Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Food Chem ; 463(Pt 3): 141412, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39340913

RESUMEN

Whole white button mushrooms (WWBM) exhibit a limited shelf-life owing to the oxidative enzymatic browning. Inactivation of polyphenol oxidase-PPO and peroxidase-POD in WWBM and its kinetic behavior were studied using pulsed light(PL) treatment (0.13-1.11 J/cm2). The first-order kinetics explained PL-induced enzyme inactivation. Rate constants(k) for PPO and POD were 3.84 and 2.55 cm2/J. FTIR-analysis revealed secondary-structural changes in partially-purified enzyme. PL-treatment retarded browning, retained phenolics and enhanced vitamin D2. PL-treatment at 1.11 J/cm2 rendered WWBM both microbially and enzymatically stable. The PL-treated WWBM's shelf-life at 4, 20, and 37 °C were 5, 3, and 1 day. At 4 °C, browning increased by 6.1 %; firmness decreased by 55.2 %, while PL-treated mushrooms retained 90.6 % phenolics, 78.9 % antioxidant capacity, and 64.2 % D2 after 5 days. Higher activation energy value confirmed phenolics were most sensitive during storage. PL-technology supports UN Sustainable Development Goals by reducing chemical use, lowering carbon-footprints, minimizing pollution, and enhancing shelf-life, promoting sustainable global trade.

2.
J Biol Chem ; 300(6): 107365, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750795

RESUMEN

YKL-40, also known as human cartilage glycoprotein-39 (HC-gp39) or CHI3L1, shares structural similarities with chitotriosidase (CHIT1), an active chitinase, but lacks chitinase activity. Despite being a biomarker for inflammatory disorders and cancer, the reasons for YKL-40's inert chitinase function have remained elusive. This study reveals that the loss of chitinase activity in YKL-40 has risen from multiple sequence modifications influencing its chitin affinity. Contrary to the common belief associating the lack of chitinase activity with amino acid substitutions in the catalytic motif, attempts to activate YKL-40 by creating two amino acid mutations in the catalytic motif (MT-YKL-40) proved ineffective. Subsequent exploration that included creating chimeras of MT-YKL-40 and CHIT1 catalytic domains (CatDs) identified key exons responsible for YKL-40 inactivation. Introducing YKL-40 exons 3, 6, or 8 into CHIT1 CatD resulted in chitinase inactivation. Conversely, incorporating CHIT1 exons 3, 6, and 8 into MT-YKL-40 led to its activation. Our recombinant proteins exhibited properly formed disulfide bonds, affirming a defined structure in active molecules. Biochemical and evolutionary analysis indicated that the reduced chitinase activity of MT-YKL-40 correlates with specific amino acids in exon 3. M61I and T69W substitutions in CHIT1 CatD diminished chitinase activity and increased chitin binding. Conversely, substituting I61 with M and W69 with T in MT-YKL-40 triggered chitinase activity while reducing the chitin-binding activity. Thus, W69 plays a crucial role in a unique subsite within YKL-40. These findings emphasize that YKL-40, though retaining the structural framework of a mammalian chitinase, has evolved to recognize chitin while surrendering chitinase activity.


Asunto(s)
Quitina , Proteína 1 Similar a Quitinasa-3 , Proteína 1 Similar a Quitinasa-3/metabolismo , Proteína 1 Similar a Quitinasa-3/genética , Proteína 1 Similar a Quitinasa-3/química , Humanos , Quitina/metabolismo , Quitina/química , Quitinasas/metabolismo , Quitinasas/genética , Quitinasas/química , Evolución Molecular , Hexosaminidasas/metabolismo , Hexosaminidasas/química , Hexosaminidasas/genética , Dominio Catalítico , Sustitución de Aminoácidos , Exones , Secuencia de Aminoácidos
3.
Food Chem ; 449: 139302, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608610

RESUMEN

In this study, the effects of the thermal ultrasonic enzyme inactivation process on flavor enhancement in sea cucumber hydrolysates (SCHs) and its impact on the inactivation of neutral proteases (NPs) were investigated. The body wall of the sea cucumber was enzymatically hydrolyzed with NPs. On the one hand, the structure of NPs subjected to different enzyme inactivation methods was analyzed using ζ-potential, particle size, and Fourier transform infrared (FT-IR) spectroscopy. On the other hand, the microstructure and flavor changes of SCHs were examined through scanning electron microscopy, E-nose, and gas chromatography-ion mobility spectrometry (GC-IMS). The results indicated that thermal ultrasound treatment at 60 °C could greatly affect the structure of NPs, thereby achieving enzyme inactivation. Furthermore, this treatment generated more pleasant flavor compounds, such as pentanal and (E)-2-nonenal. Hence, thermal ultrasound treatment could serve as an alternative process to traditional heat inactivation of enzymes for improving the flavor of SCHs.


Asunto(s)
Calor , Pepinos de Mar , Animales , Pepinos de Mar/química , Aromatizantes/química , Aromatizantes/metabolismo , Hidrolisados de Proteína/química , Gusto , Hidrólisis , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Ondas Ultrasónicas
4.
Angew Chem Int Ed Engl ; 63(20): e202319248, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38476019

RESUMEN

Heterogeneous biocatalysis is highly relevant in biotechnology as it offers several benefits and practical uses. To leverage the full potential of heterogeneous biocatalysts, the establishment of well-crafted protocols, and a deeper comprehension of enzyme immobilization on solid substrates are essential. These endeavors seek to optimize immobilized biocatalysts, ensuring maximal enzyme performance within confined spaces. For this aim, multidimensional characterization of heterogeneous biocatalysts is required. In this context, spectroscopic and microscopic methodologies conducted at different space and temporal scales can inform about the intraparticle enzyme kinetics, the enzyme spatial distribution, and the mass transport issues. In this Minireview, we identify enzyme immobilization, enzyme catalysis, and enzyme inactivation as the three main processes for which advanced characterization tools unveil fundamental information. Recent advances in operando characterization of immobilized enzymes at the single-particle (SP) and single-molecule (SM) levels inform about their functional properties, unlocking the full potential of heterogeneous biocatalysis toward biotechnological applications.


Asunto(s)
Biocatálisis , Enzimas Inmovilizadas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Cinética
5.
J Inorg Biochem ; 250: 112398, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37879152

RESUMEN

This paper reports on the molecular details of the reactivity of urease, a nickel-dependent enzyme that catalyses the last step of organic nitrogen mineralization, with thiuram disulphides, a class of molecules known to inactivate the enzyme with high efficacy but for which the mechanism of action had not been yet established. IC50 values of tetramethylthiuram disulphide (TMTD or Thiram) and tetraethylthiuram disulphide (TETD or Disulfiram) in the low micromolar range were determined for plant and bacterial ureases. The X-ray crystal structure of Sporosarcina pasteurii urease inactivated by Thiram, determined at 1.68 Å resolution, revealed the presence of a covalent modification of the catalytically essential cysteine residue. This is located on the flexible flap that modulates the size of the active site channel and cavity. Formation of a Cys-S-S-C(S)-N(CH3)2 functionality responsible for enzyme inactivation was observed. Quantum-mechanical calculations carried out to rationalise the large reactivity of the active site cysteine support the view that a conserved histidine residue, adjacent to the cysteine in the active site flap, modulates the charge and electron density along the thiol SH bond by shifting electrons towards the sulphur atom and rendering the thiol proton more reactive. We speculate that this proton could be transferred to the nickel-coordinated urea amide group to yield a molecule of ammonia from the generated Curea-NH3+ functionality during catalysis.


Asunto(s)
Níquel , Tiram , Níquel/química , Ureasa/química , Cisteína , Protones , Disulfiram , Urea
6.
Foods ; 12(24)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38137304

RESUMEN

Green technologies using renewable and alternative sources, including supercritical carbon dioxide (sc-CO2), are becoming a priority for researchers in a variety of fields, including the control of enzyme activity which, among other applications, is extremely important in the food industry. Namely, extending shelf life of e.g., flour could be reached by tuning the present enzymes activity. In this study, the effect of different sc-CO2 conditions such as temperature (35-50 °C), pressure (200 bar and 300 bar), and exposure time (1-6 h) on the inactivation and structural changes of α-amylase, lipase, and horseradish peroxidase (POD) from white wheat flour and native enzymes was investigated. The total protein (TPC) content and residual activities of the enzymes were determined by standard spectrophotometric methods, while the changes in the secondary structures of the enzymes were determined by circular dichroism spectrometry (CD). The present work is therefore concerned for the first time with the study of the stability and structural changes of the enzyme molecules dominant in white wheat flour under sc-CO2 conditions at different pressures and temperatures. In addition, the changes in aggregation or dissociation of the enzyme molecules were investigated based on the changes in particle size distribution and ζ-potential. The results of the activity assays showed a decrease in the activity of native POD and lipase under optimal exposure conditions (6 h and 50 °C; and 1 h and 50 °C) by 22% and 16%, respectively. In contrast, no significant changes were observed in α-amylase activity. Consequently, analysis of the CD spectra of POD and lipase confirmed a significant effect on secondary structure damage (changes in α-helix, ß-sheet, and ß-turn content), whereas the secondary structure of α-amylase retained its original configuration. Moreover, the changes in particle size distribution and ζ-potential showed a significant effect of sc-CO2 treatment on the aggregation and dissociation of the selected enzymes. The results of this study confirm that sc-CO2 technology can be effectively used as an environmentally friendly technology to control the activity of major flour enzymes by altering their structures.

7.
Heliyon ; 9(11): e22024, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027666

RESUMEN

Oaks (Quercus L., Fagaceae) are a widespread tree species worldwide, and in Hungary they account for nearly 30 % of the forests. Their wood is valuable, but their bark is considered as a by-product. Oak bark, available in large quantities but with no dedicated use, contains a significant amount of valuable extractives. Its (+)-catechin content is around 1 %. (+)-Catechin is mostly used for food industry, medicine and many other industrial purposes, representing a significant financial value. The aim of the present research was to compare the (+)-catechin concentrations in the bark of the most important oak species found in Hungary and to optimize sample pretreatment (conservation) and extraction methods in order to achieve fast and efficient extraction. From these species the highest concentrations were measured in Q. robur and Q. robur ssp. slavonica (8-12 mg (+)-catechin/g dry bark). The combination of microwave sample pretreatment and microwave assisted extraction proved to be the most time- and cost-effective method. The utilization of the extracted bark powder for energetic purposes requires further investigations.

8.
Foods ; 12(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569107

RESUMEN

Salmorejo is a viscous homogenate based on tomato, olive oil and breadcrumbs commercialised as a "fresh-like" pasteurised-chilled purée. Due to its penetration, dielectric heating by radiofrequency (RF) might improve pasteurisation results of conventional heating (CH). The objective was to validate the pasteurisation temperature (70-100 °C, at 5 °C intervals) for salmorejo processed by RF (operating at 27.12 MHz for 9.08 s) or conventional (for 10.9 s) continuous heating. The main heat-induced changes include: orangeness, flavour homogenisation, loss of freshness, thickening, loss of vitamin C and lipid oxidation. Both CH and RF equivalent treatments allowed a strong reduction of total and sporulated mesophilic microorganisms and an adequate inhibition of the pectin methylesterase, peroxidase and, to a lesser extent, polyphenol oxidase but did not inhibit the polygalacturonase enzyme. Pasteurisation at 80 °C provided a good equilibrium in levels of microbiological and enzymatic inhibition and thermal damage to the product. Increasing this temperature does not improve enzyme inactivation levels and salmorejo may become overheated. A "fresh-like" good-quality salmorejo can be obtained using either conventional or radiofrequency pasteurisers.

9.
Molecules ; 28(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37446565

RESUMEN

The cost-effectiveness and high efficiency of atmospheric cold plasma (ACP) incentivise researchers to explore its potentials within the food industry. Presently, the destructive nature of this nonthermal technology can be utilised to inactivate foodborne pathogens, enzymatic ripening, food allergens, and pesticides. However, by adjusting its parameters, ACP can also be employed in other novel applications including food modification, drying pre-treatment, nutrient extraction, active packaging, and food waste processing. Relevant studies were conducted to investigate the impacts of ACP and posit that reactive oxygen and nitrogen species (RONS) play the principal roles in achieving the set objectives. In this review article, operations of ACP to achieve desired results are discussed. Moreover, the recent progress of ACP in food processing and safety within the past decade is summarised while current challenges as well as its future outlook are proposed.


Asunto(s)
Gases em Plasma , Eliminación de Residuos , Alimentos , Industria de Alimentos , Manipulación de Alimentos/métodos
10.
Chem Biol Interact ; 382: 110563, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37286155

RESUMEN

Human paraoxonase-1 (PON1) is the most studied member of the paraoxonases (PONs) family and catalyzes the hydrolysis of various substrates (lactones, aryl esters, and paraoxon). Numerous studies link PON1 to oxidative stress-related diseases such as cardiovascular disease, diabetes, HIV infection, autism, Parkinson's, and Alzheimer's, where the kinetic behavior of an enzyme is characterized by initial rates or by modern methods that obtain enzyme kinetic parameters by fitting the computed curves over the entire time-courses of product formation (progress curves). In the analysis of progress curves, the behavior of PON1 during hydrolytically catalyzed turnover cycles is unknown. Hence, progress curves for enzyme-catalyzed hydrolysis of the lactone substrate dihydrocoumarin (DHC) by recombinant PON1 (rePON1) were analyzed to investigate the effect of catalytic DHC turnover on the stability of rePON1. Although rePON1 was significantly inactivated during the catalytic DHC turnover, its activity was not lost due to the product inhibition or spontaneous inactivation of rePON1 in the sample buffers. Examination of the progress curves of DHC hydrolysis by rePON1 led to the conclusion that rePON1 inactivates itself during catalytic DHC turnover hydrolysis. Moreover, human serum albumin or surfactants protected rePON1 from inactivation during this catalytic process, which is significant because the activity of PON1 in clinical samples is measured in the presence of albumin.


Asunto(s)
Arildialquilfosfatasa , Infecciones por VIH , Humanos , Arildialquilfosfatasa/química , Arildialquilfosfatasa/farmacología , Tensoactivos , Hidrólisis , Catálisis
11.
J Biol Chem ; 299(6): 104732, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37086785

RESUMEN

Nicotianamine synthase (NAS) catalyzes the biosynthesis of the low-molecular-mass metal chelator nicotianamine (NA) from the 2-aminobutyrate moieties of three SAM molecules. NA has central roles in metal nutrition and metal homeostasis of flowering plants. The enzymatic function of NAS remains poorly understood. Crystal structures are available for archaeal and bacterial NAS-like proteins that carry out simpler aminobutanoyl transferase reactions. Here, we report amino acids essential for the activity of AtNAS1 based on structural modeling and site-directed mutagenesis. Using a newly developed enzyme-coupled continuous activity assay, we compare differing NAS proteins identified through multiple sequence alignments and phylogenetic analyses. In most NAS of dicotyledonous and monocotyledonous plants (class Ia and Ib), the core-NAS domain is fused to a variable C-terminal domain. Compared to fungal and moss NAS that comprise merely a core-NAS domain (class III), NA biosynthetic activities of the four paralogous Arabidopsis thaliana NAS proteins were far lower. C-terminally trimmed core-AtNAS variants exhibited strongly elevated activities. Of 320 amino acids of AtNAS1, twelve, 287-TRGCMFMPCNCS-298, accounted for the autoinhibitory effect of the C terminus, of which approximately one-third was attributed to N296 within a CNCS motif that is fully conserved in Arabidopsis. No detectable NA biosynthesis was mediated by two representative plant NAS proteins that naturally lack the C-terminal domain, class Ia Arabidopsis halleri NAS5 and Medicago truncatula NAS2 of class II which is found in dicots and diverged early during the evolution of flowering plants. Next, we will address a possible posttranslational release of autoinhibition in class I NAS proteins.


Asunto(s)
Transferasas Alquil y Aril , Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Filogenia , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética
12.
Protein Sci ; 32(4): e4620, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36883357

RESUMEN

Ym1 (chitinase-like 3, Chil3) expressed in mice is a nonenzymatic chitinase-like protein, which shows 67% identity with mouse acidic chitinase (Chia). Similar to Chia, Ym1 is overexpressed in asthma and parasitic infections in mouse lungs. Due to the lack of chitin-degrading activity, the biomedical role of Ym1 under these pathophysiological conditions remains to be determined. In this study, we investigated what region and amino acid changes in Ym1 resulted in the loss of enzymatic activity. Replacing two amino acids at the catalytic motif to obtain a Chia-like sequence (N136D and Q140E; MT-Ym1) did not activate the protein. We conducted a comparative study of Ym1 and Chia. We found that three protein segments-(i) the catalytic motif residues, (ii) exons 6 and 7, and (iii) exon 10-are responsible for chitinase activity loss in Ym1. We show that replacing each of these three segments in Chia that are also involved in substrate recognition and binding by the Ym1 sequence can fully abolish the enzymatic activity. In addition, we show that there have been extensive gene duplication events at the Ym1 locus specific to the rodent lineages. Consistent with this result, Ym1 orthologs from the rodent genome were under positive selection when analyzed through the CODEML program. These data suggest that numerous amino acid substitutions in the regions involved in the chitin recognition, binding, and degradation ability of the ancestor Ym1 molecule lead to the irreversible inactivation of the protein.


Asunto(s)
Quitinasas , Animales , Ratones , Sustitución de Aminoácidos , Evolución Biológica , Quitina/química , Quitinasas/química
13.
Food Sci Biotechnol ; 32(1): 71-82, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36606084

RESUMEN

Physical and nutritional attributes of aonla juice treated with hydrodynamic cavitation (HC) at a pressure range of 5-15 psi and time between 5 to 30 min were evaluated. Based on maximum retention of bioactives, antioxidant activity, inactivation of polyphenol oxidase (PPO), and physicochemical properties, HC conditions were optimized at 10 psi for 15 min, based on retention of 92.19% antioxidant activity, 88.01% vitamin C, and 96.80% of total phenolic content. Improved sedimentation index and viscosity were noted due to HC processing. The color profile of HC-treated samples was improved with less browning (63.86) and yellowing index (14.79) than that of control (browning index 64.61). Thermally treated samples inactivated 100% of PPO at 95 ℃ for 3 min, however, formation of a dark color with a browning index value of 67.38 was noted. The retention of various bioactives in thermally treated juice samples was much lesser than that of HC-treated samples. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01164-2.

14.
Food Chem ; 398: 133875, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35964573

RESUMEN

The effects of radio frequency (RF) heating on horseradish peroxidase (HRP) activity and its structure were investigated in this paper. The HRP was heated to 50 °C, 70 °C and 90 °C at different electrode gaps (100, 110 and 120 mm). The relative enzyme activity was 105.33 %-113.73 % at 50 °C, 91.11 %-93.05 % at 70 °C and 47.05 %-68.17 % at 90 °C. Ultraviolet-visible, circular dichroism and fluorescence spectra were used to monitor the variation in secondary and tertiary structure. The results showed that RF heating at the electrode gaps of 120 mm contributed to more severe enzyme inactivation and conformational destruction, which can be explained by the changes in Soret band, secondary structure content and tryptophan fluorescence intensity. This study revealed that enzyme inactivation by RF heating was associated with loss of helical structure, unfolding of enzyme protein and ejection of heme group.


Asunto(s)
Calefacción , Ondas de Radio , Dicroismo Circular , Peroxidasa de Rábano Silvestre/metabolismo , Estructura Secundaria de Proteína
15.
Foods ; 11(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36496639

RESUMEN

In this research, a new approach to enzyme inactivation in flour was presented by supercritical technology, considered a sustainable technology with lower energy consumption compared to other technologies that use ultra-high temperature processing. Total protein concentration and the activity of enzymes α-amylase, lipase, peroxidase, polyphenol oxidase, and protease were determined in flour pre-treated with scCO2. During the study, it was observed that the activity of enzymes such as lipase and polyphenol oxidase, was significantly reduced under certain conditions of scCO2 treatment, while the enzymes α-amylase and protease show better stability. In particular, polyphenol oxidase was effectively inactivated below the 60% of preserved activity at 200 bar and 3 h, whereas α-amylase under the same conditions retained its activity. Additionally, the moisture content of the scCO2-treated spelt flour was reduced by 5%, and the fat content was reduced by 58%, while the quality of scCO2-treated flour was maintained. In this regard, the sustainable scCO2 process could be a valuable tool for controlling the enzymatic activity of spelt flour since the use of scCO2 technology has a positive effect on the quality of flour, which was verified by the baking performance of spelt flour with the baked spelt bread as an indicator of quality.

16.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430745

RESUMEN

Lipase B from Candida antarctica was immobilized on heterofunctional support octyl agarose activated with vinyl sulfone to prevent enzyme release under drastic conditions. Covalent attachment was established, but the blocking step using hexylamine, ethylenediamine or the amino acids glycine (Gly) and aspartic acid (Asp) altered the results. The activities were lower than those observed using the octyl biocatalyst, except when using ethylenediamine as blocking reagent and p-nitrophenol butyrate (pNPB) as substrate. The enzyme stability increased using these new biocatalysts at pH 7 and 9 using all blocking agents (much more significantly at pH 9), while it decreased at pH 5 except when using Gly as blocking agent. The stress inactivation of the biocatalysts decreased the enzyme activity versus three different substrates (pNPB, S-methyl mandelate and triacetin) in a relatively similar fashion. The tryptophane (Trp) fluorescence spectra were different for the biocatalysts, suggesting different enzyme conformations. However, the fluorescence spectra changes during the inactivation were not too different except for the biocatalyst blocked with Asp, suggesting that, except for this biocatalyst, the inactivation pathways may not be so different.


Asunto(s)
Enzimas Inmovilizadas , Lipasa , Lipasa/metabolismo , Sefarosa/química , Enzimas Inmovilizadas/química , Butiratos , Etilenodiaminas
17.
Front Nutr ; 9: 977655, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211480

RESUMEN

The potential of bio-preservatives, namely, nisin, natamycin, and polylysine, as viable alternatives to chemical preservatives for storage of tender coconut water (TCW) during refrigerated storage (5 ± 2°C) was explored. Bio-preservative treatments were carried out after optimized heat treatment (85°C for 5 min) of TCW to establish its storage characteristics. Various concentrations (up to 125 ppm) of bio-preservatives were used for the preservation, and quality parameters of resultant TCW were assessed based on physicochemical characteristics and Food and Agriculture Organization (FAO) guidelines and statistical analysis applied. Analysis of variance (ANOVA) and post-hoc test revealed that pH and overall acceptability (OA) are the major governing factors that determine spoilage of TCW (p < 0.05). Overall, the polylysine combination was found to be most effective in ensuring quality retention of TCW. It was concluded that pasteurized TCW shelf life could be extended up to 20 days using bio-preservatives.

18.
J Biol Chem ; 298(5): 101864, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35339487

RESUMEN

Canonical NF-κB signaling through the inhibitor of κB kinase (IKK) complex requires induction of IKK2/IKKß subunit catalytic activity via specific phosphorylation within its activation loop. This process is known to be dependent upon the accessory ubiquitin (Ub)-binding subunit NF-κB essential modulator (NEMO)/IKKγ as well as poly-Ub chains. However, the mechanism through which poly-Ub binding serves to promote IKK catalytic activity is unclear. Here, we show that binding of NEMO/IKKγ to linear poly-Ub promotes a second interaction between NEMO/IKKγ and IKK2/IKKß, distinct from the well-characterized interaction of the NEMO/IKKγ N terminus to the "NEMO-binding domain" at the C terminus of IKK2/IKKß. We mapped the location of this second interaction to a stretch of roughly six amino acids immediately N-terminal to the zinc finger domain in human NEMO/IKKγ. We also showed that amino acid residues within this region of NEMO/IKKγ are necessary for binding to IKK2/IKKß through this secondary interaction in vitro and for full activation of IKK2/IKKß in cultured cells. Furthermore, we identified a docking site for this segment of NEMO/IKKγ on IKK2/IKKß within its scaffold-dimerization domain proximal to the kinase domain-Ub-like domain. Finally, we showed that a peptide derived from this region of NEMO/IKKγ is capable of interfering specifically with canonical NF-κB signaling in transfected cells. These in vitro biochemical and cell culture-based experiments suggest that, as a consequence of its association with linear poly-Ub, NEMO/IKKγ plays a direct role in priming IKK2/IKKß for phosphorylation and that this process can be inhibited to specifically disrupt canonical NF-κB signaling.


Asunto(s)
Quinasa I-kappa B , FN-kappa B , Poliubiquitina , Humanos , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Poliubiquitina/metabolismo , Unión Proteica
19.
Biotechnol J ; 17(6): e2100712, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35188703

RESUMEN

Broadly used in biocatalysis as acyl acceptors or (co)-solvents, short-chain alcohols often cause irreversible loss of enzyme activity. Understanding the mechanisms of inactivation is a necessary step toward the optimization of biocatalytic reactions and the design of enzyme-based sustainable processes. The functional and structural responses of an immobilized enzyme, Novozym 435 (N-435), exposed to methanol, ethanol, and tert-butanol, are explored in this work. N-435 consists of Candida antarctica lipase B (CALB) adsorbed on polymethacrylate beads and finds application in a variety of processes involving the presence of short-chain alcohols. The nature of the N-435 material required the development of an ad hoc method of structural analysis, based on Fourier transform infrared microspectroscopy, which was complemented by catalytic activity assays and by morphological observation by transmission electron microscopy. The inactivation of N-435 was found to be highly dependent on alcohol concentration and occurs through two different mechanisms. Short-chain alcohols induce conformational changes leading to CALB aggregation, which is only partially prevented by immobilization. Moreover, alcohol modifies the texture of the solid support promoting the enzyme release. Overall, knowledge of the molecular mechanisms underlying N-435 inactivation induced by short-chain alcohols promises to overcome the limitations that usually occur during industrial processes.


Asunto(s)
Alcoholes , Candida , Biocatálisis , Enzimas Inmovilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Lipasa/metabolismo
20.
Curr Res Food Sci ; 5: 41-48, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35028593

RESUMEN

The effect of microwave (MW) treatment with different power densities (4.4, 7.7, and 11.0 W/g) on polyphenol oxidase (PPO) and pectin methyl esterase (PME) inactivation in peach puree were studied, and the changes in color, rheological properties, total polyphenol and flavonoid and antioxidant capacity were evaluated. By using time/temperature data collected during MW heating, three cook values levels (0.36, 10, 24 min) for each power density were calculated. The PPO was significantly decreased from ca. 50% to ca. 5% when increasing the cook value level, regardless of power density applied. While PME significantly decreased from 40.6% to 10.2% when power density increased from 4.4 to 11.0 W/g at cook value 24 min. MW treatment did not alter the flow behaviour of peach puree. The apparent viscosity values of peach puree significantly increased after MW treatment with increasing cook value, regardless of power density applied. The L* values of peach puree significantly increased from 36.98 to 38.10 or more after MW treatment at cook value 10 min and 24 min. MW treatment could maintain the amount of total polyphenol, total flavonoid and antioxidant capacity, preserving the nutritional and functional values of the product.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA