Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 787
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(15): e23860, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39093051

RESUMEN

Inner ear sensory hair cells are characterized by their apical F-actin-based cell protrusions named stereocilia. In each hair cell, several rows of stereocilia with different height are organized into a staircase-like pattern. The height of stereocilia is tightly regulated by two protein complexes, namely row-1 and row-2 tip complex, that localize at the tips of tallest-row and shorter-row stereocilia, respectively. Previously, we and others identified BAI1-associated protein 2-like 2 (BAIAP2L2) as a component of row-2 complex that play an important role in maintaining shorter-row stereocilia. In the present work we show that BAIAP2L1, an ortholog of BAIAP2L2, localizes at the tips of tallest-row stereocilia in a way dependent on known row-1 complex proteins EPS8 and MYO15A. Interestingly, unlike BAIAP2L2 whose stereocilia-tip localization requires calcium, the localization of BAIAP2L1 on the tips of tallest-row stereocilia is calcium-independent. Therefore, our data suggest that BAIAP2L1 and BAIAP2L2 localize at the tips of different stereociliary rows and might regulate the development and/or maintenance of stereocilia differently. However, loss of BAIAP2L1 does not affect the row-1 protein complex, and the auditory and balance function of Baiap2l1 knockout mice are largely normal. We hypothesize that other orthologous protein(s) such as BAIAP2 might compensate for the loss of BAIAP2L1 in the hair cells.


Asunto(s)
Estereocilios , Animales , Estereocilios/metabolismo , Ratones , Ratones Noqueados , Células Ciliadas Auditivas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Miosinas/metabolismo , Miosinas/genética , Células Ciliadas Auditivas Internas/metabolismo , Calcio/metabolismo
2.
EMBO Rep ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969946

RESUMEN

Plasma membrane repair is a fundamental homeostatic process of eukaryotic cells. Here, we report a new function for the conserved cytoskeletal proteins known as septins in the repair of cells perforated by pore-forming toxins or mechanical disruption. Using a silencing RNA screen, we identified known repair factors (e.g. annexin A2, ANXA2) and novel factors such as septin 7 (SEPT7) that is essential for septin assembly. Upon plasma membrane injury, the septin cytoskeleton is extensively redistributed to form submembranous domains arranged as knob and loop structures containing F-actin, myosin IIA, S100A11, and ANXA2. Formation of these domains is Ca2+-dependent and correlates with plasma membrane repair efficiency. Super-resolution microscopy revealed that septins and F-actin form intertwined filaments associated with ANXA2. Depletion of SEPT7 prevented ANXA2 recruitment and formation of submembranous actomyosin domains. However, ANXA2 depletion had no effect on domain formation. Collectively, our data support a novel septin-based mechanism for resealing damaged cells, in which the septin cytoskeleton plays a key structural role in remodeling the plasma membrane by promoting the formation of SEPT/F-actin/myosin IIA/ANXA2/S100A11 repair domains.

3.
J Cell Physiol ; : e31359, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988048

RESUMEN

Skeletal muscle constitutes the largest percentage of tissue in the animal body and plays a pivotal role in the development of normal life activities in the organism. However, the regulation mechanism of skeletal muscle growth and development remains largely unclear. This study investigated the effects of Ankrd1 on the proliferation and differentiation of C2C12 myoblasts. Here, we identified Ankrd1 as a potential regulator of muscle cell development, and found that Ankrd1 knockdown resulted in the proliferation ability decrease but the differentiation level increase of C2C12 cells. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyzes as well as RNA-seq results showed that Ankrd1 knockdown activated focal adhesion kinase (FAK)/F-actin signal pathway with most genes significantly enriched in this pathway upregulated. The integrin subunit Itga6 promoter activity is increased when Ankrd1 knockdown, as demonstrated by a dual-luciferase reporter assay. This study revealed the molecular mechanism by which Ankrd1 knockdown enhanced FAK phosphorylation activity through the alteration of integrin subunit levels, thus activating FAK/Rho-GTPase/F-actin signal pathway, eventually promoting myoblast differentiation. Our data suggested that Ankrd1 might serve as a potential regulator of muscle cell development. Our findings provide new insights into skeletal muscle growth and development and valuable references for further study of human muscle-related diseases.

4.
Cancers (Basel) ; 16(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39001432

RESUMEN

The reorganization of the cell cytoskeleton and changes in the content of cell adhesion molecules are crucial during the metastatic spread of tumor cells. Colorectal cancer (CRC) cells express high SMAD7, a protein involved in the control of CRC cell growth. In the present study, we evaluated whether SMAD7 regulates the cytoskeleton reorganization and dynamics in CRC. Knockdown of SMAD7 with a specific antisense oligonucleotide (AS) in HCT116 and DLD1, two human CRC cell lines, reduced the migration rate and the content of F-ACTIN filaments. A gene array, real-time PCR, and Western blotting of SMAD7 AS-treated cells showed a marked down-regulation of the X-linked inhibitor of apoptosis protein (XIAP), a member of the inhibitor of apoptosis family, which has been implicated in cancer cell migration. IL-6 and IL-22, two cytokines that activate STAT3, enhanced XIAP in cancer cells, and such induction was attenuated in SMAD7-deficient cells. Finally, in human CRC, SMAD7 mRNA correlated with XIAP expression. Our data show that SMAD7 positively regulates XIAP expression and migration of CRC cells, and suggest a mechanism by which SMAD7 controls the architecture components of the CRC cell cytoskeleton.

5.
Heliyon ; 10(12): e32974, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38994100

RESUMEN

Mechanical properties, along with biochemical and molecular properties, play crucial roles in governing cellular function and homeostasis. Cellular mechanics are influenced by various factors, including physiological and pathological states, making them potential biomarkers for diseases and aging. While several methods such as AFM, particle-tracking microrheology, optical tweezers/stretching, magnetic tweezers/twisting cytometry, microfluidics, and micropipette aspiration have been widely utilized to measure the mechanical properties of single cells, our understanding of how aging affects these properties remains limited. To fill this knowledge gap, we provide a brief overview of the commonly used methods to measure single-cell mechanical properties. We then delve into the effects of aging on the mechanical properties of different cell types. Finally, we discuss the importance of studying cellular viscous and viscoelastic properties as well as aging induced by different stressors to gain a deeper understanding of the aging process and aging-related diseases.

6.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39000424

RESUMEN

Cardiomyocyte dysfunction and cardiovascular diseases (CVDs) can be classified as ischemic or non-ischemic. We consider the induction of cardiac tissue dysfunction by intracellular advanced glycation end-products (AGEs) in cardiomyocytes as a novel type of non-ischemic CVD. Various types of AGEs can be generated from saccharides (glucose and fructose) and their intermediate/non-enzymatic reaction byproducts. Recently, certain types of AGEs (Nε-carboxymethyl-lycine [CML], 2-ammnonio-6-[4-(hydroxymetyl)-3-oxidopyridinium-1-yl]-hexanoate-lysine [4-hydroxymethyl-OP-lysine, hydroxymethyl-OP-lysine], and Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine [MG-H1]) were identified and quantified in the ryanodine receptor 2 (RyR2) and F-actin-tropomyosin filament in the cardiomyocytes of mice or patients with diabetes and/or heart failure. Under these conditions, the excessive leakage of Ca2+ from glycated RyR2 and reduced contractile force from glycated F-actin-tropomyosin filaments induce cardiomyocyte dysfunction. CVDs are included in lifestyle-related diseases (LSRDs), which ancient people recognized and prevented using traditional medicines (e.g., Kampo medicines). Various natural compounds, such as quercetin, curcumin, and epigallocatechin-3-gallate, in these drugs can inhibit the generation of intracellular AGEs through mechanisms such as the carbonyl trap effect and glyoxalase 1 activation, potentially preventing CVDs caused by intracellular AGEs, such as CML, hydroxymethyl-OP, and MG-H1. These investigations showed that bioactive herbal extracts obtained from traditional medicine treatments may contain compounds that prevent CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Productos Finales de Glicación Avanzada , Miocitos Cardíacos , Productos Finales de Glicación Avanzada/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Humanos , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Ratones
7.
J Reprod Dev ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39010241

RESUMEN

Gellan gum (GG) is a soft, tractable, and natural polysaccharide substrate used for cell incubation. In this study, we examined the effects of GG on porcine oocyte maturation. Cumulus cells and oocyte complexes (COCs) were collected from slaughterhouse-derived porcine ovaries and cultured on plastic plates containing 0.05% or 0.1% GG gels. The 0.1% GG gel improved the maturation rate and quality of blastocysts, as determined by the total cell number and the rate of abnormally condensed nuclei. GG gels have antioxidant abilities and oocytes cultured on GG gels (0.05% and 0.1%) have reduced reactive oxygen species (ROS) content. Furthermore, GG gels (0.05% and 0.1%) increased F-actin formation, whereas treatment of oocytes with H2O2 reduced F-actin levels. GG gels increased the ATP content in oocytes but did not affect the mitochondrial DNA copy number or mitochondrial membrane potential. In addition, the medium cultured on 0.05% GG increased the glucose consumption of COCs. In conclusion, GG gel reduced ROS content, increased energy content, and improved subsequent embryonic development in pigs.

8.
Methods ; 230: 44-58, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39074540

RESUMEN

The actin cytoskeleton is involved in a large number of cellular signaling events in addition to providing structural integrity to the cell. Actin polymerization is a key event during cellular signaling. Although the role of actin cytoskeleton in cellular processes such as trafficking and motility has been extensively studied, the reorganization of the actin cytoskeleton upon signaling has been rarely explored due to lack of suitable assays. Keeping in mind this lacuna, we developed a confocal microscopy based approach that relies on high magnification imaging of cellular F-actin, followed by image reconstruction using commercially available software. In this review, we discuss the context and relevance of actin quantitation, followed by a detailed hands-on approach of the methodology involved with specific points on troubleshooting and useful precautions. In the latter part of the review, we elucidate the method by discussing applications of actin quantitation from our work in several important problems in contemporary membrane biology ranging from pathogen entry into host cells, to GPCR signaling and membrane-cytoskeleton interaction. We envision that future discovery of cell-permeable novel fluorescent probes, in combination with genetically encoded actin-binding reporters, would allow real-time visualization of actin cytoskeleton dynamics to gain deeper insights into active cellular processes in health and disease.

9.
Cancer Commun (Lond) ; 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39073023

RESUMEN

BACKGROUND: Increased Galectin 3-binding protein (LGALS3BP) serum levels have been used to assess hepatic fibrosis stages and the severity of hepatocellular carcinoma (HCC). Considering the crucial role of transforming growth factor-ß1 (TGF-ß1) in the emergence of these diseases, the present study tested the hypothesis that LGALS3BP regulates the TGF-ß1 signaling pathway. METHODS: The expression levels of LGALS3BP and TGFB1 were analyzed in patients with metabolic dysfunction-associated steatohepatitis (MASH) and HCC. Multiple omics techniques, such as RNA-sequencing, transposase-accessible chromatin-sequencing assay, and liquid chromatography-tandem mass spectrometry proteomics, were used to identify the regulatory mechanisms for the LGALS3BP-TGF-ß1 axis. The effects of altered TGF-ß1 signaling by LGALS3BP were investigated in conditional LGALS3BP-knockin and LGALS3BP-knockout mice. RESULTS: In patients with MASH and HCC, the levels of LGALS3BP and TGFB1 exhibited positive correlations. Stimulation of LGALS3BP by the inflammatory cytokine interferon α in HCC cells or ectopic overexpression of LGALS3BP in hepatocytes promoted the expression levels of TGFB1. Aggravated fibrosis was observed in the livers of hepatocyte-specific LGALS3BP-knockin mice, with increased TGFB1 levels. LGALS3BP directly bound to and assembled integrin αV, an integral mediator required for releasing active TGF-ß1 from extracellular latent complex with the rearranged F-actin cytoskeleton. The released TGF-ß1 activated JunB transcription factor, which in turn promoted the TGF-ß1 positive feedback loop. LGALS3BP deletion in the hepatocytes downregulated TGF-ß1 signaling and CCl4 induced fibrosis. Moreover, LGALS3BP depletion hindered hepatocarcinogenesis by limiting the availability of fibrogenic TGF-ß1. CONCLUSION: LGALS3BP plays a crucial role in hepatic fibrosis and carcinogenesis by controlling the TGF-ß1 signaling pathway, making it a promising therapeutic target in TGF-ß1-related diseases.

10.
Int J Biol Macromol ; 277(Pt 2): 133943, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39025174

RESUMEN

Asparagine (Asn, N)-linked glycosylation is an abundant post-translational modification in which Asn, typically in Nglyco-X-S/T; X ≠ P motifs, are modified with N-glycans. It has essential regulatory roles in multicellular organisms. In this study, we systematically investigate the function of three N-glycosylation motifs (Nglyco-A, Nglyco-D and Nglyco-S) previously identified in Phytophthora sojae, through site-directed mutagenesis and functional assays. In P. sojae expressing glycosylation-dead variants pre-PsDMAP1N70A (Nglyco-A motif) or PsADFN64A (Nglyco-D motif), zoospore release or cyst germination is impaired. In particular, the pre-PsDMAP1N70A mutant reduces DNA methylation levels, and the PsADFN64A mutant disrupts the actin forms, which could explain the decrease in pathogenicity after N-glycosylation is destroyed. Similarly, P. sojae expressing PsNRXN132A (Nglyco-S motif) shows increased sensitivity to H2O2 and heat. Through autophagy or 26S proteasome pathway inhibition assays, we found that unglycosylated pre-PsDMAP1N70A and PsADFN64A are degraded via the 26S proteasome pathway, while the autophagy pathway is responsible for PsNRXN132A clearance. These findings demonstrate that glycosylation of these motifs regulates the stability and function of glycoproteins necessary for P. sojae growth, reproduction and pathogenicity, which expands the scope of known N-glycosylation regulatory functions in oomycetes.

11.
Heliyon ; 10(11): e32466, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38933958

RESUMEN

Sirtuin 5 (Sirt5), a member of the Sirtuin family, is involved in various intracellular biological processes. However, the function of Sirt5 in oocyte maturation has not been clearly elucidated. In this study, we observed that Sirt5 was persistently expressed during the meiotic division of mouse oocytes, with a notable decline in expression in aging oocytes. Sirt5 inhibition led to the failure of the first polar body extrusion and induced cell cycle arrest, indicative of unsuccessful oocyte maturation. Furthermore, Sirt5 inhibition was associated with the extrusion of abnormally large polar bodies, suggesting disrupted asymmetric oocyte division. Mechanistically, the inhibition of Sirt5 resulted in aberrant spindle assembly and disordered chromosome alignment in oocytes. Moreover, Sirt5 inhibition caused the spindle to be centrally located in the oocyte without migrating to the cortical region, consequently preventing the formation of the actin cap. Further investigation revealed that Sirt5 inhibition notably diminished the expression of phosphorylated cofilin and profilin1, while increasing cytoplasmic F-actin levels. These findings suggest that Sirt5 inhibition during oocyte maturation adversely affects spindle assembly and chromosome alignment and disrupts actin dynamics impairing spindle migration and contributing to the failure of symmetric oocyte division and maturation.

12.
Int J Biol Macromol ; 273(Pt 2): 132854, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838879

RESUMEN

Depression is a neuropsychiatric disorder characterized by persistent pleasure loss and behavioral despair. However, the potential mechanisms and therapeutic targets for depression treatment remain unclear. Therefore, identifying the underlying pathogenesis of depression would promote the development of novel treatment and provide effective targets for antidepressant drugs. In this study, proteomics analysis showed that the expression level of phosphatase and actin regulator 4 (Phactr4) was significantly increased in the CA1 hippocampus of depressed rats. The upregulated Phactr4 might induce dysfunction of the synaptic structure via suppressing the p-LIMK/p-Cofilin signaling pathway, and promote neuroinflammation via activating the NF-κB/NLRP3 pathway, which ultimately contributes to the pathogenesis of depression. In contrast, the downregulation of Phactr4 in hippocampal CA1 of depressed rats alleviated depression-like behaviors, along with reducing neuroinflammation and improving synaptic plasticity. In conclusion, these findings provide evidence that Phactr4 plays an important role in regulating neuroinflammatory response and impairment of synaptic plasticity, effects seem to involve in the pathogenesis of depression, and Phactr4 may serve as a potential target for antidepressant treatment.


Asunto(s)
Depresión , Enfermedades Neuroinflamatorias , Plasticidad Neuronal , Estrés Psicológico , Animales , Plasticidad Neuronal/efectos de los fármacos , Ratas , Depresión/tratamiento farmacológico , Depresión/metabolismo , Depresión/etiología , Masculino , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Proteínas de Microfilamentos/metabolismo , Ratas Sprague-Dawley , Conducta Animal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad , Antidepresivos/farmacología , Hipocampo/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , FN-kappa B/metabolismo
13.
Dev Biol ; 515: 7-17, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942110

RESUMEN

In most mollusks (conchiferans), the early tissue responsible for shell development, namely, the shell field, shows a common process of invagination during morphogenesis. Moreover, lines of evidence indicated that shell field invagination is not an independent event, but an integrated output reflecting the overall state of shell field morphogenesis. Nevertheless, the underlying mechanisms of this conserved process remain largely unknown. We previously found that actomyosin networks (regularly organized filamentous actin (F-actin) and myosin) may play essential roles in this process by revealing the evident aggregation of F-actin in the invaginated region and demonstrating that nonmuscle myosin II (NM II) is required for invagination in the gastropod Lottia peitaihoensis (= Lottia goshimai). Here, we investigated the roles of the Rho family of small GTPases (RhoA, Rac1, and Cdc42) to explore the upstream regulators of actomyosin networks. Functional assays using small molecule inhibitors suggested that Cdc42 modulates key events of shell field morphogenesis, including invagination and cell rearrangements, while the roles of RhoA and Rac1 may be nonspecific or negligible. Further investigations revealed that the Cdc42 protein was concentrated on the apical side of shell field cells and colocalized with F-actin aggregation. The aggregation of these two molecules could be prevented by treatment with Cdc42 inhibitors. These findings suggest a possible regulatory cascade of shell field morphogenesis in which Cdc42 recruits F-actin (actomyosin networks) on the apical side of shell field cells, which then generates resultant mechanical forces that mediate correct shell field morphogenesis (cell shape changes, invagination and cell rearrangement). Our results emphasize the roles of the cytoskeleton in early shell development and provide new insights into molluscan shell evolution.

14.
Mol Cells ; 47(6): 100076, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38825188

RESUMEN

The actin-based cytoskeleton is considered a fundamental driving force for cell differentiation and development. Destrin (Dstn), a member of the actin-depolymerizing factor family, regulates actin dynamics by treadmilling actin filaments and increasing globular actin pools. However, the specific developmental roles of dstn have yet to be fully elucidated. Here, we investigated the physiological functions of dstn during early embryonic development using Xenopus laevis as an experimental model organism. dstn is expressed in anterior neural tissue and neural plate during Xenopus embryogenesis. Depleting dstn promoted morphants with short body axes and small heads. Moreover, dstn inhibition extended the neural plate region, impairing cell migration and distribution during neurulation. In addition to the neural plate, dstn knockdown perturbed neural crest cell migration. Our data suggest new insights for understanding the roles of actin dynamics in embryonic neural development, simultaneously presenting a new challenge for studying the complex networks governing cell migration involving actin dynamics.


Asunto(s)
Movimiento Celular , Destrina , Desarrollo Embrionario , Xenopus laevis , Animales , Xenopus laevis/embriología , Xenopus laevis/metabolismo , Destrina/metabolismo , Destrina/genética , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Cresta Neural/metabolismo , Cresta Neural/embriología , Cresta Neural/citología , Neurogénesis , Placa Neural/metabolismo , Placa Neural/embriología , Actinas/metabolismo , Regulación del Desarrollo de la Expresión Génica
15.
Int J Oncol ; 65(2)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38874004

RESUMEN

Subsequently to the publication of the above article, an interested reader drew to the authors' attention that certain of the EdU assay data shown in Fig. 7E on p. 2418 had already appeared in different form in a previously published paper written by different authors at different research institutes. Owing to the fact that the contentious data in the above article had already been published prior to its submission to International Journal of Oncology, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused.  [International Journal of Oncology 53: 2409­2422, 2018; DOI: 10.3892/ijo.2018.4586].

16.
Photochem Photobiol Sci ; 23(7): 1361-1372, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38865066

RESUMEN

Colorectal cancer (CRC) is significantly contributed to global cancer mortality rates. Treating CRC is particularly challenging due to metastasis and drug resistance. There is a pressing need for new treatment strategies against metastatic CRC. Photodynamic therapy (PDT) offers a well-established, minimally invasive treatment option for cancer with limited side effects. Hypericin (HYP), a potent photosensitizer for PDT, has been documented to induce cytotoxicity and apoptosis in various types of cancers. However, there are few reports on the inhibitory effects of HYP-mediated PDT on the metastatic ability of CRC cells. Here, we evaluate the inhibitory effects of HYP-mediated PDT against metastatic CRC cells and define its underlying mechanisms. Wound-healing and Transwell assays show that HYP-mediated PDT suppresses migration and invasion of CRC cells. F-actin visualization assays indicate HYP-mediated PDT decreases F-actin formation in CRC cells. TEM assays reveal HYP-mediated PDT disrupts pseudopodia formation of CRC cells. Mechanistically, immunofluorescence and western blotting results show that HYP-mediated PDT upregulates E-cadherin and downregulates N-cadherin and Vimentin. HYP-mediated PDT also suppresses key EMT regulators, including Snail, MMP9, ZEB1 and α-SMA. Additionally, the expressions of RhoA and ROCK1 are downregulated by HYP-mediated PDT. Together, these findings suggest that HYP-mediated PDT inhibits the migration and invasion of HCT116 and SW620 cells by modulating EMT and RhoA-ROCK1 signaling pathway. Thus, HYP-mediated PDT presents a potential therapeutic option for CRC.


Asunto(s)
Antracenos , Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Perileno , Fotoquimioterapia , Fármacos Fotosensibilizantes , Transducción de Señal , Quinasas Asociadas a rho , Proteína de Unión al GTP rhoA , Humanos , Perileno/análogos & derivados , Perileno/farmacología , Perileno/química , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Antracenos/farmacología , Transducción de Señal/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Transición Epitelial-Mesenquimal/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Metástasis de la Neoplasia , Ensayos de Selección de Medicamentos Antitumorales
17.
Cell Commun Signal ; 22(1): 314, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849885

RESUMEN

BACKGROUND: Abnormally expressed BCR/ABL protein serves as the basis for the development of chronic myeloid leukaemia (CML). The F-actin binding domain (FABD), which is a crucial region of the BCR/ABL fusion protein, is also located at the carboxyl end of the c-ABL protein and regulates the kinase activity of c-ABL. However, the precise function of this domain in BCR/ABL remains uncertain. METHODS: The FABD-deficient adenovirus vectors Ad-BCR/ABL△FABD, wild-type Ad-BCR/ABL and the control vector Adtrack were constructed, and 32D cells were infected with these adenoviruses separately. The effects of FABD deletion on the proliferation and apoptosis of 32D cells were evaluated by a CCK-8 assay, colony formation assay, flow cytometry and DAPI staining. The levels of phosphorylated BCR/ABL, p73, and their downstream signalling molecules were detected by western blot. The intracellular localization and interaction of BCR/ABL with the cytoskeleton-related protein F-actin were identified by immunofluorescence and co-IP. The effect of FABD deletion on BCR/ABL carcinogenesis in vivo was explored in CML-like mouse models. The degree of leukaemic cell infiltration was observed by Wright‒Giemsa staining and haematoxylin and eosin (HE) staining. RESULTS: We report that the loss of FABD weakened the proliferation-promoting ability of BCR/ABL, accompanied by the downregulation of BCR/ABL downstream signals. Moreover, the deletion of FABD resulted in a change in the localization of BCR/ABL from the cytoplasm to the nucleus, accompanied by an increase in cell apoptosis due to the upregulation of p73 and its downstream proapoptotic factors. Furthermore, we discovered that the absence of FABD alleviated leukaemic cell infiltration induced by BCR/ABL in mice. CONCLUSIONS: These findings reveal that the deletion of FABD diminished the carcinogenic potential of BCR/ABL both in vitro and in vivo. This study provides further insight into the function of the FABD domain in BCR/ABL.


Asunto(s)
Apoptosis , Proliferación Celular , Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Animales , Humanos , Ratones , Apoptosis/genética , Actinas/metabolismo , Carcinogénesis/genética , Dominios Proteicos , Línea Celular Tumoral
18.
J Oral Rehabil ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873703

RESUMEN

OBJECTIVE: This study aimed to investigate whether flow fluid shear stress (FFSS)-mediated signal transduction affects the function of Piezo1 ion channel in chondrocyte and to further explore the role of mechanical overloading in development of temporomandibular joint osteoarthritis (TMJ OA). METHODS: Immunohistochemical staining was used to determine the expression of Piezo1 in TMJ OA tissue collected from rat unilateral anterior crossbite (UAC) models. Chondrocytes harvested from normal adult SD rats were treated with FFSS (0, 4, 8, 12 dyn/cm2) in vitro. Immunofluorescent staining, real-time polymerase chain reaction, western blotting, flow cytometry and phalloidin assay were performed to detect the changes of cellular morphology as well as the expression of Piezo1 and certain pro-inflammatory and degradative factors in chondrocyte. RESULTS: Immunohistochemical analysis revealed that significantly increased Piezo1 expression was associated with UAC stimulation (p < .05). As applied FFSS escalated (4, 8 and 12 dyn/cm2), the expression levels of Piezo1, ADAMTS-5, MMP-13 and Col-X gradually increased, compared with the non-FFSS group (p < .05). Administering Piezo1 ion channel inhibitor to chondrocytes beforehand, it was observed that expression of ADAMTS-5, MMP-13 and Col-X was substantially decreased following FFSS treatment (p < .05) and the effect of cytoskeletal thinning was counteracted. The activated Piezo1 ion channel enhanced intracellular Ca2+ excess in chondrocytes during abnormal mechanical stimulation and the increased intracellular Ca2+ thinned the cytoskeleton of F-actin. CONCLUSIONS: Mechanical overloading activates Piezo1 ion channel to promote pro-inflammation and degradation and to increase Ca2+ concentration in chondrocyte, which may eventually result in TMJ OA.

19.
Cell Immunol ; 401-402: 104843, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38905771

RESUMEN

Monocyte migration is an important process in inflammation and atherogenesis. Identification of the key signalling pathways that regulate monocyte migration can provide prospective targets for prophylactic treatments in inflammatory diseases. Previous research showed that the focal adhesion kinase Pyk2, Src kinase and MAP kinases play an important role in MCP-1-induced monocyte migration. In this study, we demonstrate that MCP-1 induces iPLA2 activity, which is regulated by PKCß and affects downstream activation of Rac1 and Pyk2. Rac1 interacts directly with iPLA2 and Pyk2, and plays a crucial role in MCP-1-mediated monocyte migration by modulating downstream Pyk2 and p38 MAPK activation. Furthermore, Rac1 is necessary for cell spreading and F-actin polymerization during monocyte adhesion to fibronectin. Finally, we provide evidence that Rac1 controls the secretion of inflammatory mediator vimentin from MCP-1-stimulated monocytes. Altogether, this study demonstrates that the PKCß/iPLA2/Rac1/Pyk2/p38 MAPK signalling cascade is essential for MCP-1-induced monocyte adhesion and migration.


Asunto(s)
Adhesión Celular , Movimiento Celular , Quimiocina CCL2 , Quinasa 2 de Adhesión Focal , Monocitos , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos , Proteína de Unión al GTP rac1 , Humanos , Monocitos/metabolismo , Monocitos/inmunología , Quimiocina CCL2/metabolismo , Adhesión Celular/fisiología , Proteína de Unión al GTP rac1/metabolismo , Quinasa 2 de Adhesión Focal/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteína Quinasa C beta/metabolismo , Actinas/metabolismo
20.
Hum Reprod ; 39(8): 1767-1777, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38876975

RESUMEN

STUDY QUESTION: Can a co-culture of three cell types mimic the in vivo layers of the uterine wall? SUMMARY ANSWER: Three protocols tested for co-culture of endometrial epithelial cells (EEC), endometrial stromal cells (ESC), and myometrial smooth muscle cells (MSMC) led to formation of the distinct layers that are characteristic of the structure of the uterine wall in vivo. WHAT IS KNOWN ALREADY: We previously showed that a layer-by-layer co-culture of EEC and MSMC responded to peristaltic wall shear stresses (WSS) by increasing the polymerization of F-actin in both layers. Other studies showed that WSS induced significant cellular alterations in epithelial and endothelial cells. STUDY DESIGN, SIZE, DURATION: Human EEC and ESC cell lines and primary MSMC were co-cultured on a collagen-coated synthetic membrane in custom-designed wells. The co-culture model, created by seeding a mixture of all cells at once, was exposed to steady WSS of 0.5 dyne/cm2 for 10 and 30 min. PARTICIPANTS/MATERIALS, SETTING, METHODS: The co-culture of the three different cells was seeded either layer-by-layer or as a mixture of all cells at once. Validation of the models was by specific immunofluorescence staining and confocal microscopy. Alterations of the cytoskeletal F-actin in response to WSS were analyzed from the 2-dimensional confocal images through the Z-stacks following a previously published algorithm. MAIN RESULTS AND THE ROLE OF CHANCE: We generated three multi-cell in vitro models of the uterine wall with distinct layers of EEC, ESC, and MSMC that mimic the in vivo morphology. Exposure of the mixed seeding model to WSS induced increased polymerization of F-actin in all the three layers relative to the unexposed controls. Moreover, the increased polymerization of F-actin was higher (P-value < 0.05) when the length of exposure was increased from 10 to 30 min. Furthermore, the inner layers of ESC and MSMC, which are not in direct contact with the applied shearing fluid, also increased their F-actin polymerization. LARGE SCALE DATA: N/A. LIMITATIONS, RESONS FOR CAUTION: The mixed seeding co-culture model was exposed to steady WSS of one magnitude, whereas the uterus is a dynamic organ with intra-uterine peristaltic fluid motions that vary in vivo with different time-dependent magnitude. Further in vitro studies may explore the response to peristaltic WSS or other physical and/or hormonal perturbations that may mimic the spectrum of pathophysiological aspects. WIDER IMPLICATIONS OF THE FINDINGS: Numerous in vitro models were developed in order to mimic the human endometrium and endometrium-myometrium interface (EMI) region. The present co-culture models seem to be the first constructed from EEC, ESC, and MSMC on a collagen-coated synthetic membrane. These multi-cell in vitro models better represent the complex in vivo anatomy of the EMI region. The mixed seeding multi-cell in vitro model may easily be implemented in controlled studies of uterine function in reproduction and the pathogenesis of diseases. STUDY FINDING/COMPETING INTEREST(S): This study was supported in part by Tel Aviv University funds. All authors declare no conflict of interest.


Asunto(s)
Técnicas de Cocultivo , Endometrio , Células Epiteliales , Miocitos del Músculo Liso , Femenino , Humanos , Endometrio/citología , Endometrio/fisiología , Endometrio/metabolismo , Células Epiteliales/fisiología , Células Epiteliales/metabolismo , Células Epiteliales/citología , Miocitos del Músculo Liso/fisiología , Miocitos del Músculo Liso/metabolismo , Útero/fisiología , Útero/citología , Útero/metabolismo , Miometrio/citología , Miometrio/fisiología , Miometrio/metabolismo , Células del Estroma/citología , Células del Estroma/metabolismo , Células del Estroma/fisiología , Actinas/metabolismo , Estrés Mecánico , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA