Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.372
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cancer Cell Int ; 24(1): 284, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135158

RESUMEN

BACKGROUND: Obesity and the forkhead box O1(FOXO1) affect the survival of breast cancer patients, but the underlying mechanism remains unclear. We aimed to investigate the role of FOXO1 in obesity-associated-breast cancer. METHODS: We screened 383 breast disease patients from the first affiliated hospital with Nanjing Medical University in 2020. We performed wound healing, transwell, matrigel assays to assess the metastatic ability of cancer cells. We adopted mRNAs sequencing to select the differentially expressed transcripts in breast cancer. We applied immunohistochemistry, western blot, tissue microarrays to assess the level of FOXO1 and epithelial-mesenchymal transition (EMT) pathways. We conducted bioinformatic analysis to investigate interactions between FOXO1 and miR-135b. We used fluorescence in situ hybridization, RT-qPCR to confirm the characteristics of circCNIH4. We conducted luciferase reporter assay, rescue experiments to investigate interactions between circCNIH4 and miR-135b. RESULTS: Obesity was positively correlated with the incidence and progression of breast cancer. Adipocytes enhanced the migration of breast cancer and attenuated the effects of FOXO1. MiR-135b was a binding gene of FOXO1 and was regulated by circCNIH4. CircCNIH4 exhibited antitumor activity in vitro and in vivo. CONCLUSION: Adipocytes might accelerate the progression of breast cancer by modulating FOXO1/miR-135b/ circCNIH4 /EMT axis and regulating copper homeostasis.

2.
CNS Neurosci Ther ; 30(8): e14913, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39123294

RESUMEN

BACKGROUND: Hyperglycemia-induced neuroinflammation significantly contributes to diabetic neuropathic pain (DNP), but the underlying mechanisms remain unclear. OBJECTIVE: To investigate the role of Sirt3, a mitochondrial deacetylase, in hyperglycemia-induced neuroinflammation and DNP and to explore potential therapeutic interventions. METHOD AND RESULTS: Here, we found that Sirt3 was downregulated in spinal dorsal horn (SDH) of diabetic mice by RNA-sequencing, which was further confirmed at the mRNA and protein level. Sirt3 deficiency exacerbated hyperglycemia-induced neuroinflammation and DNP by enhancing microglial aerobic glycolysis in vivo and in vitro. Overexpression of Sirt3 in microglia alleviated inflammation by reducing aerobic glycolysis. Mechanistically, high-glucose stimulation activated Akt, which phosphorylates and inactivates FoxO1. The inactivation of FoxO1 diminished the transcription of Sirt3. Besides that, we also found that hyperglycemia induced Sirt3 degradation via the mitophagy-lysosomal pathway. Blocking Akt activation by GSK69093 or metformin rescued the degradation of Sirt3 protein and transcription inhibition of Sirt3 mRNA, which substantially diminished hyperglycemia-induced inflammation. Metformin in vivo treatment alleviated neuroinflammation and diabetic neuropathic pain by rescuing hyperglycemia-induced Sirt3 downregulation. CONCLUSION: Hyperglycemia induces metabolic reprogramming and inflammatory activation in microglia through the regulation of Sirt3 transcription and degradation. This novel mechanism identifies Sirt3 as a potential drug target for treating DNP.


Asunto(s)
Diabetes Mellitus Experimental , Neuropatías Diabéticas , Regulación hacia Abajo , Glucólisis , Hiperglucemia , Ratones Endogámicos C57BL , Microglía , Sirtuina 3 , Animales , Sirtuina 3/metabolismo , Sirtuina 3/genética , Ratones , Glucólisis/efectos de los fármacos , Glucólisis/fisiología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Hiperglucemia/metabolismo , Microglía/metabolismo , Microglía/efectos de los fármacos , Masculino , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Neuropatías Diabéticas/metabolismo , Inflamación/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/etiología , Metformina/farmacología
3.
Int Immunopharmacol ; 140: 112873, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39098231

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is an aggressive malignant tumor with poor prognosis. Using high-throughput sequencing, we identified a novel circRNA, circGNAO1, which is downregulated in HCC tissues compared to adjacent tissues. However, the potential functions and mechanisms of circGNAO1 in HCC metastasis remain unclear. METHODS: qRT-PCR was used to detect the expression of circGNAO1, miR-182-5p, and FOXO1 in HCC cells and tissues. Bioinformatics analysis, RNA pull-down assyas, and dual-luciferase reporter assays were employed to verify the interaction between circGNAO1 and miR-182-5p. Functional experiments were conducted using circGNAO1 overexpression and knockdown cell lines, including Transwell, wound healing, and EdU assays. Liver metastasis models and subcutaneous xenograft mouse models were established to analyze the effect of circGNAO1 on HCC metastasis and growth in vivo. RESULTS: High-throughput sequencing and qRT-PCR results showed that the expression of circGNAO1 dramatically decreased in HCC tissues. Functionally, in vivo and in vitro experiments verified that overexpression of circGNAO1 inhibited the proliferation, migration, invasion and EMT of HCC cells, while knockdown of circGNAO1 promoted these behaviors. Mechanistically, we have demonstrated that circGNAO1 functions as a sponge for miR-182-5p to regulate FOXO1 expression, thereby activating the TGF-ß/Smad3 signaling pathway and EMT process. CONCLUSIONS: circGNAO1 suppresses the progression and metastasis of HCC through the miR-182-5p/FOXO1 axis, and circGNAO1 may be an efficient therapeutic target in HCC.

4.
Aging (Albany NY) ; 162024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103205

RESUMEN

Osteosarcoma is a highly metastatic, aggressive bone cancer that occurs in children and young adults worldwide. Circular RNAs (circRNAs) are crucial molecules for osteosarcoma progression. In this study, we aimed to investigate the impact of circMRPS35 overexpression and its interaction with FOXO1 via evaluating apoptosis, cell cycle, and bioinformatic analyses on the malignant development of osteosarcoma in MG63 and MNNG/HOS cells. We found that circMRPS35 overexpression reduced osteosarcoma cell viability and inhibited tumor growth in vivo. It increased the apoptosis rate and induced cell cycle arrest in osteosarcoma cells. We identified a potential interaction between circMRPS35 and FOXO1 with miR-105-5p using bioinformatics analysis. Overexpression of circMRPS35 decreased miR-105-5p expression, whereas miR-105-5p mimic treatment increased its expression. This mimic also suppressed the luciferase activity of circMRPS35 and FOXO1 and reduced FOXO1 expression. Overexpression of circMRPS35 elevated FOXO1 protein levels, but this effect was reversed by co-treatment with the miR-105-5p mimic. We demonstrated that inhibiting miR-105-5p decreased viability and induced apoptosis. Overexpression of FOXO1 or treatment with a miR-105-5p inhibitor could counteract the effects of circMRPS35 on viability and apoptosis in osteosarcoma cells. Therefore, we concluded that circMRPS35 suppressed the malignant progression of osteosarcoma via targeting the miR-105-5p/FOXO1 axis.

5.
Int J Immunopathol Pharmacol ; 38: 3946320241272642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39096175

RESUMEN

Prolonged exposure to different occupational or environmental toxicants triggered oxidative stress and inflammatory reactions mediated lung damage. This study was designed to explore the influence and protective impact of flavone on lung injury in rats intoxicated with nicotine (NIC) and exposed to radiation (IR). Forty rats were divided into four groups; group I control, group II flavone; rats were administered with flavone (25 mg/kg/day), group III NIC + IR; rats were injected intraperitoneally with NIC (1 mg/kg/day) and exposed to γ-IR (3.5 Gy once/week for 2 weeks) while group IV NIC + IR + flavone; rats were injected with NIC, exposed to IR and administered with flavone. Redox status parameters and histopathological changes in lung tissue were evaluated. Nuclear factor-kappa B (NF-κB), forkhead box O-class1 (FoxO1) and nucleotide-binding domain- (NOD-) like receptor pyrin domain-containing-3 (NLRP3) gene expression were measured in lung tissues. Moreover, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and phosphatidylinositol three kinase (PI3K) were measured using ELISA kits. Our data demonstrates, for the first time, that flavone protects the lung from NIC/IR-associated cytotoxicity, by attenuating the disrupted redox status and aggravating the antioxidant defence mechanism via activation of the PI3K/Nrf2. Moreover, flavone alleviates pulmonary inflammation by inhibiting the inflammatory signaling pathway FOXO1/NF-κB/NLRP3- Inflammasome. Collectively, the obtained results exhibited a notable efficiency of flavone in alleviating lung injury induced by NIC and IR via modulating PI3K/Nrf2 and FoxO1/NLRP3 Inflammasome.


Asunto(s)
Flavonas , Inflamasomas , Lesión Pulmonar , Factor 2 Relacionado con NF-E2 , Proteína con Dominio Pirina 3 de la Familia NLR , Nicotina , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Flavonas/farmacología , Masculino , Ratas , Nicotina/farmacología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/prevención & control , Rayos gamma , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de la radiación , Estrés Oxidativo/efectos de los fármacos , FN-kappa B/metabolismo , Ratas Wistar , Proteína Forkhead Box O1
6.
Biomed Pharmacother ; 177: 117126, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38996706

RESUMEN

BACKGROUND: Rhabdomyosarcoma (RMS) is one of the most common soft tissue sarcomas in children and adolescents, in which PAX3-FOXO1 fusion gene positive patients have very poor prognosis. PAX3-FOXO1 has been identified as an independent prognostic predictor in RMS, with no currently available targeted therapeutic intervention. The novel tyrosine kinase inhibitor anlotinib exhibits a wide range of anticancer effects in multiple types of cancers; however, there have been no relevant studies regarding its application in RMS. MATERIALS AND METHODS: We investigated the effects of PAX3-FOXO1 on the therapeutic efficacy of anlotinib using the CCK-8 assay, flow cytometry, invasion assay, wound healing assay, western blotting, quantitative polymerase chain reaction(qPCR), and xenograft experiments. RNA-seq and co-immunoprecipitation assays were conducted to determine the specific mechanism by which anlotinib regulates PAX3-FOXO1 expression. RESULTS: Anlotinib effectively inhibited RMS cell proliferation and promoted apoptosis and G2/M phase arrest while impeding tumor growth in vivo. Downregulation of PAX3-FOXO1 enhances the antitumor effects of anlotinib. Anlotinib upregulates protein kinase NEK2 and increases the degradation of PAX3-FOXO1 via the ubiquitin-proteasome pathway, leading to a reduction in PAX3-FOXO1 protein levels. CONCLUSION: Anlotinib effectively inhibited the malignant progression of RMS and promoted degradation of the fusion protein PAX3-FOXO1. Anlotinib could be a targeted therapeutic approach to treat PAX3-FOXO1 fusion-positive RMS.


Asunto(s)
Apoptosis , Proliferación Celular , Indoles , Quinasas Relacionadas con NIMA , Proteínas de Fusión Oncogénica , Quinolinas , Rabdomiosarcoma , Regulación hacia Arriba , Humanos , Indoles/farmacología , Indoles/uso terapéutico , Animales , Línea Celular Tumoral , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/patología , Rabdomiosarcoma/genética , Rabdomiosarcoma/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Quinolinas/farmacología , Quinasas Relacionadas con NIMA/metabolismo , Quinasas Relacionadas con NIMA/genética , Apoptosis/efectos de los fármacos , Proteínas de Fusión Oncogénica/metabolismo , Proteínas de Fusión Oncogénica/genética , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos BALB C , Antineoplásicos/farmacología , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Factores de Transcripción Paired Box
7.
J Mol Model ; 30(8): 260, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981921

RESUMEN

CONTEXT: Diabetes mellitus (DM) is a metabolic disorder disease that causes hyperglycemia conditions and associated with various chronic complications leading to mortality. Due to high toxicity of conventional diabetic drugs, the exploration of natural compounds as alternative diabetes treatments has been widely carried out. Previous in silico studies have highlighted berberine, a natural compound, as a promising alternative in antidiabetic therapy, potentially acting through various pathways, including the inhibition of the FOXO1 transcription factor in the gluconeogenesis pathway. However, the specific mechanism by which berberine interacts with FOXO1 remains unclear, and research in this area is relatively limited. Therefore, this study aims to determine the stability of berberine structure with FOXO1 based on RMSD, RMSF, binding energy, and trajectory analysis to determine the potential of berberine to inhibit the gluconeogenesis pathway. This research was conducted by in silico method with molecular docking using AutoDock4.2 and molecular dynamics study using Amber20, then visualized by VMD. METHODS: Docking between ligand and FOXO1 receptor was carried out with Autodock4.2. For molecular dynamics simulations, the force fields of DNA.OL15, protein.ff14SB, gaff2, and tip3p were used.


Asunto(s)
Berberina , Proteína Forkhead Box O1 , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Berberina/química , Berberina/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/química , Humanos , Unión Proteica , Sitios de Unión , Ligandos
8.
Diagn Pathol ; 19(1): 98, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020398

RESUMEN

BACKGROUND: Rhabdomyosarcomas are aggressive tumors that comprise a group of morphologically similar but biologically diverse lesions. Owing to its rarity, Mixed pattern RMS (ARMS and ERMS) constitutes a diagnostic and therapeutic dilemma. CASE: Herein is presented a very rare case of mixed alveolar & embryonal rhabdomyosarcoma in the uterus of a 68-year-old woman. The wall of the uterine corpus & cervix was replaced by multiple whitish-yellow, firm nodules, measuring up to 12 cm. Microscopically, the tumor was predominantly composed of round to polygonal cells arranged in nests with alveolar pattern intermingled with hypo- & hypercellular areas of more primitive cells with scattered multinucleated giant cells seen as well. Extensive sampling failed to show epithelial elements. Immunohistochemical staining showed positive staining for vimentin, desmin, myogenin, CD56 & WT-1. However, no staining was detected for CK, LCA, CD10, ER, SMA, CD99, S100, Cyclin-D1 & Olig-2. Metastatic deposits were found in the peritoneum. The patient received postoperative chemotherapy and radiotherapy but died of systemic metastases 3 months after surgery. CONCLUSION: The rarity of this histological tumor entity and its aggressive behavior and poor prognosis grab attention to improving recognition and treatment modalities in adults.


Asunto(s)
Biomarcadores de Tumor , Inmunohistoquímica , Neoplasias Uterinas , Humanos , Femenino , Anciano , Neoplasias Uterinas/patología , Biomarcadores de Tumor/análisis , Resultado Fatal , Rabdomiosarcoma Embrionario/patología , Rabdomiosarcoma Embrionario/terapia , Rabdomiosarcoma Embrionario/diagnóstico , Rabdomiosarcoma/patología , Rabdomiosarcoma/diagnóstico , Rabdomiosarcoma Alveolar/patología , Rabdomiosarcoma Alveolar/terapia
9.
BMC Genomics ; 25(1): 737, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080526

RESUMEN

OBJECTIVES: Serum/glucocorticoid-inducible kinase 1 (SGK1) gene encodes a serine/threonine protein kinase that plays an essential role in cellular stress response and regulation of multiple metabolic processes. However, its role in bovine adipogenesis remains unknown. In this study, we aimed to clarify the role of SGK1 in bovine lipid accumulation and improvement of meat quality. METHODS: Preadipocytes were induced to differentiation to detect the temporal expression pattern of SGK1. Heart, liver, lung, spleen, kidney, muscle and fat tissues were collected to detect its tissue expression profile. Recombinant adenovirus and the lentivirus were packaged for overexpression and knockdown. Oil Red O staining, quantitative real-time PCR, Western blot analysis, Yeast two-hybrid assay, luciferase assay and RNA-seq were performed to study the regulatory mechanism of SGK1. RESULTS: SGK1 showed significantly higher expression in adipose and significantly induced expression in differentiated adipocytes. Furthermore, overexpression of SGK1 greatly promoted adipogenesis and inhibited proliferation, which could be shown by the remarkable increasement of lipid droplet, and the expression levels of adipogenic marker genes and cell cycle-related genes. Inversely, its knockdown inhibited adipogenesis and facilitated proliferation. Mechanistically, SGK1 regulates the phosphorylation and expression of two critical proteins of FoxO family, FOXO1/FOXO3. Importantly, SGK1 attenuates the transcriptional repression role of FOXO1 for PPARγ via phosphorylating the site S256, then promoting the bovine fat deposition. CONCLUSIONS: SGK1 is a required epigenetic regulatory factor for bovine preadipocyte proliferation and differentiation, which contributes to a better understanding of fat deposition and meat quality improvement in cattle.


Asunto(s)
Adipocitos , Adipogénesis , Proteína Forkhead Box O1 , Proteínas Inmediatas-Precoces , Metabolismo de los Lípidos , Proteínas Serina-Treonina Quinasas , Animales , Bovinos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Adipocitos/metabolismo , Adipocitos/citología , Adipogénesis/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Diferenciación Celular , Proliferación Celular , Regulación de la Expresión Génica
10.
Arch Med Sci ; 20(3): 1011-1015, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050160

RESUMEN

Introduction: Insulin-like growth factor-1 (IGF-1) promotes survival and inhibits cardiac autophagy disruption. Methods: Male Wistar rats were treated with IGF-1 (50 µg/kg), and 24 h after injection hearts were excised. The level of interaction between Beclin-1 and the α1 subunit of sodium/potassium-adenosine triphosphates (Na+/K+-ATPase), and phosphorylated forms of IGF-1 receptor/insulin receptor (IGF-1R/IR), forkhead box protein O1 (FOXO1) and AMP-activated protein kinase (AMPK) were measured. Results: The results indicate that IGF-1 decreased Beclin-1's association with Na+/K+-ATPase (p < 0.05), increased IGF-1R/IR and FOXO1 phosphorylation (p < 0.05), and decreased AMPK phosphorylation (p < 0.01) in rats' hearts. Conclusions: The new IGF-1 therapy may control autosis and minimize cardiomyocyte mortality.

11.
Biomed Pharmacother ; 178: 117158, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39042963

RESUMEN

Triple-negative breast cancer (TNBC) still one of the most challenging sub-type in breast cancer clinical. Caffeic acid (CA) derived from effective components of traditional Chinese herbal medicine has been show potential against TNBCs. Our research has found that CA can inhibit the proliferation of TNBC cells while also suppressing the size of cancer stem cell spheres. Additionally, it reduces reactive oxygen species (ROS) levels and disruption of mitochondrial membrane potential. Simultaneously, CA influences the stemness of TNBC cells by reducing the expression of the stem cell marker protein CD44. Furthermore, we have observed that CA can modulate the FOXO1/FIS signaling pathway, disrupting mitochondrial function, inducing mitochondrial autophagy, and exerting anti-tumor activity. Additionally, changes in the immune microenvironment were detected using a mass cytometer, we found that CA can induce M1 polarization of macrophages, enhancing anti-tumor immune responses to exert anti-tumor activity. In summary, CA can be considered as a lead compound for further research in targeting TNBC.

12.
Inflammation ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980500

RESUMEN

Methylprednisolone (MP) is a potent glucocorticoid that can effectively inhibit immune system inflammation and brain tissue damage in Multiple sclerosis (MS) patients. T follicular helper (Tfh) cells are a subpopulation of activated CD4 + T cells, while T follicular regulatory (Tfr) cells, a novel subset of Treg cells, possess specialized abilities to suppress the Tfh-GC response and inhibit antibody production. Dysregulation of either Tfh or Tfr cells has been implicated in the pathogenesis of MS. However, the molecular mechanism underlying the anti-inflammatory effects of MP therapy on experimental autoimmune encephalomyelitis (EAE), a representative model for MS, remains unclear. This study aimed to investigate the effects of MP treatment on EAE and elucidate the possible underlying molecular mechanisms involed. We evaluated the effects of MP on disease progression, CNS inflammatory cell infiltration and myelination, microglia and astrocyte activation, as well as Tfr/Tfh ratio and related molecules/inflammatory factors in EAE mice. Additionally, Western blotting was used to assess the expression of proteins associated with the PI3K/AKT pathway. Our findings demonstrated that MP treatment ameliorated clinical symptoms, inflammatory cell infiltration, and myelination. Furthermore, it reduced microglial and astrocytic activation. MP may increase the number of Tfr cells and the levels of cytokine TGF-ß1, while reducing the number of Tfh cells and the levels of cytokine IL-21, as well as regulate the imbalanced Tfr/Tfh ratio in EAE mice. The PI3K/AKT/FoxO1 and PI3K/AKT/mTOR pathways were found to be involved in EAE development. However, MP treatment inhibited their activation. MP reduced neuroinflammation in EAE by regulating the balance between Tfr/Tfh cells via inhibition of the PI3K/AKT/FoxO1 and PI3K/AKT/mTOR signalling pathways.

13.
Int J Biol Macromol ; 276(Pt 2): 133987, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39032875

RESUMEN

This paper aims to investigate the current situation of cancer related fibroblasts promoting malignant development of cancer through FOXO1 protein/LIF signal, and explore the strategy of cancer treatment. Recent studies have shown that the expression of the protein forkhead box O1 (FOXO1) is increased in CAFsCAFs (Cancer-associated fibroblasts). This led researchers to investigate whether FOXO1 is involved in the role of CAFs in lung cancer. The results of the study revealed that FOXO1 is indeed upregulated in CAFs, and it positively regulates the transcription of another protein called LIF. Notably, LIF is also upregulated in both CAFs and lung cancer cells. These changes in protein expression were associated with the overexpression of FOXO1 in CAFs. Conversely, silencing FOXO1 in CAFs suppressed their effects on cancer cells and transplanted tumors. The study revealed that the downregulation of LIFR in cancer cells abolished the impact of CAFs overexpressing FOXO1 on cancer cell behavior. This suggests that the FOXO1/LIF signaling pathway is involved in mediating the malignant development of lung cancer induced by CAFs.

14.
Front Mol Biosci ; 11: 1419072, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948079

RESUMEN

Low-grade glioma (LGG) is a prevalent and lethal primary brain malignancy, with most patients succumbing to recurrence and progression. The signal transducer and activator of transcription (STAT) family has long been implicated in tumor initiation and progression. However, a comprehensive evaluation of the expression status and overall function of STAT genes in LGG remains largely unreported. In this study, we investigated the association between the expression of STAT family genes and the progression of LGG. Through a comprehensive analysis that combined bioinformatics screening and validation assays, we determined that STAT1, STAT3, and STAT5A were upregulated and contributed to the malignant progression of LGG. Notably, our findings suggest that STAT3 is a critical prognostic marker that regulates the progression of LGG. STAT3 emerged as the most significant prognostic indicator governing the advancement of LGG. Additionally, our inquiry into the STAT3-binding proteins and differentially expressed-correlated genes (DEGs) revealed that STAT3 played a pivotal role in the progression of LGG by stimulating the expression of STAT1, FOXO1, and MYC. In summary, our recent study conducted a thorough analysis of the STAT family genes and revealed that directing therapeutic interventions towards STAT3 holds potential as a viable strategy for treating patients with LGG.

15.
Chin J Nat Med ; 22(6): 554-567, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38906602

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is characterized by significant treatment resistance. Palmitic acid (PA) has shown promising antitumor properties. This study aims to elucidate the molecular mechanisms by which PA influences DLBCL progression. We quantified the expression levels of microRNAs (miRNAs), Forkhead box protein O1 (FOXO1), and DNA methyltransferase 3A (DNMT3A) in both untreated and PA-treated DLBCL tumors and cell lines. Assessments were made of cell viability, apoptosis, and autophagy-related protein expression following PA administration. Interaction analyses among miR-429, DNMT3A, and FOXO1 were conducted using luciferase reporter assays and methylation-specific (MSP) Polymerase chain reaction (PCR). After transfecting the miR-429 inhibitor, negative control (NC) inhibitor, shRNA against DNMT3A (sh-DNMT3A), shRNA negative control (sh-NC), overexpression vector for DNMT3A (oe-DNMT3A), or overexpression negative control (oe-NC), we evaluated the effects of miR-429 and DNMT3A on cell viability, mortality, and autophagy-related protein expression in PA-treated DLBCL cell lines. The efficacy of PA was also tested in vivo using DLBCL tumor-bearing mouse models. MiR-429 and FOXO1 expression levels were downregulated, whereas DNMT3A was upregulated in DLBCL compared to the control group. PA treatment was associated with enhanced autophagy, mediated by the upregulation of miR-429 and downregulation of DNMT3A. The luciferase reporter assay and MSP confirmed that miR-429 directly inhibits DNMT3A, thereby reducing FOXO1 methylation. Subsequent experiments demonstrated that PA promotes autophagy and inhibits DLBCL progression by upregulating miR-429 and modulating the DNMT3A/FOXO1 axis. In vivo PA significantly reduced the growth of xenografted tumors through its regulatory impact on the miR-429/DNMT3A/FOXO1 axis. Palmitic acid may modulate autophagy and inhibit DLBCL progression by targeting the miR-429/DNMT3A/FOXO1 signaling pathway, suggesting a novel therapeutic target for DLBCL management.


Asunto(s)
ADN Metiltransferasa 3A , Proteína Forkhead Box O1 , Linfoma de Células B Grandes Difuso , MicroARNs , Ácido Palmítico , MicroARNs/genética , MicroARNs/metabolismo , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Humanos , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Animales , Ratones , Ácido Palmítico/farmacología , Línea Celular Tumoral , Metilación de ADN/efectos de los fármacos , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Ratones Desnudos , Masculino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Femenino , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Ratones Endogámicos BALB C
16.
Phytomedicine ; 132: 155813, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38905846

RESUMEN

BACKGROUND: Acute kidney injury (AKI) is a clinically common and serious renal dysfunction, characterized by inflammation and damage to tubular epithelial cells. Puerarin, an isoflavone derivative isolated from Pueraria lobata, has been proven to possess exceptional effectiveness in reducing inflammation. However, the effects and underlying mechanisms of puerarin on AKI remain uncertain. PURPOSE: This study investigated the possible therapeutic effects of puerarin on AKI and explored its underlying mechanism. STUDY DESIGN AND METHODS: The effects of puerarin on AKI and macrophage polarization were investigated in lipopolysaccharide (LPS)-induced or unilateral ureteral obstruction (UUO)-induced mouse models in vivo and LPS-treated macrophages (Raw264.7) in vitro. Additionally, the effects of puerarin on inflammation-related signaling pathways were analyzed. RESULTS: Administration of puerarin effectively alleviated kidney dysfunction and reduced inflammatory response in LPS-induced and UUO-induced AKI. In vitro, puerarin treatment inhibited the polarization of M1 macrophages and the release of inflammatory factors in Raw264.7 cells stimulated by LPS. Mechanistically, puerarin downregulated the activities of NF-κB p65 and JNK/FoxO1 signaling pathways. The application of SRT1460 to activate FoxO1 or anisomycin to activate JNK eliminated puerarin-mediated inhibition of JNK/FoxO1 signaling, leading to suppression of macrophage M1 polarization and reduction of inflammatory factors. Further studies showed that puerarin bound to Toll/interleukin-1 receptor (TIR) domain of MyD88 protein, hindering its binding with TLR4, ultimately resulting in downstream NF-κB p65 and JNK/FoxO1 signaling inactivation. CONCLUSIONS: Puerarin antagonizes NF-κB p65 and JNK/FoxO1 activation via TLR4/MyD88 pathway, thereby suppressing macrophage polarization towards M1 phenotype and alleviating renal inflammatory damage.

17.
J Physiol Biochem ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878215

RESUMEN

Macrophage lipid accumulation is a critical contributor to foam cell formation and atherosclerosis. Tumor necrosis factor-α-induced protein 1 (TNFAIP1) is closely associated with cardiovascular disease. However, its role and molecular mechanisms in atherogenesis remain unclear. TNFAIP1 was knocked down in THP-1 macrophage-derived foam cells and apolipoprotein-deficient (apoE-/-) mice using lentiviral vector. The expression of lncRNA enhancing endothelial nitric oxide synthase expression (LEENE), Forkhead box O1 (FoxO1) and ATP binding cassette transporter A1 (ABCA1) was evaluated by qRT-PCR and/or western blot. Lipid accumulation in macrophage was assessed by high-performance liquid chromatography and Oil red O staining. RNA immunoprecipitation and RNA pull-down assay were performed to verify the interaction between LEENE and FoxO1 protein. Atherosclerotic lesions were analyzed using HE, Oil red O and Masson staining. Our results showed that TNFAIP1 was significantly increased in THP-1 macrophages loaded with oxidized low-density lipoprotein. Knockdown of TNFAIP1 enhanced LEENE expression, promoted the direct interaction of LEENE with FoxO1 protein, stimulated FoxO1 protein degradation through the proteasome pathway, induced ABCA1 transcription, and finally suppressed lipid accumulation in THP-1 macrophage-derived foam cells. TNFAIP1 knockdown also up-regulated ABCA1 expression, improved plasma lipid profiles, enhanced the efficiency of reverse cholesterol transport and attenuated lesion area in apoE-/- mice. Taken together, these results provide the first direct evidence that TNFAIP1 aggravates atherosclerosis by promoting macrophage lipid accumulation via the LEENE/FoxO1/ABCA1 signaling pathway. TNFAIP1 may represent a promising therapeutic target for atherosclerotic cardiovascular disease.

18.
Toxicol Appl Pharmacol ; 489: 116991, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38871090

RESUMEN

Liver fibrosis is considered an epidemic health problem due to different insults that lead to death. Dapagliflozin (DAPA), a sodium-glucose cotransporter-2 (SGLT2) inhibitor, is one of the newer anti-diabetic drugs used to manage type 2 diabetes mellitus (T2DM). DAPA exerted beneficial effects in many human and rat models due to its antioxidant, anti-inflammatory and antifibrotic activities. AIM: Due to previously reported capabilities related to DAPA, we designed this study to clarify the beneficial role of DAPA in liver fibrosis triggered by common bile duct ligation (CBL) in male rats. METHODS: For 14 or 28 days after CBL procedures, DAPA was administered to the rats orally at a dose of 10 mg/kg once daily. The effects of DAPA were evaluated by assaying liver enzymes, hepatic oxidant/antioxidant parameters, serum levels of tumor necrotic factor alpha (TNF-α), and AMP-activated protein kinase (AMPK). In addition, we measured the hepatic expression of fibrosis regulator-related genes along with evaluating liver histological changes. KEY FINDINGS: DAPA successfully decreased hepatic enzymes and malondialdehyde levels, increased superoxide dismutase activity, elevated catalase levels, decreased serum levels of TNF-α, elevated serum levels of AMPK, decreased liver hydroxyproline content, upregulated Sirt1/PGC1α/FoxO1 liver gene expressions, down-regulated fibronectin-1 (Fn-1), collagen-1 genes in liver tissues, and improved the damaged liver tissues. Deteriorated biochemical parameters and histological liver insults associated with CBL were more pronounced after 28 days, but DAPA administration for 14 and 28 days showed significant improvement in most parameters and reflected positively in the histological structures of the liver. SIGNIFICANCE: The significance of this study lies in the observation that DAPA mitigated CBL-induced liver fibrosis in rats, most likely due to its antioxidant, anti-inflammatory, and antifibrotic effects. These results suggest that DAPA's beneficial impact on liver fibrosis might be attributed to its interaction with the Sirt1/AMPK/PGC1α/FoxO1 pathway, indicating a potential mechanistic action for future exploration.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Compuestos de Bencidrilo , Conducto Colédoco , Glucósidos , Cirrosis Hepática , Hígado , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Masculino , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Glucósidos/farmacología , Glucósidos/uso terapéutico , Proteínas Quinasas Activadas por AMP/metabolismo , Ligadura , Compuestos de Bencidrilo/farmacología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Ratas , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Conducto Colédoco/cirugía , Transducción de Señal/efectos de los fármacos , Ratas Wistar , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Antifibróticos/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Proteína Forkhead Box O1
19.
Mol Nutr Food Res ; 68(12): e2300912, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847553

RESUMEN

Diabetic liver injury (DLI) is one of the complications of diabetes mellitus, which seriously jeopardizes human health. Punicalagin (PU), a polyphenolic compound mainly found in pomegranate peel, has been shown to ameliorate metabolic diseases such as DLI, and the mechanism needs to be further explored. In this study, a HFD/STZ-induced diabetic mouse model is established to investigate the effect and mechanism of PU on DLI. The results show that PU intervention significantly improves liver histology and serum biochemical abnormalities in diabetic mice, significantly inhibits the expression of pyroptosis-related proteins such as NLRP3, Caspase1, IL-1ß, and GSDMD in the liver of diabetic mice, and up-regulated the expression of autophagy-related proteins. Meanwhile, PU treatment significantly increases FoxO1 protein expression and inhibits TXNIP protein expression in the liver of diabetic mice. The above results are further verified in the HepG2 cell injury model induced by high glucose. AS1842856 is a FoxO1 specific inhibitor. The intervention of AS1842856 combined with PU reverses the regulatory effects of PU on pyroptosis and autophagy in HepG2 cells. In conclusion, this study demonstrates that PU may inhibit pyroptosis and upregulate autophagy by regulating FoxO1/TXNIP signaling, thereby alleviating DLI.


Asunto(s)
Autofagia , Proteínas Portadoras , Diabetes Mellitus Experimental , Proteína Forkhead Box O1 , Taninos Hidrolizables , Hígado , Ratones Endogámicos C57BL , Piroptosis , Transducción de Señal , Animales , Piroptosis/efectos de los fármacos , Taninos Hidrolizables/farmacología , Autofagia/efectos de los fármacos , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Transducción de Señal/efectos de los fármacos , Humanos , Masculino , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Células Hep G2 , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Tiorredoxinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA