Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(3): e82-e98, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38205640

RESUMEN

BACKGROUND: Integrins mediate the adhesion, crawling, and migration of neutrophils during vascular inflammation. Thiol exchange is important in the regulation of integrin functions. ERp72 (endoplasmic reticulum-resident protein 72) is a member of the thiol isomerase family responsible for the catalysis of disulfide rearrangement. However, the role of ERp72 in the regulation of Mac-1 (integrin αMß2) on neutrophils remains elusive. METHODS: Intravital microscopy of the cremaster microcirculation was performed to determine in vivo neutrophil movement. Static adhesion, flow chamber, and flow cytometry were used to evaluate in vitro integrin functions. Confocal fluorescent microscopy and coimmunoprecipitation were utilized to characterize the interactions between ERp72 and Mac-1 on neutrophil surface. Cell-impermeable probes and mass spectrometry were used to label reactive thiols and identify target disulfide bonds during redox exchange. Biomembrane force probe was performed to quantitatively measure the binding affinity of Mac-1. A murine model of acute lung injury induced by lipopolysaccharide was utilized to evaluate neutrophil-associated vasculopathy. RESULTS: ERp72-deficient neutrophils exhibited increased rolling but decreased adhesion/crawling on inflamed venules in vivo and defective static adhesion in vitro. The defect was due to defective activation of integrin Mac-1 but not LFA-1 (lymphocyte function-associated antigen-1) using blocking or epitope-specific antibodies. ERp72 interacted with Mac-1 in lipid rafts on neutrophil surface leading to the reduction of the C654-C711 disulfide bond in the αM subunit that is critical for Mac-1 activation. Recombinant ERp72, via its catalytic motifs, increased the binding affinity of Mac-1 with ICAM-1 (intercellular adhesion molecule-1) and rescued the defective adhesion of ERp72-deficient neutrophils both in vitro and in vivo. Deletion of ERp72 in the bone marrow inhibited neutrophil infiltration, ameliorated tissue damage, and increased survival during murine acute lung injury. CONCLUSIONS: Extracellular ERp72 regulates integrin Mac-1 activity by catalyzing disulfide rearrangement on the αM subunit and may be a novel target for the treatment of neutrophil-associated vasculopathy.


Asunto(s)
Lesión Pulmonar Aguda , Antígeno de Macrófago-1 , Animales , Ratones , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/metabolismo , Adhesión Celular , Disulfuros , Molécula 1 de Adhesión Intercelular/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Antígeno de Macrófago-1/genética , Antígeno de Macrófago-1/metabolismo , Infiltración Neutrófila , Neutrófilos/metabolismo , Compuestos de Sulfhidrilo/metabolismo
2.
Infect Immun ; 91(11): e0033223, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37877711

RESUMEN

Many AB toxins contain an enzymatic A moiety that is anchored to a cell-binding B moiety by a disulfide bridge. After receptor-mediated endocytosis, some AB toxins undergo retrograde transport to the endoplasmic reticulum (ER) where reduction of the disulfide bond occurs. The reduced A subunit then dissociates from the holotoxin and enters the cytosol to alter its cellular target. Intoxication requires A chain separation from the holotoxin, but, for many toxins, it is unclear if reduction alone is sufficient for toxin disassembly. Here, we examined the link between reduction and disassembly for several ER-translocating toxins. We found disassembly of the reduced Escherichia coli heat-labile enterotoxin (Ltx) required an interaction with one specific ER-localized oxidoreductase: protein disulfide isomerase (PDI). In contrast, the reduction and disassembly of ricin toxin (Rtx) and Shiga toxin 1 (Stx1) were coupled events that did not require PDI and could be triggered by reductant alone. PDI-deficient cells accordingly exhibited high resistance to Ltx with continued sensitivity to Rtx and Stx1. The distinct structural organization of each AB toxin thus appears to determine whether holotoxin disassembly occurs spontaneously upon disulfide reduction or requires the additional input of PDI.


Asunto(s)
Ricina , Ricina/toxicidad , Ricina/química , Ricina/metabolismo , Toxina Shiga I , Proteína Disulfuro Isomerasas/metabolismo , Disulfuros
3.
FASEB J ; 37(5): e22914, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37043381

RESUMEN

Thiol isomerases, including PDI, ERp57, ERp5, and ERp72, play important and distinct roles in cancer progression, cancer cell signaling, and metastasis. We recently discovered that zafirlukast, an FDA-approved medication for asthma, is a pan-thiol isomerase inhibitor. Zafirlukast inhibited the growth of multiple cancer cell lines with an IC50 in the low micromolar range, while also inhibiting cellular thiol isomerase activity, EGFR activation, and downstream phosphorylation of Gab1. Zafirlukast also blocked the procoagulant activity of OVCAR8 cells by inhibiting tissue factor-dependent Factor Xa generation. In an ovarian cancer xenograft model, statistically significant differences in tumor size between control vs treated groups were observed by Day 18. Zafirlukast also significantly reduced the number and size of metastatic tumors found within the lungs of the mock-treated controls. When added to a chemotherapeutic regimen, zafirlukast significantly reduced growth, by 38% compared with the mice receiving only the chemotherapeutic treatment, and by 83% over untreated controls. Finally, we conducted a pilot clinical trial in women with tumor marker-only (CA-125) relapsed ovarian cancer, where the rate of rise of CA-125 was significantly reduced following treatment with zafirlukast, while no severe adverse events were reported. Thiol isomerase inhibition with zafirlukast represents a novel, well-tolerated therapeutic in the treatment of ovarian cancer.


Asunto(s)
Plaquetas , Neoplasias Ováricas , Animales , Femenino , Humanos , Ratones , Plaquetas/metabolismo , Indoles , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Fenilcarbamatos/metabolismo , Compuestos de Sulfhidrilo/metabolismo
4.
JHEP Rep ; 3(4): 100297, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34151245

RESUMEN

BACKGROUND & AIMS: A single point mutation in the Z-variant of alpha 1-antitrypsin (Z-AAT) alone can lead to both a protein folding and trafficking defect, preventing its exit from the endoplasmic reticulum (ER), and the formation of aggregates that are retained as inclusions within the ER of hepatocytes. These defects result in a systemic AAT deficiency (AATD) that causes lung disease, whereas the ER-retained aggregates can induce severe liver injury in patients with ZZ-AATD. Unfortunately, therapeutic approaches are still limited and liver transplantation represents the only curative treatment option. To overcome this limitation, a better understanding of the molecular basis of ER aggregate formation could provide new strategies for therapeutic intervention. METHODS: Our functional and omics approaches here based on human hepatocytes from patients with ZZ-AATD have enabled the identification and characterisation of the role of the protein disulfide isomerase (PDI) A4/ERP72 in features of AATD-mediated liver disease. RESULTS: We report that 4 members of the PDI family (PDIA4, PDIA3, P4HB, and TXNDC5) are specifically upregulated in ZZ-AATD liver samples from adult patients. Furthermore, we show that only PDIA4 knockdown or alteration of its activity by cysteamine treatment can promote Z-AAT secretion and lead to a marked decrease in Z aggregates. Finally, detailed analysis of the Z-AAT interactome shows that PDIA4 silencing provides a more conducive environment for folding of the Z mutant, accompanied by reduction of Z-AAT-mediated oxidative stress, a feature of AATD-mediated liver disease. CONCLUSIONS: PDIA4 is involved in AATD-mediated liver disease and thus represents a therapeutic target for inhibition by drugs such as cysteamine. PDI inhibition therefore represents a potential therapeutic approach for treatment of AATD. LAY SUMMARY: Protein disulfide isomerase (PDI) family members, and particularly PDIA4, are upregulated and involved in alpha 1-antitrypsin deficiency (AATD)-mediated liver disease in adults. PDI inhibition upon cysteamine treatment leads to improvements in features of AATD and hence represents a therapeutic approach for treatment of AATD-mediated liver disease.

5.
Acta Pharm Sin B ; 11(12): 3983-3993, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35024320

RESUMEN

Unfolded protein response (UPR) is a stress response that is specific to the endoplasmic reticulum (ER). UPR is activated upon accumulation of unfolded (or misfolded) proteins in the ER's lumen to restore protein folding capacity by increasing the synthesis of chaperones. In addition, UPR also enhances degradation of unfolded proteins and reduces global protein synthesis to alleviate additional accumulation of unfolded proteins in the ER. Herein, we describe a cell-based ultra-high throughput screening (uHTS) campaign that identifies a small molecule that can modulate UPR and ER stress in cellular and in vivo disease models. Using asialoglycoprotein receptor 1 (ASGR) fused with Cypridina luciferase (CLuc) as reporter assay for folding capacity, we have screened a million small molecule library and identified APC655 as a potent activator of protein folding, that appears to act by promoting chaperone expression. Furthermore, APC655 improved pancreatic ß cell viability and insulin secretion under ER stress conditions induced by thapsigargin or cytokines. APC655 was also effective in preserving ß cell function and decreasing lipid accumulation in the liver of the leptin-deficient (ob/ob) mouse model. These results demonstrate a successful uHTS campaign that identified a modulator of UPR, which can provide a novel candidate for potential therapeutic development for a host of metabolic diseases.

6.
Biomed Pharmacother ; 122: 109688, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31794946

RESUMEN

Disulfide bond formation is catalyzed by the protein disulfide Isomerases (PDI) family. This is a critical step in protein folding which occurs within the endoplasmic reticulum. PDIA4, as a member of the PDI family, can cause the adjustment of αIIß 3 affinities which activate platelet and promote thrombosis formation. Endoplasmic reticulum response is triggered by accumulation of abnormal folding proteins concomitant with increasing PDIA4 expression. Besides, current researches indicate that activated platelets and ERS response affect tumor progression. And PDIA4, as previous reported, also participates in tumor progression by affecting cell apoptosis and DNA repair machinery without specific mechanisms revealed.Therefore, PDI inhibitor might possess great potential value in against tumor progression. In this review, we summarize information on PDIA4 including its the basic characteristics and its implication on tumor.


Asunto(s)
Neoplasias/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Animales , Coagulación Sanguínea , Plaquetas/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Proteína Disulfuro Isomerasas/química , Trombosis/metabolismo
7.
J Thromb Haemost ; 16(2): 367-377, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29052936

RESUMEN

Essentials ERp72 is a thiol isomerase enzyme. ERp72 levels increase at the platelet surface during platelet activation. We generated a humanized monoclonal antibody which blocks ERp72 enzyme activity (anti-ERp72). Anti-ERp72 inhibits platelet functional responses and thrombosis. SUMMARY: Background Within the endoplasmic reticulum, thiol isomerase enzymes modulate the formation and rearrangement of disulfide bonds in newly folded proteins entering the secretory pathway to ensure correct protein folding. In addition to their intracellular importance, thiol isomerases have been recently identified to be present on the surface of a number of cell types where they are important for cell function. Several thiol isomerases are known to be present on the resting platelet surface, including PDI, ERp5 and ERp57, and levels are increased following platelet activation. Inhibition of the catalytic activity of these enzymes results in diminished platelet function and thrombosis. Aim We previously determined that ERp72 is present at the resting platelet surface and levels increase upon platelet activation; however, its functional role on the cell surface was unclear. We aimed to investigate the role of ERp72 in platelet function and its role in thrombosis. Methods Using HuCAL technology, fully humanized Fc-null anti-ERp72 antibodies were generated. Eleven antibodies were screened for their ability to inhibit ERp72 activity and the most potent inhibitory antibody (anti-ERp72) selected for further testing in platelet functional assays. Results and conclusions Anti-ERp72 inhibited platelet aggregation, granule secretion, calcium mobilisation and integrin activation, revealing an important role for extracellular ERp72 in the regulation of platelet activation. Consistent with this, infusion of anti-ERp72 into mice protected against thrombosis.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Plaquetas/efectos de los fármacos , Fibrinolíticos/farmacología , Glicoproteínas de Membrana/antagonistas & inhibidores , Activación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Trombosis/prevención & control , Animales , Plaquetas/enzimología , Plaquetas/inmunología , Calcio/sangre , Modelos Animales de Enfermedad , Fibrinógeno/metabolismo , Humanos , Masculino , Glicoproteínas de Membrana/sangre , Glicoproteínas de Membrana/inmunología , Ratones Endogámicos C57BL , Adhesividad Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Proteína Disulfuro Isomerasas/sangre , Proteína Disulfuro Isomerasas/inmunología , Transducción de Señal/efectos de los fármacos , Trombosis/sangre , Trombosis/enzimología
8.
J Proteomics ; 108: 1-16, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-24792702

RESUMEN

Protein disulfide-isomerase (PDI) is a four-domain flexible protein that catalyzes the formation of disulfide bonds in the endoplasmic reticulum. Here we have analyzed native PDI purified from human placenta by chemical cross-linking followed by mass spectrometry (CXMS). In addition to PDI the sample contained soluble calnexin and ERp72. Extensive cross-linking was observed within the PDI molecule, both intra- and inter-domain, as well as between the different components in the mixture. The high sensitivity of the analysis in the current experiments, combined with a likely promiscuous interaction pattern of the involved proteins, revealed relatively densely populated cross-link heat maps. The established X-ray structure of the monomeric PDI could be confirmed; however, the dimer as presented in the existing models does not seem to be prevalent in solution as modeling on the observed cross-links revealed new models of dimeric PDI. The observed inter-protein cross-links confirmed the existence of a peptide binding area on calnexin that binds strongly both PDI and ERp72. On the other hand, interaction sites on PDI and ERp72 could not be uniquely identified, indicating a more non-specific interaction pattern. BIOLOGICAL SIGNIFICANCE: The present work demonstrates the use of chemical cross-linking and mass spectrometry (CXMS) for the determination of a solution structure of natural human PDI and its interaction with the chaperones ERp72 and calnexin. The data shows that the dimeric structure of PDI may be more diverse than indicated by present models. We further observe that the temperature influences the cross-linking pattern of PDI, but this does not influence the overall folding pattern of the molecule.


Asunto(s)
Espectrometría de Masas/métodos , Proteínas Gestacionales/química , Proteína Disulfuro Isomerasas/química , Cristalografía por Rayos X , Femenino , Humanos , Proteínas Gestacionales/aislamiento & purificación , Proteína Disulfuro Isomerasas/aislamiento & purificación , Estructura Terciaria de Proteína
9.
Biochem Biophys Res Commun ; 440(2): 245-50, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24055038

RESUMEN

ERdj5 (also known as JPDI) is a member of PDI family conserved in higher eukaryotes. This protein possesses an N-terminal J domain and C-terminal four thioredoxin domains each having a redox active site motif. Despite the insights obtained at the cellular level on ERdj5, the role of this protein in vivo is still unclear. Here, we present a simple method to purify and identify the disulfide-linked complexes of this protein efficiently from a mouse tissue. By combining acid quenching and thiol-alkylation, we identified a number of potential redox partners of ERdj5 from the mouse epididymis. Further, we show that ERdj5 indeed interacted with two of the identified proteins via formation of intermolecular disulfide bond. Thus, this approach enabled us to detect and identify redox partners of a PDI family member from an animal tissue.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Animales , Disulfuros/metabolismo , Epidídimo , Etilmaleimida/metabolismo , Masculino , Ratones , Ratones Noqueados , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA