Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 928
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202409192, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39091276

RESUMEN

Semi-biological photosynthesis combines synthetic photosensitizers with microbial catalysts to produce sustainable fuels and chemicals from CO2. However, the inefficient transfer of photoexcited electrons to microbes leads to limited CO2 utilization, restricting the catalytic performance of such biohybrid assemblies. Here, we introduce a biological engineering solution to address the inherently sluggish electron uptake mechanism of a methanogen, Methanosarcina barkeri (M. barkeri), by coculturing it with an electron transport specialist, Geobacter sulfurreducens KN400 (KN400), an adapted strain rich with multiheme c-type cytochromes (c-Cyts) and electrically conductive protein filaments (e-PFs) made of polymerized c-Cyts with enhanced capacity for extracellular electron transfer (EET). Integration of this M. barkeri-KN400 co-culture with a synthetic photosensitizer, carbon nitride, demonstrates that c-Cyts and e-PFs, emanating from live KN400, transport photoexcited electrons efficiently from the carbon nitride to M. barkeri for methanogenesis with remarkable long-term stability and selectivity. The demonstrated cooperative interaction between two microbes via direct interspecies electron transfer (DIET) and the photosensitizer to assemble a semi-biological photocatalyst introduces an ecosystem engineering strategy in photocatalysis to drive sustainable chemical synthesis.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39088172

RESUMEN

The introduction of hydrogen into the engine could enhance its combustion efficiency and emission characteristics. The current study examines the attributes of compression ignition (CI) engines by introducing hydrogen into a biodiesel blend derived from algae. The improved thermal properties of hydrogen, when combined with algae biodiesel, significantly affect the performance, combustion, and emissions of dual-fuel engines. A study was conducted to evaluate the impact of hydrogen enrichment levels of 5%, 10%, 15%, and 20% of the nozzle volume on a biodiesel blend fuel. In comparison to diesel, algal biodiesel reduces emissions of unburned hydrocarbons (HC), carbon monoxide (CO), and oxygen (O2) by 5.19%, 3.61%, and 2.83%, respectively, while increasing nitrogen oxide (NO) emissions by 4.73%. In contrast to biodiesel, diesel demonstrated superior brake thermal efficiency (BTE) and lower specific energy consumption (SEC). Injecting hydrogen into A20 blend fuel at volumes of 5%, 10%, 15%, and 20% results in a respective increase in brake thermal efficiency of 2.65%, 2.97%, 3.50%, and 4.15%. The addition of hydrogen gas to biodiesel blends further enhances their combustion qualities, leading to elevated peak cylinder pressure, temperature, and heat release rate. The results indicate that A20H5, A20H10, A20H15, and A20H20 fuel reduced CO emissions by 3.75%, 8.75%, 12.5%, and 16.25%, respectively, compared to the A20 blend. In the same vein, HC emissions decreased by 5.76%, 10.29%, 15.52%, and 18.98%, respectively, as compared to A20 fuel. However, NO emissions rose by 5.36%, 10.20%, 15.28%, and 23.23%, respectively, for A20H5, A20H10, A20H15, and A20H20 test fuels. Ultimately, the utilization of algal biodiesel and hydrogen enrichment in diesel engines was proven to substantially reduce pollutants while increasing efficiency. This study contributes valuable insights into the intersection of renewable fuels, hydrogen enrichment, and engine technology, with the potential to drive significant advancements in sustainable transportation and environmental conservation.

3.
J Environ Manage ; 367: 122036, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094419

RESUMEN

Rapid global urbanization and economic growth have significantly increased solid waste volumes, with hazardous waste posing substantial health and environmental risks. Co-processing strategies for industrial solid and hazardous waste as alternative fuels highlight the importance of integrated waste management for energy and material recovery. This study identifies and characterizes solid and hazardous industrial wastes with high calorific values from various industrial processes at Nirma Industries Limited. Nine types of combustible industrial wastes were analyzed: discarded containers (W1), plastic waste (W2), spent ion exchange resins from RO plants (W3), sludge from effluent treatment in soap plants (W4), glycerine foot from soap plants (W5), rock wool puff material (W6), fiber-reinforced plastic waste (W7), spent activated carbon (W8), and spent cartridges from reverse osmosis plants (W9). Physical characterization, proximate and ultimate analysis, heavy metal concentration evaluation, and thermogravimetric analysis were conducted to assess their properties, revealing high calorific values exceeding 2500 kcal/kg. Notably, W1 and W2 exhibited the highest calorific values (∼10,870 kcal/kg), followed by W6 and W8 (∼6000 kcal/kg) and W9 (∼8727 kcal/kg). Safe heavy metal levels are safe, and high calorific values support the prospects of energy recovery and economic and environmental benefits, reducing landfill reliance and enhancing sustainable waste management.

4.
Sci Rep ; 14(1): 18218, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107379

RESUMEN

It remains unclear whether and how maternal exposure to biomass fuel influences infant anthropometry or body proportionality at birth, which are linked to their survival, physical growth, and neurodevelopment. Therefore, this study seeks to explore the association between household-level exposure to biomass cooking fuels and infant size and body proportionality at birth among women in rural Bangladesh. A total of 909 women were derived from the Pregnancy Weight Gain study, which was conducted in Matlab, a rural area of Bangladesh. Infant's weight (g), length (cm), head circumference (cm), small for gestational age (SGAW), short for gestational age (SGAL), low head circumference for gestational age (SGAHC), ponderal index, and cephalization index at birth were the outcomes studied. Of the women, 721 (79.3%) were dependent on biomass fuel. Compared to infants born to mothers who used gas for cooking, those born to biomass users had lower weight (ß - 94.3, CI - 155.9, - 32.6), length (ß - 0.36, 95% CI - 0.68, - 0.04), head circumference (ß - 0.24, CI - 0.47, - 0.02) and higher cephalization index (ß 0.03, CI 0.01, 0.05) at birth. Maternal biomass exposure is more likely to lead to symmetric SGA, although there is evidence for some brain-sparing effects.


Asunto(s)
Biomasa , Peso al Nacer , Culinaria , Exposición Materna , Humanos , Femenino , Embarazo , Recién Nacido , Adulto , Peso al Nacer/efectos de los fármacos , Exposición Materna/efectos adversos , Bangladesh , Masculino , Adulto Joven , Tamaño Corporal/efectos de los fármacos , Recién Nacido Pequeño para la Edad Gestacional
5.
Artículo en Inglés | MEDLINE | ID: mdl-39106009

RESUMEN

Hydrogen is a promising alternative to meet the world's energy demand in the future because of its energetic characteristics. Microbial electrolysis cell (MEC) produces hydrogen from organic matter using exoelectrogenic bacteria. Shewanella oneidensis stands out for having the capacity to produce hydrogen using different electron transfer mechanisms. The present research aims to evaluate the hydrogen production efficiency in a MEC inoculated with a pure culture of S. oneidensis in different operational conditions. Since the use of a catalyst accounts for most of the MEC cost, no catalyst was used for anode or cathode. Experiments were performed in semi-continuous and batch mode using different electrodes, voltages applied, and medium in aerobic and anaerobic conditions. The highest hydrogen production rate (HPR) was 0.107 m3 of H2/m3day obtained in a semi-continuous experiment using graphite plates and stainless steel electrodes. In batch experiments, a HPR occurred at 0.7 V, with a value of 0.048 m3 of H2/m3day versus 0.037 m3 of H2/m3day with 0.9 V. HPR was higher with carbon felt electrode (0.056 m3 of H2/m3day). However, current density dropped after 38 h, with carbon felt electrodes, and did not recover. Results of the present research showed that the MEC using a pure culture of S. oneidensis can be considered an alternative for hydrogen production without using a catalyst. Also, S. oneidensis produced hydrogen in both anaerobic and aerobic conditions with low methane production. Optimization can be proposed to improve hydrogen production based on the operational conditions tested in these experiments.

6.
Environ Sci Technol ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102498

RESUMEN

Residential solid fuel combustion significantly impacts air quality and human health. Pelletized biomass fuels are promoted as a cleaner alternative, particularly for those who cannot afford the high costs of gas/electricity, but their emission characteristics and potential effects remain poorly understood. The present laboratory-based study evaluated pollution emissions from pelletized biomass burning, including CH4 (methane), NMHC (nonmethane hydrocarbon compounds), CO, SO2, NOx, PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 µm), OC (organic carbon), EC (element carbon), PAHs (polycyclic aromatic hydrocarbons), EPFRs (environmentally persistent free radicals), and OP (oxidative potential) of PM2.5, and compared with those from raw biomass burning. For most targets, except for SO2 and NOx, the mass-based emission factors for pelletized biomass were 62-96% lower than those for raw biomass. SO2 and NOx levels were negatively correlated with other air pollutants (p < 0.05). Based on real-world daily consumption data, this study estimated that households using pelletized biomass could achieve significant reductions (51-95%) in emissions of CH4, NMHC, CO, PM2.5, OC, EC, PAHs, and EPFRs compared to those using raw biomass, while the differences in emissions of NOx and SO2 were statistically insignificant. The reduction rate of benzo(a)pyrene-equivalent emissions was only 16%, much lower than the reduction in the total PAH mass (78%). This is primarily attributed to the more PAHs with high toxic potentials, such as dibenz(a,h)anthracene, in the pelletized biomass emissions. Consequently, impacts on human health associated with PAHs might be overestimated if only the mass of total PAHs was counted. The OP of particles from the pellet burning was also significantly lower than that from raw biomass by 96%. The results suggested that pelletized biomass could be a transitional substitution option that can significantly improve air quality and mitigate human exposure.

7.
Environ Int ; 190: 108856, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38970981

RESUMEN

BACKGROUND: Since 1990 s, China has witnessed a widespread transition to clean cooking fuels, presenting an opportunity to investigate whether household fuel transition could mitigate obesity risk and reconcile inconsistencies in the literature regarding the association between cooking fuels and obesity. METHODS: The China Health and Nutrition Survey (CHNS) is a prospective cohort study covering 12 provinces of China (1989-2015). Participants were classified into persistent cleaner fuel users, fuel transitioners, and persistent polluting fuel users according to self-reported primary cooking fuels. Obesity and central obesity were defined as BMI ≥ 28.0 kg/m2 and waist circumference ≥ 90 cm in men and ≥ 85 cm in women according to Chinese criteria. FINDINGS: Among 13,032 participants, 3657 (28.06 %) were persistent cleaner fuel users; 5264 (40.39 %) transitioned from using polluting fuels to cleaner fuels after the baseline survey; and 4111 (31.55 %) were persistent polluting fuel users. During the period of follow-up of 9.0 ± 6.8 years, 1248 (9.58 %) participants were classified into the obesity category, and 4703 (36.09 %) into the central obesity category. Persistent polluting fuel users had a significantly higher risk of developing obesity (hazard ratio [HR]: 1.45, 95 %CI: 1.22-1.72) and central obesity (HR: 1.32, 95 %CI: 1.21-1.44), compared to persistent cleaner fuel users. Persistent polluting fuel use was positively associated with developing obesity in women (HR: 1.64, 95 %CI: 1.30-2.06), but not in men. Subgroup analyses showed higher HR of persistent polluting fuel use among individuals aged 18-44 years (HR: 2.04, 95 %CI: 1.62-2.56). In contrast, the transitioners did not exhibit a significantly different risk of developing obesity (HR: 0.94, 95 %CI: 0.80-1.10) compared to persistent cleaner fuel users, which was consistent across different sex, age and urbanicity. Similar trends were observed for developing central obesity. INTERPRETATION: Persistent polluting fuel use increased obesity risk while the obesity risk of the transition to cleaner fuels was similar to persistent use of cleaner fuels. The finding underscores the significance of advocating for the adoption of cleaner fuels as a strategy to mitigate the disease burden associated with obesity.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38951393

RESUMEN

Global energy consumption is expected to reach 911 BTU by the end of 2050 as a result of rapid urbanization and industrialization. Hydrogen is increasingly recognized as a clean and reliable energy vector for decarbonization and defossilization across various sectors. Projections indicate a significant rise in global demand for hydrogen, underscoring the need for sustainable production, efficient storage, and utilization. In this state-of-the-art review, we explore hydrogen production methods, compare their environmental impacts through life cycle analysis, delve into geological storage options, and discuss hydrogen's potential as a future transportation fuel. Combining electrolysis to make hydrogen and storing it in porous underground materials like salt caverns and geological reservoirs looks like a good way to balance out the variable supply of renewable energy and meet the demand at peak times. Hydrogen is a key component of our sustainable economy, and this article gives a broad overview of the process from production to consumption, touching on technical, economic, and environmental concerns along the way. We have made an attempt in this paper to compile different methods for the production of hydrogen and its storage, the challenges faced by current methods in the manufacturing of hydrogen gas, and the role of hydrogen in the future. This review paper will serve as a very good reference for hydrogen system engineering applications. The paper concludes with some suggestions for future research to help improve the technological efficiency of certain production methods, all with the goal of scaling up the hydrogen economy.

9.
Nanotechnology ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39084236

RESUMEN

Coinage metal nanoparticles (NPs) enable plasmonic catalysis by generating hot carriers that drive chemical reactions. Making NPs porous enhances the adsorption of reactant molecules. We present a dewetting and dealloying strategy to fabricate porous gold nanoparticles (Au-Sponge) and compare their CO2 photoreduction activity with respect to the conventional gold nanoisland (Au-Island) morphology. Porous gold nanoparticles exhibit an unusually broad and red-shifted plasmon resonance which is in agreement with the results of finite difference time domain (FDTD) simulations. The key insight of this work is that the multi-step reduction of CO2 driven by short-lived hot carriers generated by the d → s interband transition proceeds extremely quickly as evidenced by the generation of methane. A 3.8-fold enhancement in the photocatalytic performance is observed for the Au-Sponge in comparison to the Au-Island. Electrochemical cyclic voltammetry measurements confirm the 2.5-fold increase in the surface area and roughness factor of the Au-Sponge sample due to its porous nature. Our results indicate that the product yield is limited by the amount of surface adsorbates i.e. reactant-limited. Isotope-labeled mass spectrometry using 13CO2 was used to confirm that the reaction product (13CH4) originated from CO2 photoreduction. We present the plasmon-mediated photocatalytic transformation of 4-aminothiophenol (PATP) into p,p'-dimercaptoazobenzene (DMAB) using Au-Sponge and Au-Island samples.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39060506

RESUMEN

BACKGROUND: Household air pollution arising from combustion of unclean fuels during cooking activities causes serious respiratory health effects. This study investigated patterns of household cooking fuel use and its effect on respiratory health status of women and children. METHODS: A cross-sectional study was conducted in rural households of Ballabgarh, Haryana during December 2019 to January 2020 among 18-45 years old women and their children having age between 6 and 59 months. A total of 450 households were selected using simple random sampling. Cooking fuel use was categorised as unclean (Wood, dung cakes, crop residues) and clean (LPG and electricity). The classification of mixed fuel use (predominantly unclean or clean) was based upon duration of unclean fuel use ≥ 2.5 h per day. The clinical history and physical examination was done using a semi-structured questionnaire. Assessment of respiratory health status of women participants was done using peak expiratory flow meter and presence of pneumonia in children was evaluated as per Integrated Management of Neonatal and Childhood Illnesses (IMNCI) guidelines. RESULTS: Overall use of unclean cooking fuels was predominant in 59.6% of households and 71.8% of households had mixed fuel use. Only clean fuel use was in 11.3% of households. Nasal stuffiness, breathing difficulty and cough were observed among 13.1%, 10.5% and 8.5% among women while the common respiratory symptoms in children were cough (27.8%) and runny nose (22.9%). As compared to clean fuels, women using unclean fuels were more likely to have any respiratory symptom (aOR 3.0, 95% CI: 1.5-6.0) and impaired pulmonary functions (adjusted OR 1.9, 95% CI: 1.2-2.9). Cooking fuel use was not associated with respiratory symptoms and presence of pneumonia in children living in the households. CONCLUSION: Cooking with unclean fuel continues to be prevalent in the households of rural Ballabgarh and adversely affects the respiratory health of women indicating strengthening of initiatives promoting clean fuel use.

11.
Sci Rep ; 14(1): 15664, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977757

RESUMEN

In low- and middle-income countries, indoor air pollution (IAP) is a serious public health concern, especially for women and children who cook with solid fuels. IAP exposure has been linked to a number of medical conditions, including pneumonia, ischemic heart disease, stroke, chronic obstructive pulmonary disease (COPD), lung cancer, and anaemia. Around 500 million women of reproductive age (WRA) suffer from anaemia globally, with an estimated 190 million cases in sub-Saharan Africa (SSA). This study, which is based on prior research, investigates the relationship between IAP exposure and anaemia among WRA in Ghana. A diverse sample of 2,406 WRA living in Ghana were interviewed, of which 58.06% were anaemic and used high-pollutant fuels for cooking. Age, place of residence, region, education level, religion, ethnicity, wealth index, type of drinking water, type of toilet facility, and type of cooking fuels were all found to be significantly linked with anaemic state by bivariate analysis. Type of cooking fuels utilized, age, region of residence, and the type of residence were shown to be significant predictors of anaemia status using sequential binary logit regression models. The results emphasise the critical need for efforts to promote the usage of clean cooking fuel in an attempt to lower anaemia prevalence in Ghana. To reduce dependency on solid fuels for cooking, initiatives should promote the use of cleaner cooking fuels and enhance the socioeconomic status of households. These interventions could have significant public health effects by reducing the burden of anaemia and improving maternal and child health outcomes due to the prevalence of anaemia among WRA. Overall, this study sheds light on the relationship between IAP exposure and anaemia in Ghana and highlights the demand for focused public health initiatives to address this serious health problem.


Asunto(s)
Contaminación del Aire Interior , Anemia , Culinaria , Humo , Humanos , Ghana/epidemiología , Femenino , Anemia/epidemiología , Anemia/etiología , Adulto , Contaminación del Aire Interior/efectos adversos , Adulto Joven , Adolescente , Humo/efectos adversos , Persona de Mediana Edad , Prevalencia
12.
Ecotoxicol Environ Saf ; 282: 116719, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39002375

RESUMEN

BACKGROUND: In developing countries, including China, solid-fuel-based heating and cooking is common. For older people, the multimorbidity prevalence is exceptionally high. Nevertheless, studies on the associations of indoor solid fuels use, especially switching fuels types, on multimorbidity in middle-aged and older people is scarce. METHODS: Data from five waves of the China Health and Retirement Longitudinal Study were used in this study. Indoor fuels were classified as solid or clean fuels. Physical-psychological-cognitive multimorbidity (PPC-multimorbidity) was defined as the simultaneous presence of three disease types (physical illness, psychological disorders, cognitive impairment). Using Cox proportional risk models, hazard ratios (HRs) and 95 % confidence intervals (95 % CI) were calculated to investigate the associations of heating- and cooking-related baseline indoor fuels and switching indoor fuels with PPC-multimorbidity incidence. RESULTS: In the heating (n=3121, mean age=56.55 years, male proportion=54.25 %) and cooking (n=3574, mean age=56.67 years, male proportion=52.94 %) analyses, 75.07 % and 45.64 % of the participants used solid fuels at baseline, and 564 (18.07 %) and 613 (17.15 %) PPC-multimorbidity cases were diagnosed during follow-up, respectively. Participants with baseline heating- and cooking-based solid fuels use had greater PPC-multimorbidity incidences [HRs (95 % CIs): 1.23 (0.98, 1.55) and 1.44 (1.21, 1.73)], respectively. Additionally, combined baseline heating- and cooking-based solid fuels use was associated with even greater PPC-multimorbidity incidence [HR (95 % CI): 1.55 (1.18, 2.04)]. Persistent solid fuels use obviously increased the PPC-multimorbidity incidence [HRs (95 % CIs): 2.43 (1.67, 3.55) for heating and 2.63 (2.03, 3.40) for cooking]. Moreover, switching from solid to clean fuels was associated with a significantly decreased PPC-multimorbidity incidence [HRs (95 % CIs): 0.27 (0.20, 0.35) for heating and 0.36 (0.28, 0.46) for cooking]. CONCLUSIONS: Long-term solid-fuels use is associated with an increased PPC-multimorbidity incidence, and switching to cleaner fuels is associated with a decreased PPC-multimorbidity incidence in adults aged ≥45 years.

13.
Artículo en Inglés | MEDLINE | ID: mdl-39083178

RESUMEN

The paper aims to investigate the fuel and system options for a floating power plant (FPP) considering economic performance and the decarbonization goals of the International Maritime Organization. Various case studies have been assessed using a reference FPP, encompassing the instant and future retrofitting scenarios. The ready-to-use scenarios involve alternative fuel and organic Rankine cycle-based waste heat recovery system usage. Nuclear energy systems have been evaluated within the reference FPP since they are suitable candidates for achieving zero-carbon objectives and providing low-cost electricity. A simulation framework created in Python has calculated the fuel consumption regarding the power requirement and organized the approaches used in the study. An environmental model comparing the systems has been built to calculate upstream and operational emissions. The cost projection model for 2030 and 2050 has assessed the economic performance. Technique for Order of Preference by Similarity (TOPSIS) one of the multi-criteria decision-making approaches has ranked the systems considering the outcomes of economic and environmental models over the years. Findings demonstrate that the current fuel usage scenario of the FPP is not suitable both environmentally and economically. The other emissions can be near zero and greenhouse gases can be decreased by up to 15.95% using alternative fuels. Nuclear energy is a strong candidate to meet the 2050 targets, but its viability is largely based on economic performance.

14.
J Colloid Interface Sci ; 675: 1059-1068, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39013302

RESUMEN

HypothesisFoaming in diesel fuels is not well understood and leads to operational challenges. To combat deleterious effects of foaming, diesel formulations can include additives called antifoams. Existing antifoams, unfortunately, are inherently ash-generating when combusted, with unknown environmental impacts. They are prohibited in certain countries, so identifying effective alternative ash-free antifoam chemistries is needed. ExperimentsWe conduct systematic characterization of foam stabilization and antifoaming mechanisms in diesel for two different antifoams (silicone-containing & ashless chemistries). Employing a custom technique combining single-bubble/single-antifoam-droplet manipulation with white light interferometry, we also obtain mechanistic insights into foam stability and antifoam dynamics. ResultsCoalescence times from both bulk foam and single bubble experiments confirm ashless antifoams are effective at reducing foaming, demonstrating the potential of ashless antifoams. Further, we perform single-antifoam-droplet experiments and obtain direct experimental evidence revealing the elusive antifoaming mechanisms. Interestingly, the silicone-containing and ashless antifoams seemingly function via two different mechanisms: spreading and dewetting respectively. This surprising finding refutes conventional wisdom that spreading is likely the only antifoam mechanism in diesels. These results and the reported experimental framework significantly enhance the scientific understanding of non-aqueous foams and will accelerate the engineering of alternative antifoam chemistries for non-aqueous systems.

15.
ACS Nano ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016025

RESUMEN

The exploitation of hierarchical carbon nanocages with superior light-to-heat conversion efficiency, together with their distinct structural, morphological, and electronic properties, in photothermal applications could provide effective solutions to long-standing challenges in diverse areas. Here, we demonstrate the discovery of pristine and nitrogen-doped hierarchical carbon nanocages as superior supports for highly loaded, small-sized Ru particles toward enhanced photothermal CO2 catalysis. A record CO production rate of 3.1 mol·gRu-1·h-1 with above 90% selectivity in flow reactors was reached for hierarchical nitrogen-doped carbon-nanocage-supported Ru clusters under 2.4 W·cm-2 illumination without external heating. Detailed studies reveal that the enhanced performance originates from the strong broadband sunlight absorption and efficient light-to-heat conversion of nanocage supports as well as the excellent intrinsic catalytic reactivity of sub-2 nm Ru particles. Our study reveals the great potential of hierarchical carbon nanocages in photothermal catalysis to reduce the fossil fuel consumption of various industrial chemical processes and stimulates interest in their exploitation for other demanding photothermal applications.

16.
ACS Appl Mater Interfaces ; 16(28): 36380-36391, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38968444

RESUMEN

A metal-insulator-semiconductor (MIS) structure holds great potential to promote photoelectrochemical (PEC) reactions, such as water splitting and CO2 reduction, for the storage of solar energy in chemical bonds. The semiconductor absorbs photons, creating electron-hole pairs; the insulator facilitates charge separation; and the metal collects the desired charge and facilitates its use in the electrochemical reaction. Despite these attractive features, MIS photoelectrodes are significantly limited by their photovoltage, a combination of the voltage generated from photon absorption minus the potential drop across the insulator. Herein, we use multiscale continuum modeling of the carrier, electrolyte, and interfacial transport to identify strategies for mitigating the deleterious potential drop across the insulator and enabling high MIS photovoltages. To this end, we model Ni/SiO2/n-Si photoanodes that employ a planar Ni film or Ni nanoparticles (np-MIS) and validate both models using experimental polarization curves and photovoltage measurements from the literature. The simulations reveal that the insulator potential drop is lower and hence achieves higher photovoltages for np-MIS structures than MIS structures because the electrolyte screens charge trapped at defect states between the semiconductor and the insulator. This electrolyte charge screening phenomenon can be further leveraged by using low loadings or small nanoparticles, which not only minimize the interfacial potential drop but also improve the photocurrent by enabling more light absorption. These insights contribute to the optimization of the np-MIS structures for sustainable energy conversion.

17.
ACS Appl Mater Interfaces ; 16(28): 35865-35873, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38970473

RESUMEN

Solar-driven plastics conversion into valuable fuels has attracted broad attention in recent years, which has enormous potential for plastics recycling in the future. However, it usually encounters low conversion efficiency, where one of the reasons is attributed to the poor carrier dynamics in the photocatalytic process. In this Perspective, we critically review the developed strategies, involving defect engineering, doping engineering, heterojunction engineering, and composite construction, for boosted carrier separation efficiency. In addition, we provide an outlook for more potential strategies to engineer catalysts for promoted carrier dynamics. Finally, we also propose prospects for the future research direction of plastics photoconversion into fuels.

18.
ACS Appl Mater Interfaces ; 16(29): 37885-37895, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38996184

RESUMEN

Carbon electrodes are ideal for electrochemistry with molecular catalysts, exhibiting facile charge transfer and good stability. Yet for solar-driven catalysis with semiconductor light absorbers, stable semiconductor/carbon interfaces can be difficult to achieve, and carbon's high optical extinction means it can only be used in ultrathin layers. Here, we demonstrate a plasma-enhanced chemical vapor deposition process that achieves well-controlled deposition of out-of-plane "fuzzy" graphene (FG) on thermally oxidized Si substrates. The resulting Si|FG interfaces possess a silicon oxycarbide (SiOC) interfacial layer, implying covalent bonding between Si and the FG film that is consistent with the mechanical robustness observed from the films. The FG layer is uniform and tunable in thickness and optical transparency by deposition time. Using p-type Si|FG substrates, noncovalent immobilization of cobalt phthalocyanine (CoPc) molecular catalysts was employed for the photoelectrochemical reduction of CO2 in aqueous solution. The Si|FG|CoPc photocathodes exhibited good catalytic activity, yielding a current density of ∼1 mA/cm2, Faradaic efficiency for CO of ∼70% (balance H2), and stable photocurrent for at least 30 h at -1.5 V vs Ag/AgCl under 1-sun illumination. The results suggest that plasma-deposited FG is a robust carbon electrode for molecular catalysts and suitable for further development of aqueous-stable Si photocathodes for CO2 reduction.

19.
Sci Total Environ ; 945: 174128, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38908593

RESUMEN

With the continuous increase in global air transportation, the impact of ultrafine particulate matter (PM) emissions from aviation on human health and environmental pollution is becoming increasingly severe. In addition to carbon reduction throughout the lifecycle, Sustainable Aviation Fuels (SAF) also represent a significant pathway for reducing PM emissions. However, due to issues such as airworthiness safety and adaptability, existing research has mostly focused on the emission performance of SAF when blended with traditional fuels at <50 %, leaving the emission characteristics of higher blending ratios to be explored. In this study, using measurement methods recommended by the International Civil Aviation Organization (ICAO), the PM emission reduction characteristics of small turbofan engines fueled with 100 % Hydroprocessed Esters and Fatty Acids (HEFA)-SAF were experimentally evaluated and compared with traditional fuels RP-3 and Diesel, while avoiding the interference of lubricant blending combustion. The results showed that the peak number concentration of particle size distribution (PSD), PM total number, as well as the number and mass concentration of non-volatile particulate matter (nvPM) decreased initially and then increased with rising thrust conditions. HEFA-SAF exhibits PSD with smaller diameters, and the Geometric Mean Diameter (GMD) ranges from 7.7 nm to 20.3 nm under all conditions. Both volatile particulates (vPM) and nvPM from HEFA-SAF are significantly reduced, with nvPM number emission index (EIn) being 92 % and 71 % lower than Diesel and RP-3, respectively. The nvPM mass emission index (EIm) also shows reductions of 96 % and 89 % compared to Diesel and RP-3. Microscopic characterization also indicated that using HEFA-SAF emitted fewer and smaller PMs. This study establishes a foundation for evaluating the effectiveness of 100 % SAF in reducing PM emissions within the aviation sector, and contributes to the airworthiness regulations development related to the use of SAF in a variety of application environments, alongside enhancing environmental protection measures.

20.
Environ Sci Pollut Res Int ; 31(30): 43381-43395, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38902447

RESUMEN

There are worldwide growing concerns about environmental issues such as global warming and climate change. Moreover, it is expected that there will be regional differences in environmental issues. Therefore, this study focuses on a tri-regional comparison: America, Europe, and Asia-Pacific. Previous literature has paid less attention to exploring regional comparisons while considering regional heterogeneity. Against this backdrop, this study delves into the dynamic relationship between fossil fuel utilization, economic growth, globalization, urbanization, and CO2 emissions to understand the environmental implications of these interconnected factors. The study period spans from 1990 to 2021. Additionally, it employed rigorous tests to confirm cross-sectional dependence and data heterogeneity, following methodologies proposed by Pesaran (2004, 2015) and Pesaran (2007), utilizing the CS-ARDL panel cointegration methodology by Chudik and Pesaran (2015). The results confirm long-term significant relationships among OC, NGC, FDI, and UR variables in both combined panels, with and without regional dummies. However, GDP and COC become insignificant in the long run in the dummy variables regression. Furthermore, the regional dummies were found to be negative but remain insignificant, possibly due to heterogeneous effects or unobserved factors influencing each region independently. Analysis by region reveals predominant coal consumption in Asia, higher oil consumption in America, and greater gas consumption in Europe. Economic growth and CO2 emissions are positive in Asia and America but negative in Europe, aligning with theories prioritizing growth over environmental concerns in Asia and America, and advocating for renewable energy adoption in Europe. Urbanization increases energy demand and emissions, supporting the environmental revolution theory, while FDI holds the potential to reduce CO2 emissions, as per the endogenous growth theory.


Asunto(s)
Cambio Climático , Desarrollo Económico , Combustibles Fósiles , Urbanización , Dióxido de Carbono/análisis , Asia , Europa (Continente) , Calentamiento Global
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA