeutic effects, including improved collagen deposition, extracellular matrix organization, and neovascularization. In vitro experiments confirmed the ability of these cells to markedly inhibit the proliferation and migration of keloid fibroblasts, and reverse the myofibroblast phenotype. Finally, collagen degradation mediated by matrix metalloproteinase upregulation was observed in an ex vivo keloid explant culture model. In conclusion, the synergistic effects of the modRNA TGF-ß3, IL-10, and hADSCs hold promise for establishing a scar-free wound-healing microenvironment, representing a robust foundation for the management of wounds in populations susceptible to scar formation.

16.
Gene ; 908: 148231, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38309316

RESUMEN

Recurrent miscarriages (RM) generally refer to two or more consecutive pregnancy losses. The risk of miscarriages grows with its frequency of occurrences, so as the future obstetric complications or longer-term health problems for patients. Most previous researches sought to discover the etiology of RM by making comparisons between patients with RM and fertile women. Our study collected decidua tissues from patients with RM and single miscarriage (SM) for transcriptome sequencing analysis and aimed at identifying vital factors contributing to additional miscarriages after previous miscarriage. Between the RM and SM group, a total of 122 differentially expressed genes (DEGs) were detected and pathways associated with cell adhesion and ECM remodeling were particularly enriched in the RM group, which indicated abnormally activated fibrogenesis process. Particularly, the enhancement of ITGB6, EGFLAM and COL3A1 in the RM group were validated by RT-qPCR. Our study discovered that fibrogenesis, which might be caused by intrauterine manipulation, could lead to recurrent miscarriages after a previous miscarriage. Therefore, we encourage higher attention to thorough prevention and prompt remedies towards fibrotic disorders related diseases.


Asunto(s)
Aborto Habitual , Embarazo , Humanos , Femenino , Aborto Habitual/genética , Perfilación de la Expresión Génica
17.
Mol Ther ; 32(3): 749-765, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38310356

RESUMEN

Approximately 80%-90% of hepatocellular carcinomas (HCC) occur in a premalignant environment of fibrosis and abnormal extracellular matrix (ECM), highlighting an essential role of ECM in the tumorigenesis and progress of HCC. However, the determinants of ECM in HCC are poorly defined. Here, we show that nuclear receptor RORγ is highly expressed and amplified in HCC tumors. RORγ functions as an essential activator of the matrisome program via directly driving the expression of major ECM genes in HCC cells. Elevated RORγ increases fibronectin-1 deposition, cell-matrix adhesion, and collagen production, creating a favorable microenvironment to boost liver cancer metastasis. Moreover, RORγ antagonists effectively inhibit tumor growth and metastasis in multiple HCC xenografts and immune-intact models, and they effectively sensitize HCC tumors to sorafenib therapy in mice. Notably, elevated RORγ expression is associated with ECM remodeling and metastasis in patients with HCC. Taken together, we identify RORγ as a key player of ECM remodeling in HCC and as an attractive therapeutic target for advanced HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Sorafenib , Colágeno/metabolismo , Microambiente Tumoral
18.
Cells ; 13(1)2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38201302

RESUMEN

Extracellular biophysical properties have particular implications for a wide spectrum of cellular behaviors and functions, including growth, motility, differentiation, apoptosis, gene expression, cell-matrix and cell-cell adhesion, and signal transduction including mechanotransduction. Cells not only react to unambiguously mechanical cues from the extracellular matrix (ECM), but can occasionally manipulate the mechanical features of the matrix in parallel with biological characteristics, thus interfering with downstream matrix-based cues in both physiological and pathological processes. Bidirectional interactions between cells and (bio)materials in vitro can alter cell phenotype and mechanotransduction, as well as ECM structure, intentionally or unintentionally. Interactions between cell and matrix mechanics in vivo are of particular importance in a variety of diseases, including primarily cancer. Stiffness values between normal and cancerous tissue can range between 500 Pa (soft) and 48 kPa (stiff), respectively. Even the shear flow can increase from 0.1-1 dyn/cm2 (normal tissue) to 1-10 dyn/cm2 (cancerous tissue). There are currently many new areas of activity in tumor research on various biological length scales, which are highlighted in this review. Moreover, the complexity of interactions between ECM and cancer cells is reduced to common features of different tumors and the characteristics are highlighted to identify the main pathways of interaction. This all contributes to the standardization of mechanotransduction models and approaches, which, ultimately, increases the understanding of the complex interaction. Finally, both the in vitro and in vivo effects of this mechanics-biology pairing have key insights and implications for clinical practice in tumor treatment and, consequently, clinical translation.


Asunto(s)
Señales (Psicología) , Neoplasias , Humanos , Mecanotransducción Celular , Citosol , Matriz Extracelular
19.
Dev Cell ; 59(3): 326-338.e5, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38237591

RESUMEN

During organ formation, progenitor cells need to acquire different cell identities and organize themselves into distinct structural units. How these processes are coordinated and how tissue architecture(s) is preserved despite the dramatic cell rearrangements occurring in developing organs remain unclear. Here, we identified cellular rearrangements between acinar and ductal progenitors as a mechanism to drive branching morphogenesis in the pancreas while preserving the integrity of the acinar-ductal functional unit. Using ex vivo and in vivo mouse models, we found that pancreatic ductal cells form clefts by protruding and pulling on the acinar basement membrane, which leads to acini splitting. Newly formed acini remain connected to the bifurcated branches generated by ductal cell rearrangement. Insulin growth factor (IGF)/phosphatidylinositol 3-kinase (PI3K) pathway finely regulates this process by controlling pancreatic ductal tissue fluidity, with a simultaneous impact on branching and cell fate acquisition. Together, our results explain how acinar structure multiplication and branch bifurcation are synchronized during pancreas organogenesis.


Asunto(s)
Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Ratones , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Páncreas , Células Acinares/metabolismo , Morfogénesis/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo
20.
Genomics ; 116(1): 110758, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38065236

RESUMEN

Testicular fusion of Spodoptera litura occures during metamorphosis, which benefits sperms development. Previous research identified involvement of ECM-integrin interaction pathways, MMPs in testicular fusion, but the regulatory mechanism remains unclear. RNA-seq was performed to analyze long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in testes, aiming to uncover potential regulatory mechanisms of testicular fusion. 2150 lncRNAs, 2742 targeted mRNAs, and 347 miRNAs were identified in testes at three different developmental stages. Up-regulated DElncRNAs and DEmRNAs, as well as down-regulated DEmiRNAs, were observed during testicular fusion, while the opposite expression pattern was observed after fusion. Enrichment analysis of DEmRNAs revealed that cAMP signal pathway, ECM remodeling enzymes, ECM-integrin interaction pathways, and cell adhesion molecules were potentially associated with testicular fusion. The identified DElncRNA-DEmiRNA-DEmRNA regulatory network related to cAMP signal pathway, ECM remodeling enzymes suggests their roles during testicular fusion. Our research will provide new targets for studying the mechanism of testicular fusion.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Masculino , Animales , MicroARNs/genética , MicroARNs/metabolismo , Testículo/metabolismo , Spodoptera/genética , Spodoptera/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Integrinas/genética , Redes Reguladoras de Genes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA