Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Environ Sci (China) ; 147: 523-537, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003068

RESUMEN

Due to its high efficiency, Fe(II)-based catalytic oxidation has been one of the most popular types of technology for treating growing organic pollutants. A lot of chemical Fe sludge along with various refractory pollutants was concomitantly produced, which may cause secondary environmental problems without proper disposal. We here innovatively proposed an effective method of achieving zero Fe sludge, reusing Fe resources (Fe recovery = 100%) and advancing organics removal (final TOC removal > 70%) simultaneously, based on the in situ formation of magnetic Ca-Fe layered double hydroxide (Fe3O4@CaFe-LDH) nano-material. Cations (Ca2+ and Fe3+) concentration (≥ 30 mmol/L) and their molar ratio (Ca:Fe ≥ 1.75) were crucial to the success of the method. Extrinsic nano Fe3O4 was designed to be involved in the Fe(II)-catalytic wastewater treatment process, and was modified by oxidation intermediates/products (especially those with COO- structure), which promoted the co-precipitation of Ca2+ (originated from Ca(OH)2 added after oxidation process) and by-produced Fe3+ cations on its surface to in situ generate core-shell Fe3O4@CaFe-LDH. The oxidation products were further removed during Fe3O4@CaFe-LDH material formation via intercalation and adsorption. This method was applicable to many kinds of organic wastewater, such as bisphenol A, methyl orange, humics, and biogas slurry. The prepared magnetic and hierarchical CaFe-LDH nanocomposite material showed comparable application performance to the recently reported CaFe-LDHs. This work provides a new strategy for efficiently enhancing the efficiency and economy of Fe(II)-catalyzed oxidative wastewater treatment by producing high value-added LDHs materials.


Asunto(s)
Oxidación-Reducción , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Catálisis , Hierro/química
2.
J Environ Sci (China) ; 148: 198-209, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095157

RESUMEN

Norfloxacin is widely used owing to its strong bactericidal effect on Gram-negative bacteria. However, the residual norfloxacin in the environment can be biomagnified via food chain and may damage the human liver and delay the bone development of minors. Present work described a reliable and sensitive smartphone colorimetric sensing system based on cobalt-doped Fe3O4 magnetic nanoparticles (Co-Fe3O4 MNPs) for the visual detection of norfloxacin. Compared with Fe3O4, Co-Fe3O4 MNPs earned more remarkably peroxidase-like activity and TMB (colorless) was rapidly oxidized to oxTMB (blue) with the presence of H2O2. Interestingly, the addition of low concentration of norfloxacin can accelerate the color reaction process of TMB, and blue deepening of the solution can be observed with the naked eye. However, after adding high concentration of norfloxacin, the activity of nanozyme was inhibited, resulting in the gradual fading of the solution. Based on this principle, a colorimetric sensor integrated with smartphone RGB mode was established. The visual sensor exhibited good linearity for norfloxacin monitoring in the range of 0.13-2.51 µmol/L and 17.5-100 µmol/L. The limit of visual detection was 0.08 µmol/L. In the actual water sample analysis, the spiked recoveries of norfloxacin were over the range of 95.7%-104.7 %. These results demonstrated that the visual sensor was a convenient and fast method for the efficient and accurate detection of norfloxacin in water, which may have broad application prospect.


Asunto(s)
Cobalto , Colorimetría , Norfloxacino , Teléfono Inteligente , Contaminantes Químicos del Agua , Norfloxacino/análisis , Colorimetría/métodos , Cobalto/análisis , Cobalto/química , Contaminantes Químicos del Agua/análisis , Antibacterianos/análisis , Peroxidasa , Límite de Detección
3.
Heliyon ; 10(15): e35400, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170368

RESUMEN

The rapid industrial growth has led to increased production of wastewater containing pollutants like heavy metals and organic compounds. These pollutants pose risks to human health and the environment if not properly treated. Engineered nanocatalyst materials (ENMs) are a burgeoning technology that show promise for treating industrial wastewater. Metal oxide ENMs, such as Fe3O4@ß-cyclodextrin and Fe3O4@TiO2, have demonstrated efficient removal of heavy metals and methylene blue from wastewater. Fe3O4@TiO2 was found to be more effective than Fe3O4@ß-cyclodextrin in removing these pollutants. The highest removal efficiencies were observed at a concentration of 40 mg/g and pH 8. Copper showed the highest removal efficiency (160.5 mg/g), followed by nickel (77.09 mg/g), lead (56.0 mg/g), and cadmium (46.05 mg/g). For methylene blue, the highest removal efficiency was also observed at a concentration of 40 mg/g and pH 8 (91.16 %). Lead (90.5 %), copper (90.48 %), nickel (83.34 %), and cadmium (77.58 %) were also efficiently removed. These findings highlight the potential of Fe3O4@TiO2 as a promising material for industrial wastewater treatment, offering cleaner and safer water for human health and the environment. ENMs have the potential to revolutionize wastewater treatment processes.

4.
Heliyon ; 10(15): e35204, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170547

RESUMEN

The presence of chromium [Cr(VI)] and lead [Pb(II)] ions in the water bodies have adverse effects on humans and aquatic life. Graphene oxide-based magnetic nanocomposites synthesized in the presence of chitosan (mGO/CS) or polyaniline (mGO/PA) as potential adsorbents for the removal of Cr(VI) and Pb(II) ions. The FTIR (Fourier transform infrared spectroscopy), EDX (Energy dispersive X-ray), XRD (X-ray diffraction) and SEM (Scanning electron microscopy) were employed to investigate the chemical composition, structural, elemental analysis, crystalline size and morphology of the nanocomposites. The FTIR results confirmed the synthesis of the nanocomposites by detecting peaks of specific functional groups. The average crystallite sizes of the mGO, mGO/CS, and mGO/PA nanocomposites were 17, 25, and 23 (nm), respectively, as determined by the Debye-Scherrer equation from the XRD data. Batch adsorption experiments were conducted for Pb(II) and Cr(VI) removal by varying the variables like pH, concentration of metal ions and contact time. The Box Behnken design (BBD) was used to optimize the adsorption parameters. Under the optimum conditions, mGO/CS and mGO/PA showed maximum removal percentages (%R) of 92.36 and 98.7 for Pb(II), and 85.25 and 93.08 for Cr(VI), respectively. The adsorption capacities were 110.84 and 118.44 mg/g for Pb(II), and 87.74 and 111.7 mg/g for Cr(VI) were obtained for mGO/CS and mGO/PA, respectively. The pseudo-second-order kinetic model and Langmuir isotherm fitted well to the experimental data and explain the adsorption mechanism of the nanocomposite materials for both metal ions.

5.
Fundam Res ; 4(4): 858-867, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39156566

RESUMEN

Developing novel nanoparticle-based bioprobes utilized in clinical settings with imaging resolutions ranging from cell to tissue levels is a major challenge for tumor diagnosis and treatment. Herein, an optimized strategy for designing a Fe3O4-based bioprobe for dual-modal cancer imaging based on surface-enhanced Raman scattering (SERS) and magnetic resonance imaging (MRI) is introduced. Excellent SERS activity of ultrasmall Fe3O4 nanoparticles (NPs) was discovered, and a 5 × 10-9 M limit of detection for crystal violet molecules was successfully obtained. The high-efficiency interfacial photon-induced charge transfer in Fe3O4 NPs was promoted by multiple electronic energy levels ascribed to the multiple valence states of Fe, which was observed using ultraviolet-visible diffuse reflectance spectroscopy. Density functional theory calculations were utilized to reveal that the narrow band gap and high electron density of states of ultrasmall Fe3O4 NPs significantly boosted the vibronic coupling resonances in the SERS system upon illumination. The subtypes of cancer cells were accurately recognized via high-resolution SERS imaging in vitro using the prepared Fe3O4-based bioprobe with high sensitivity and good specificity. Notably, Fe3O4-based bioprobes simultaneously exhibited T1 -weighted MRI contrast enhancement with an active targeting capability for tumors in vivo. To the best of our knowledge, this is the first report on the use of pure semiconductor-based SERS-MRI dual-modal nanoprobes in tumor imaging in vivo and in vitro, which has been previously realized only using semiconductor-metal complex materials. The non-metallic materials with SERS-MRI dual-modal imaging established in this report are a promising cancer diagnostic platform, which not only showed excellent performance in early tumor diagnosis but also possesses great potential for image-guided tumor treatment.

6.
Heliyon ; 10(15): e35062, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39166007

RESUMEN

A new and efficient Cu(II)-containing mesoporous nanocatalytic system was synthesized by direct immobilization of copper metal powder on the Fe3O4@EDTA nanocomposite. The as-prepared Fe3O4@EDTA@Cu(II) nanocomposite was then characterized by FT-IR, XRD, SEM, TEM, SEM-based EDX and elemental mapping, XPS, TGA, VSM, and also BET and BJH analyses. The resulting Fe3O4@EDTA@Cu(II) mesoporous nanocomposite exhibited satisfactory catalytic activity towards the reduction and one-pot reductive acetylation of nitroarenes and also N-acetylation of arylamines in water at 60 °C. Notably, the applied Cu(II)-containing nanocatalyst was efficiently recovered from the reaction mixture using an external magnetic field and could be reused successfully for five cycles. The protocol developed in this study offers several advantages in terms of mild reaction conditions, simple workflows, using water as a green solvent, and easy recovery and catalyst reuse, making it more ecologically and economically attractive.

7.
ACS Nano ; 18(32): 21112-21124, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39094075

RESUMEN

The precise assessment of vascular heterogeneity in brain tumors is vital for diagnosing, grading, predicting progression, and guiding treatment decisions. However, currently, there is a significant shortage of high-resolution imaging approaches. Herein, we propose a contrast-enhanced susceptibility-weighted imaging (CE-SWI) utilizing the minimalist dextran-modified Fe3O4 nanoparticles (Dextran@Fe3O4 NPs) for ultrahigh-resolution mapping of vasculature in brain tumors. The Dextran@Fe3O4 NPs are prepared via a facile coprecipitation method under room temperature, and exhibit small hydrodynamic size (28 nm), good solubility, excellent biocompatibility, and high transverse relaxivity (r2*, 159.7 mM-1 s-1) under 9.4 T magnetic field. The Dextran@Fe3O4 NPs-enhanced SWI can increase the contrast-to-noise ratio (CNR) of cerebral vessels to 2.5 times that before injection and achieves ultrahigh-spatial-resolution visualization of microvessels as small as 0.1 mm in diameter. This advanced imaging capability not only allows for the detailed mapping of both enlarged peritumoral drainage vessels and the intratumoral microvessels, but also facilitates the sensitive imaging detection of vascular permeability deterioration in a C6 cells-bearing rat glioblastoma model. Our proposed Dextran@Fe3O4 NPs-enhanced SWI provides a powerful imaging technique with great clinical translation potential for the precise theranostics of brain tumors.


Asunto(s)
Neoplasias Encefálicas , Dextranos , Imagen por Resonancia Magnética , Nanopartículas de Magnetita , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Animales , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Dextranos/química , Ratas , Medios de Contraste/química , Humanos , Línea Celular Tumoral , Tamaño de la Partícula
8.
Mikrochim Acta ; 191(8): 504, 2024 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096325

RESUMEN

A novel colorimetric aptasensor assay based on the excellent magnetic responsiveness and oxidase-like activity of Fe3O4@MIL-100(Fe) was developed. Fe3O4@MIL-100(Fe) absorbed with aptamer and blocked by BSA served as capture probe for selective isolation and enrichment of Listeria monocytogenes one of the most common and dangerous foodborne pathogenic bacteria. The aptamer absorbed on Fe3O4@MIL-100(Fe) was further used as signal probe that specifically binds with target bacteria conjugation of capture probe for colorimetric detection of Listeria monocytogenes, taking advantages of its oxidase-like activity. The linear range of the detection of Listeria monocytogenes was from 102 to 107 CFU mL-1, with the limit of detection as low as 14 CFU mL-1. The approach also showed good feasibility for detection of Listeria monocytogenes in milk and meat samples. The spiked recoveries were in the range 81-114% with relative standard deviations ranging from 1.28 to 5.19%. Thus, this work provides an efficient, convenient, and practical tool for selective isolation and colorimetric detection of Listeria monocytogenes in food.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Colorimetría , Microbiología de Alimentos , Límite de Detección , Listeria monocytogenes , Leche , Listeria monocytogenes/aislamiento & purificación , Colorimetría/métodos , Aptámeros de Nucleótidos/química , Leche/microbiología , Leche/química , Técnicas Biosensibles/métodos , Animales , Contaminación de Alimentos/análisis , Oxidorreductasas/química , Carne/microbiología , Nanopartículas de Magnetita/química
9.
Sci Rep ; 14(1): 19009, 2024 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152164

RESUMEN

The contamination of water sources by pharmaceutical pollutants presents significant environmental and health hazards, making the development of effective photocatalytic materials crucial for their removal. This research focuses on the synthesis of a novel Ag/CuS/Fe3O4 nanocomposite and its photocatalytic efficiency against tetracycline (TC) and diclofenac contaminants. The nanocomposite was created through a straightforward and scalable precipitation method, integrating silver nanoparticles (AgNPs) and copper sulfide (CuS) into a magnetite framework. Various analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR),ultraviolet-visible spectrophotometry (UV-Vis) and energy-dispersive X-ray spectroscopy (EDS), were employed to characterize the structural and morphological properties of the synthesized material. The photocatalytic activity was tested by degrading tetracycline and diclofenac under visible light. Results indicated a marked improvement in the photocatalytic performance of the Ag/CuS/Fe3O4 nanocomposite (98%photodegradation of TC 60 ppm in 30 min) compared to both pure magnetite and CuS/Fe3O4. The enhanced photocatalytic efficiency is attributed to the synergistic interaction between AgNPs, CuS, and Fe3O4, which improves light absorption and charge separation, thereby increasing the generation of reactive oxygen species (ROS) and promoting the degradation of the pollutants. The rate constant k of photodegradation was about 0.1 min-1 for catalyst dosages 0.02 g. Also the effect of photocatalyst dose and concentration of TC and pH of solution was tested. The modified photocatalyst was also used for simultaneous photodegradation of TC and diclofenac successfully. This study highlights the potential of the Ag/CuS/Fe3O4 nanocomposite as an efficient and reusable photocatalyst for eliminating pharmaceutical pollutants from water.


Asunto(s)
Cobre , Diclofenaco , Óxido Ferrosoférrico , Nanocompuestos , Plata , Tetraciclina , Contaminantes Químicos del Agua , Diclofenaco/química , Nanocompuestos/química , Tetraciclina/química , Catálisis , Plata/química , Óxido Ferrosoférrico/química , Contaminantes Químicos del Agua/química , Cobre/química , Nanopartículas del Metal/química , Fotólisis , Difracción de Rayos X , Luz
10.
Environ Technol ; : 1-9, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39157926

RESUMEN

Reactive brilliant red X-3B (RBRX-3B) wastewater is difficult to decolourise, not readily biodegradable, and large in quantity. Therefore, the efficient removal of RBRX-3B is crucial. In this paper, a green and efficient electrochemical-electro-Fenton system with Fe3O4-modified carbon felt bag cathode (ECEF-Fe3O4) was set up to degrade RBRX-3B wastewater. Experiments confirmed that the removal of RBRX-3B by ·OH or H2O2 is quite low, and RBRX-3B can be completely oxidised and degraded directly on the anode. Long-cycle experimental data further shows that the degradation efficiency of RBRX-3B on the anode is 100% at 70 min at the reaction rate constants (k) of 0.071 min-1 in ECEF-Fe3O4 while that of RBRX-3B on the cathode is only 16.8 ± 0.9%. The generation of ·OH is mainly catalysed through the internal cycling of Fe3+/Fe2+ within Fe3O4 on the cathode, and the generation and annihilation of ·OH on the cathode enhance the oxidation efficiency of the anode, achieving the green and effective removal of RBRX-3B by the anode in ECEF-Fe3O4.

11.
Carbohydr Polym ; 343: 122461, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174134

RESUMEN

This study reports a pH/magnetic dual-responsive hemicellulose-based nanocomposite hydrogel with nearly 100 % carbohydrate polymer-based and biodegradable polymer compositions for drug delivery. We synthesized pure Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) using a co-precipitation method, then engineering xylan hemicellulose (XH), acrylic acid, poly(ethylene glycol) diacrylate, and Fe3O4 to synthesize the pH/magnetic dual-responsive hydrogel (Fe3O4@XH-Gel), through graft polymerization on XH with in-situ doping Fe3O4 MNPs initiated by the ammonium persulfate/tetramethylethylenediamine redox system. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H NMR), X-ray diffractometry (XRD), scanning electron microscopy and energy dispersive spectrometer (SEM-EDS), high-resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET), swelling gravimetric analysis, vibrating sample magnetometer (VSM) were employed to analyze the hydrogel's chemical structures, morphologies, pH-responsive behaviors, and magnetic responsiveness characteristics, mechanical and rheological properties, as well as cytotoxicity and biodegradability. The results indicate that the Fe3O4@XH-Gel exhibited excellent dual responsiveness to pH and magnetism. Furthermore, an emphasis was placed on the in-depth analysis of the pH response mechanism. Finally, we utilized this cutting-edge hydrogel to investigate the controlled-release behavior of two model drugs, Acetylsalicylic acid and Theophylline. The hydrogel demonstrated exceptional controlled release attributes, positioning it as a potential carrier for targeted drug delivery, particularly to the gastrointestinal conditions.


Asunto(s)
Hidrogeles , Nanocompuestos , Polisacáridos , Xilanos , Hidrogeles/química , Hidrogeles/síntesis química , Xilanos/química , Concentración de Iones de Hidrógeno , Polisacáridos/química , Nanocompuestos/química , Liberación de Fármacos , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Teofilina/química , Teofilina/administración & dosificación , Humanos
12.
ACS Appl Mater Interfaces ; 16(32): 42623-42631, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39090771

RESUMEN

Magnetic fluorescent composite nanomaterials have broad application prospects in the fields of biological imaging, anticounterfeiting identification, suspicious object tracking, and identification of latent fingerprints in forensic medicine. For an effective taggant, a clearly visible identifying mark is necessary to enable observers to capture labeling information quickly and accurately, even from a distance. The preparation method of magnetic fluorescent composite materials is complicated and usually needs different surface modification and assembly processes. The limited loading capacity of fluorescent materials also limits the fluorescence properties of the composite, so it is difficult to produce obvious fluorescence as a taggant to meet the requirements of visible labeling. In this study, a core-shell structure of a magnetic fluorescent composite was prepared by using the metal-organic framework ZIF-8 as the host of fluorescent materials and an encapsulation shell coated on the Fe3O4 nanoparticles. The porous ZIF-8 is beneficial for increasing the loading capacity of fluorescent materials to ensure the fluorescence performance of the composite materials. Further modification of the composite surface prevented the desorption of fluorescent materials from the pores of ZIF-8, enabling the samples to maintain good fluorescence properties even after multiple washing cycles. The preparation method is simple, rapid, and cost-effective, and the prepared magnetic fluorescent composite nanomaterial has high magnetic separation performance and fluorescence performance, making it a promising material for identification, marking, and tracking.

13.
Environ Pollut ; 360: 124711, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128602

RESUMEN

Cadmium (Cd) poses a significant threat to plant growth and the environment. Nano-Fe3O4 is effective in alleviating Cd stress in plants. Elymus nutans Griseb. is an important fodder crop on the Qinghai-Tibetan Plateau (QTP). However, the potential mechanism by which nano-Fe3O4 alleviates Cd stress in E. nutans is not well understood. E. nutans were subjected to single Cd, single nano-Fe3O4, and co-treatment with nano-Fe3O4 and Cd, and the effects on morphology, Cd uptake, antioxidant enzyme activity, reactive oxygen species (ROS) levels and programmed cell death (PCD) were studied to clarify the regulatory mechanism of nano-Fe3O4. The results showed that Cd stress significantly decreased the germination percentage and biomass of E. nutans. The photosynthetic pigment content decreased significantly under Cd stress. Cd stress also caused oxidative stress and lipid peroxidation, accumulation of excessive ROS, resulting in PCD, but the effect of nano-Fe3O4 was different. Seed germination, seedling growth, and physiological processes were analyzed to elucidate the regulatory role of nano-Fe3O4 nanoparticles in promoting photosynthesis, reducing Cd accumulation, scavenging ROS, and regulating PCD, to promote seed germination and seedling growth in E. nutans. This report provides a scientific basis for improving the tolerance of Elymus to Cd stress by using nano-Fe3O4.

14.
Food Chem ; 460(Pt 3): 140754, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39121762

RESUMEN

The determination of biogenic amines (BAs) in alcoholic beverages is crucial for assessing their health impact, ensuring beverage quality, and guaranteeing safety. Herein, a rapid one-pot derivatization/magnetic solid-phase extraction (OPD/MSPE) method was proposed using 6-aminoquinolinyl-N-hydroxysuccinimide carbamate as the derivatization reagent and magnetic hydroxyl-functionalized multi-walled carbon nanotubes as the extraction material. Integration of derivatization and extraction steps simplifies the sample preparation process, taking only three minutes and eliminating the need for centrifugation by utilizing magnetic sorbent. The resulting desorption solution was directly analyzed by high-performance liquid chromatography-fluorescence detection (HPLC-FLD) without any evaporation or reconstitution steps. The integrated OPD/MSPE-HPLC-FLD method demonstrates excellent linearity (R2 > 0.992), accuracy (relative recoveries: 85.1-109.2%), precision (RSDs≤9.7%) and detection limits (limits of detection: 0.3-2 ng/mL). It has been successfully applied to determine free BAs in various alcoholic beverages, including red wine, Baijiu, Huangjiu, and beer. This method enables rapid, sensitive and precise analysis of BAs in alcoholic beverages.

15.
Bioelectrochemistry ; 160: 108792, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39126818

RESUMEN

CYP2C19*3 enzyme plays a pivotal role in drug metabolism and is tightly regulated by the CYP2C19*3 gene. Therefore, quantification of CYP2C19*3 gene holds paramount importance for achieving personalized medication guidance in precision medicine. In this project, the magnetic electrochemical biosensors were constructed for the ultra-sensitive detection of CYP2C19*3 gene. Employing magnetic α-Fe2O3/Fe3O4@Au as the matrixes for signal amplification, CYP2C19*3 complementary chains (c-ssDNA) were bound to their surfaces through gold-sulfur bonds with subsequent specific sites blockade by bovine serum albumin (BSA) to form the α-Fe2O3/Fe3O4@Au/c-ssDNA/BSA biosensors. This design enabled efficient biosensors separation, target gene capture, and self-assembly on the electrode surface, enhancing the response signal. The biosensors exhibited excellent capture capabilities with a wide linear range (1 pM-1 µM), a low detection limit of 0.2710 pM, a quantitation limit of 0.9033 pM, reproducibility with an RSD value of 1.26 %, and stable storage for at least one week. The RSD value of CYP2C19*3 in serum samples consistently remained below 4.5 %, with a recovery rate ranging 95.52 % from 102.71 %. Moreover, the target gene could be accurately identified and captured in a mixed system of multiple nucleotide mutants of the CYP2C19*3 gene, suggesting a promising applicability and popularization.

16.
J Hazard Mater ; 478: 135362, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39116744

RESUMEN

Although the anaerobic reduction of azo dyes is ecofriendly, high ammonia consumption remains a significant challenge. This work enriched a mixed nitrogen-fixing bacteria consortium (NFBC) using n-Fe3O4 to promote the anaerobic reduction of methyl orange (MO) without exogenous nitrogen. The enriched NFBC was dominated by Klebsiella (80.77 %) and Clostridium (17.16 %), and achieved a 92.7 % reduction of MO with an initial concentration of 25 mg·L-1. Compared with the control, the consortium increased the reduction efficiency of MO, cytochrome c content, and electron transport system (ETS) activity by 11.86 %, 89.86 %, and 58.49 %, respectively. When using 2.5 g·L-1 n-Fe3O4, the extracellular polymeric substances (EPS) of NFBC were present in a concentration of 85.35 mg·g-1. The specific reduction rates of MO by NFBC were 2.26 and 3.30 times faster than those of Fe(II) and Fe(III), respectively, while the enrichment factor of the ribosome pathway in NFBC exceeded 0.75. Transcriptome, carbon consumption, and EPS analyses suggested that n-Fe3O4 stimulated carbon metabolism and secreted protein synthesized by the mixed culture. The latter occurred due to the increased activity of consortium and the content of redox substances. These findings demonstrate that n-Fe3O4 promoted the efficiency of mixed nitrogen-fixing bacteria for removing azo dyes from wastewater. This innovative approach highlights the potential of integrating nanomaterials with biological systems to effectively address complex pollution challenges.

17.
Materials (Basel) ; 17(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39124436

RESUMEN

Electrospinning technology is widely used for preparing biological tissue engineering scaffolds because of its advantages of simple preparation, accurate process parameters, and easy control. Poly(L-lactide) (PLLA) is regarded as a promising biomass-based polymer for use in electrospinning. The incorporation of Fe3O4 nanoparticles (NPs) could improve the osteogenic differentiation and proliferation of cells in the presence or absence of a static magnetic field (SMF). In this work, these two materials were blended together to obtain electrospun samples with better dispersibility and improved magnetic properties. First, composite PLLA and Fe3O4 NP fibers were prepared by means of electrospinning. The influence of electrospinning conditions on the morphology of the composite fibers was then discussed. Changes in magnetic properties and thermal stability resulting from the use of different PLLA/Fe3O4 mass ratios were also considered. Next, the morphology, crystal state, thermodynamic properties, and magnetic properties of the electrospun samples were determined using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and vibration sample magnetization (VSM). The results showed that the fibers prepared using PLLA with Mn = 170,000 exhibited good morphology when electrospun at 12 KV. The magnetic properties of PLLA/Fe3O4 composite electrospun fibers increased with the NP content, with the exception of thermal stability. The results of the present study may help to promote the further development of PLLA/Fe3O4 composite materials in the biomedical field.

18.
Molecules ; 29(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39124998

RESUMEN

The early monitoring and inactivation of bacteria are of crucial importance in preventing the further spread of foodborne pathogens. Staphylococcus aureus (S. aureus), a prototypical foodborne pathogen, is widely present in the natural environment and has the capability to trigger a range of diseases at low concentrations. In this work, we designed Fe3O4@SiO2-Au core-shell-satellite nanocomposites (NCs) modified with aptamer for efficient capture, high-sensitivity surface-enhanced Raman scattering (SERS) detection, and photothermal therapy (PTT) against S. aureus. Fe3O4@SiO2-Au NCs with tunable Au nanocrystal nanogaps were prepared. By combining the finite-difference time-domain (FDTD) method and experimental results, we studied the electric field distribution of Fe3O4@SiO2-Au under different Au nanogaps and ultimately obtained the optimal SERS substrate FSA-60. The modification of aptamer on the surfaces of FSA-60 could be used for the specific capture and selective detection of S. aureus, achieving a detection limit of as low as 50 cfu/mL. Furthermore, Apt-FSA-60 possessed excellent photothermal properties, demonstrating the strong photothermal killing ability against S. aureus. Therefore, Apt-FSA-60 is a promising high-sensitivity SERS substrate and efficient photothermal agent and is expected to be widely applied and promoted in future disease prevention and treatment.


Asunto(s)
Aptámeros de Nucleótidos , Oro , Nanocompuestos , Dióxido de Silicio , Espectrometría Raman , Staphylococcus aureus , Staphylococcus aureus/efectos de los fármacos , Dióxido de Silicio/química , Nanocompuestos/química , Espectrometría Raman/métodos , Oro/química , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología , Terapia Fototérmica/métodos
19.
Molecules ; 29(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125045

RESUMEN

In order to improve dispersibility, polymerization characteristics, chemical stability, and magnetic flocculation performance, magnetic Fe3O4 is often assembled with multifarious polymers to realize a functionalization process. Herein, a typical three-dimensional configuration of hyperbranched amino acid polymer (HAAP) was employed to assemble it with Fe3O4, in which we obtained three-dimensional hyperbranched magnetic amino acid composites (Fe3O4@HAAP). The characterization of the Fe3O4@HAAP composites was analyzed, for instance, their size, morphology, structure, configuration, chemical composition, charged characteristics, and magnetic properties. The magnetic flocculation of kaolin suspensions was conducted under different Fe3O4@HAAP dosages, pHs, and kaolin concentrations. The embedded assembly of HAAP with Fe3O4 was constructed by the N-O bond according to an X-ray photoelectron energy spectrum (XPS) analysis. The characteristic peaks of -OH (3420 cm-1), C=O (1728 cm-1), Fe-O (563 cm-1), and N-H (1622 cm-1) were observed in the Fourier transform infrared spectrometer (FTIR) spectra of Fe3O4@HAAP successfully. In a field emission scanning electron microscope (FE-SEM) observation, Fe3O4@HAAP exhibited a lotus-leaf-like morphological structure. A vibrating sample magnetometer (VSM) showed that Fe3O4@HAAP had a relatively low magnetization (Ms) and magnetic induction (Mr); nevertheless, the ferromagnetic Fe3O4@HAAP could also quickly respond to an external magnetic field. The isoelectric point of Fe3O4@HAAP was at 8.5. Fe3O4@HAAP could not only achieve a 98.5% removal efficiency of kaolin suspensions, but could also overcome the obstacles induced by high-concentration suspensions (4500 NTU), high pHs, and low fields. The results showed that the magnetic flocculation of kaolin with Fe3O4@HAAP was a rapid process with a 91.96% removal efficiency at 0.25 h. In an interaction energy analysis, both the UDLVO and UEDLVO showed electrostatic repulsion between the kaolin particles in the condition of a flocculation distance of <30 nm, and this changed to electrostatic attraction when the separation distance was >30 nm. As Fe3O4@ HAAP was employed, kaolin particles could cross the energy barrier more easily; thus, the fine flocs and particles were destabilized and aggregated further. Rapid magnetic separation was realized under the action of an external magnetic field.

20.
Water Res ; 263: 122121, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39094200

RESUMEN

Magnetite (Fe3O4) is extensively applied to enhance efficacy of anaerobic biological treatment systems designed for refractory wastewater. However, the interaction between magnetite, organic pollutants and microorganisms in digestion solution is constrained by magnetic attraction. To overcome this limitation and prevent magnetite aggregation, the core-shell composite materials with carbon outer layer enveloping magnetite core particles (Fe3O4@C) were developed. The impact of Fe3O4@C with varying Fe3O4 mass ratios on the anaerobic methanogenesis capability in the treatment of chloramphenicol (CAP) wastewater was investigated. Experimental results demonstrated that Fe3O4@C not only enhanced chemical oxygen demand (COD) removal efficiency and biogas production by 2.42-13.18% and by 7.53%-23.25%, respectively, but also reduced the inhibition of microbial activity caused by toxic substances and the secretion of extracellular polymeric substances (EPS) by microorganisms responding to adverse environments. The reinforcing capability of Fe3O4@C increased with the rise in Fe3O4 content. Furthermore, High-throughput pyrosequencing illustrated that Fe3O4@C enhanced the relative abundance of Methanobacterium, a hydrogen-utilizing methanogen capable of participating in direct interspecies electron transfer (DIET), by 5%. Metagenomic analysis indicated that Fe3O4@C improved the decomposition of complex organics into simpler compounds by elevating functional genes encoding key enzymes associated with organic matter metabolism, acetogenesis, and hydrogenophilic methanogenesis pathways. These findings suggest that Fe3O4@C have the potential to strengthen both the hydrogenophilic methanogenesis and DIET processes. This insight offers a novel perspective on the anaerobic bioaugmentation of high-concentration refractory organic wastewater.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA