Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.286
Filtrar
Más filtros

Intervalo de año de publicación
1.
Chembiochem ; : e202400710, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39239753

RESUMEN

The glycoside hydrolase family 20 (GH20) predominantly features N-acetylhexosaminidases (EC 3.2.1.52), with only few known lacto-N-biosidases (EC 3.2.1.140; LNBases). LNBases catalyze the degradation of lacto-N-tetraose (LNT), a prominent component of human milk oligosaccharides, thereby supporting a healthy infant gut microbiome development. We investigated GH20 diversity to discover novel enzymes that release disaccharides such as lacto-N-biose (LNB). Our approach combined peptide clustering, sequence analysis, and 3D structure model evaluation to assess active site topologies, focusing on the presence of a subsite -2. Five LNBases were active on pNP-LNB and four showed activity on LNT. One enzyme displayed activity on both pNP-LacNAc and pNP-LNB, establishing the first report of N-acetyllactosaminidase (LacNAcase) activity. Exploration of this enzyme cluster led to the identification of four additional enzymes sharing this dual substrate specificity. Comparing the determined crystal structure of a specific LNBase (TrpyGH20) and the first crystal structure of an enzyme with dual LacNAcase/LNBase activity (TrdeGH20) revealed a highly conserved subsite -1, common to GH20 enzymes, while the -2 subsites varied significantly. TrdeGH20 had a wider subsite -2, accommodating Gal with both ß1,4- and ß1,3-linkages to the GlcNAc in subsite -1. Biotechnological applications of these enzymes may include structural elucidation of complex carbohydrates and glycoengineering.

2.
Plants (Basel) ; 13(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39273928

RESUMEN

Glycoside hydrolases (GHs), enzymes that break down glycosidic bonds in carbohydrates and between carbohydrates and non-carbohydrates, are prevalent in plants, animals, microorganisms, and other organisms. The tomato is a significant crop that contains the GH17 gene family. However, its role in tomatoes has yet to be fully investigated. In this study, we identified 43 GH17 genes from the tomato genome, distributed unevenly across 12 chromosomes. We further analyzed their gene structure, phylogenetic relationships, promoter elements, and expression patterns. The promoter element analysis indicated their potential roles in response to biotic and abiotic stresses as well as phytohormone effects on growth and development. The expression studies across different tomato tissues revealed that 10 genes were specifically expressed in floral organs, with SlA6 prominently expressed early during bud formation. By using CRISPR/Cas9 gene-editing technology, SlA6 knockout plants were generated. Phenotypic characterization showed that pollen viability, pollen tube germination, fruit weight, and seed number were significantly reduced in the Sla6 mutant, but the soluble solids content (TSS) was significantly higher in the Sla6 mutant, suggesting that SlA6 affects pollen development and fruit quality.

3.
Materials (Basel) ; 17(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274664

RESUMEN

A precise Johnson-Cook (J-C) constitutive model is the foundation for precise calculation of finite-element simulation. In order to obtain the J-C constitutive model accurately for a new cast and forged alloy GH4198, an inverse identification of J-C constitutive model was proposed based on a genetic-particle swarm algorithm. Firstly, a quasi-static tensile test at different strain rates was conducted to determine the initial yield strength A, strain hardening coefficient B, and work hardening exponent n for the material's J-C model. Secondly, a new method for orthogonal cutting model was constructed based on the unequal division shear theory and considering the influence of tool edge radius. In order to obtain the strain-rate strengthening coefficient C and thermal softening coefficient m, an orthogonal cutting experiment was conducted. Finally, in order to validate the precision of the constitutive model, an orthogonal cutting thermo-mechanical coupling simulation model was established. Meanwhile, the sensitivity of J-C constitutive model parameters on simulation results was analyzed. The results indicate that the parameter m significantly affects chip morphology, and that the parameter C has a notable impact on the cutting force. This study addressed the issue of missing constitutive parameters for GH4198 and provided a theoretical reference for the optimization and identification of constitutive models for other aerospace materials.

4.
Int J Biol Macromol ; 279(Pt 3): 135399, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245095

RESUMEN

Acidic xylanase PjxA from Penicillium janthinellum MA21601, with good eosinophilic and enzymatic activity, is an excellent candidate for xylan degradation to achieve effective utilization of biomass materials. However, the low thermal stability of PjxA has become a major bottleneck in its application. In this study, the flexible sites of PjxA were identified and rigidified through computational simulations of structure and sequence analysis combined with folding free energy calculations. Finally, a combined mutase PjxA-DS was constructed by rational integration of the two single mutants S82N and D45N. Compared to PjxA, PjxA-DS showed a 115.11-fold longer half-life at 50 °C and a 2.02-fold higher specific enzyme activity. Computer simulation analysis showed that S82N and D45N acted synergistically to improve the thermostability of PjxA. The stabilization of the N-terminus and the active center of PjxA, the increase in surface positive charge and hydrophilicity are the main reasons for the improved thermostability and catalytic activity of PjxA. Rigidification of the flexible site is an effective method for improving the thermostability of enzymes, S82N and D45N can be used as effective targets for the thermostability engineering modification of GH11 acidic xylanase.

5.
Eur J Appl Physiol ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259397

RESUMEN

PURPOSE: Examine the acute hormonal and cytokine responses to free-weight resistance training in trained prepubertal and pubertal male children. METHODS: Prepubertal (n = 21; age 11.4 ± 1.1 years; Tanner I-II) and pubertal male children (n = 20; age 15.8 ± 0.7 years; Tanner III-V) conducted a moderate-intensity free-weight resistance training program to failure with venous blood sampling before (pre), immediately after (post) and during the recovery phase of the program (post-15,-30 min). Growth hormone (GH), insulin-like growth factor-I (IGF-I), cortisol, testosterone, IL-6, and TNF-α were analyzed in serum samples. Biological maturation was assessed according to the stages of the Tanner scale. RESULTS: There was a significant time-by-group interaction in IGF-I response (p = 0.044; η2 = 0.209) and testosterone (p < 0.001; η2 = 0.508), indicating a greater change in the pubertal group compared to the prepubertal group. Both groups significantly increased post-exercise GH levels (p < 0.05). Only the prepuberal group significantly increased levels of IL-6 at all post-exercise time points (p < 0.05). Both groups showed a significant (p < 0.05) increase in TNF-α levels compared to resting levels. CONCLUSION: These data suggest that acute testosterone and IGF-I response following resistance training differ between trained prepubertal and pubertal male children. Moderate-intensity resistance training performed to failure may thus have different effects in trained prepubertal and pubertal male children, which should be considered when giving training advice. TRIAL REGISTRATION: Clinical trials number: NCT05022992.

6.
Int J Biol Macromol ; 278(Pt 1): 134524, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111488

RESUMEN

Crop straws provide enormous lignocellulose resources transformable for sustainable biofuels and valuable bioproducts. However, lignocellulose recalcitrance basically restricts essential biomass enzymatic saccharification at large scale. In this study, the mushroom-derived cellobiohydrolase (LeGH7) was introduced into Trichoderma reesei (Rut-C30) to generate two desirable strains, namely GH7-5 and GH7-6. Compared to the Rut-C30 strain, both engineered strains exhibited significantly enhanced enzymatic activities, with ß-glucosidases, endocellulases, cellobiohydrolases, and xylanase activities increasing by 113 %, 140 %, 241 %, and 196 %, respectively. By performing steam explosion and mild alkali pretreatments with mature straws of five bioenergy crops, diverse lignocellulose substrates were effectively digested by the crude enzymes secreted from the engineered strains, leading to the high-yield hexoses released for bioethanol production. Notably, the LeGH7 enzyme purified from engineered strain enabled to act as multiple cellulases and xylanase at higher activities, interpreting how synergistic enhancement of enzymatic saccharification was achieved for distinct lignocellulose substrates in major bioenergy crops. Therefore, this study has identified a novel enzyme that is active for simultaneous hydrolyses of cellulose and xylan, providing an applicable strategy for high biomass enzymatic saccharification and bioethanol conversion in bioenergy crops.

7.
Appl Microbiol Biotechnol ; 108(1): 441, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145831

RESUMEN

Considering the structure of the bacterial GH15 family glucoamylase (GA), Thermoplasma trehalase Tvn1315 may be composed of a ß-sandwich domain (BD) and a catalytic domain (CD). Tvn1315 BD weakly binds to insoluble ß-glucans, such as cellulose, and helps fold CD. To determine how aromatic residues contribute to proper folding and enzyme activity, we performed alanine scanning for 32 aromatic residues in the BD. The study did not identify a single residue involved in glucan binding. However, several aromatic residues were found to be involved in BD or CD folding and in modulating the activity of the full-length enzyme. Among those aromatic residue mutations, the W43A mutation led to reduced solubility of the BD and full-length protein and resulted in a full-length enzyme with significantly lower activity. The activity of W43F and W43Y was significantly higher than that of W43A. In addition, Ala substitutions of Tyr83, Tyr113, and Tyr17 led to a reduction in trehalase activity, but Phe substitutions of these residues could be tolerated, as these mutants maintained activities similar to WT activity. Thus, these aromatic residues in BD may interact with CD and modulate enzyme activity. KEY POINTS: • Aromatic residues in the BD are involved in BD and CD folding. • Aromatic residues in the BD near the CD active site modulate enzyme activity. • BD interacts with CD and closely modulates enzyme activity.


Asunto(s)
Dominio Catalítico , Pliegue de Proteína , Trehalasa , Trehalasa/genética , Trehalasa/metabolismo , Trehalasa/química , Aminoácidos Aromáticos/metabolismo , Sustitución de Aminoácidos
8.
Carbohydr Polym ; 343: 122493, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174143

RESUMEN

Cellulose is a major renewable resource for a wide variety of sustainable industrial products. However, for its utilization, finding new efficient enzymes for plant cell wall depolymerization is crucial. In addition to microbial sources, cellulases also exist in plants, however, are less studied. Fleshy fruit ripening includes enzymatic cell wall hydrolysis, leading to tissue softening. Therefore, bilberry (Vaccinium myrtillus L.), which produces small fruits that undergo extensive and rapid softening, was selected to explore cellulases of plant origin. We identified 20 glycoside hydrolase family 9 (GH9) cellulases from a recently sequenced bilberry genome, including four of which showed fruit ripening-specific expression and could be associated with fruit softening based on phylogenetic, transcriptomic and gene expression analyses. These four cellulases were secreted enzymes: two B-types and two C-types with a carbohydrate binding module 49. For functional characterization, these four cellulases were expressed in Pichia pastoris. All recombinant enzymes demonstrated glucanase activity toward cellulose and hemicellulose substrates. Particularly, VmGH9C1 demonstrated high activity and ability to degrade cellulose, xyloglucan, and glucomannan. In addition, all the enzymes retained activity under wide pH (6-10) and temperature ranges (optimum 70 °C), revealing the potential applications of plant GH9 cellulases in the industrial bioprocessing of lignocellulose.


Asunto(s)
Celulasas , Celulosa , Frutas , Celulosa/metabolismo , Celulosa/química , Celulasas/metabolismo , Celulasas/genética , Celulasas/química , Frutas/enzimología , Filogenia , Polimerizacion , Especificidad por Sustrato , Concentración de Iones de Hidrógeno , Temperatura
9.
Stud Health Technol Inform ; 316: 1243-1247, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39176606

RESUMEN

GA4GH has proposed the Beacon architecture as an interface to retrieve genomic information which also protects the privacy of the individuals. In this paper, we propose to adapt the Beacon Reference Implementation to the use case of a study comparing the susceptibility to the carcinogenic effects of tobacco. This analysis compares the germline of heavy smokers who have either never developed lung cancer or, on the contrary, have developed it at a young age. To adapt the Beacon Reference Implementation to the use case, we have added filtering capabilities and a new grouping of information allowing to retrieve the data by affected gene.


Asunto(s)
Genómica , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Predisposición Genética a la Enfermedad , Fumar/genética , Almacenamiento y Recuperación de la Información
10.
Materials (Basel) ; 17(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39124504

RESUMEN

GH4720Li is an advanced nickel-based alloy celebrated for its remarkable high-temperature strength. This study aimed to investigate the dynamic recrystallization (DRX) behavior of novel GH4720Li superalloys microalloyed with 0.3Y via hot compression tests. A constitutive model was formulated to simulate the DRX behavior. Utilizing the stress-strain curve, the activation energy for the alloy was determined using both the Arrhenius model and the Z-parameter equation, resulting in 1117.916 kJ/mol. The microstructure evolution analysis conducted revealed that lower strain rates at elevated temperatures effectively hindered the occurrence of DRX. Conversely, the increase in the strain rate promoted DRX, producing uniform, equiaxial grains. Recrystallization calculations, along with validation experiments, demonstrated the efficacy of the Avrami model in establishing a DRX model for the alloy during hot deformation. This model accurately quantified DRX percentages under varying deformation parameters, showcasing strong agreement with the microstructure test results. The predictive capability afforded by the developed models offers valuable insights for optimizing the alloy's forging process. During the compression of the novel GH4720Li superalloy, DRX initiates when the dislocation density in a specific region surpasses a critical threshold. Concurrently, dislocation accumulation near the grain boundaries exceeds that within the grains themselves, highlighting that newly formed DRXed grains primarily emerge along the deformed grain boundaries.

11.
Microbiol Spectr ; : e0335123, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212453

RESUMEN

The α-amylase BmaN1 from Bacillus megaterium NL3 is a member of GH13_45 subfamily that has a conserved C-terminal region of approximately 30 residues. This region features a motif of five aromatic amino acids predicted to play a role in starch binding. This study aimed to unravel the role of the C-terminal region in starch hydrolysis. The full-length and C-terminally truncated forms of BmaN1 (BmaN1∆C) were expressed in Escherichia coli ArcticExpress (DE3), resulting in proteins with molecular weights of 56 kDa and 49 kDa, respectively. They exhibited comparable enzymatic activity in the hydrolysis of soluble starch, displaying versatility across a wide range of pH values, temperatures, and NaCl concentrations. BmaN1 and BmaN1∆C activities were inhibited by acarbose and were reduced by SDS and EDTA. In terms of binding and degrading the starch granules, BmaN1∆C showed lower affinity and activity in comparison to BmaN1. Our study indicates that the C-terminal region of BmaN1 significantly enhances its binding affinity and degrading the raw starches.IMPORTANCEα-Amylase (EC 3.2.1.1) stands as an endo-acting enzyme, essential for catalyzing the hydrolysis of α-1,4 glycosidic bonds within starch molecules. The relevance of α-amylases in biotechnological applications is substantial, constituting approximately 30% of the global enzyme market. Among these enzymes, BmaN1 was the first α-amylase identified to possess distinct catalytic residues within the GH13 family. BmaN1 from B. megaterium NL3 belongs to the GH13_45 subfamily. This subfamily is characterized by a conserved C-terminal region consisting of approximately 30 residues that contains a motif of five aromatic residues predicted to be involved in starch binding. Our study shows that the C-terminal effectively contributes to binding and degrading the raw starch granules. This pioneering research on BmaN1 expands our understanding of α-amylases and holds promise for innovative biotechnological advancements.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39172542

RESUMEN

CONTEXT: About 30% of patients with active acromegaly experience paradoxically increased growth hormone (GH) secretion during the diagnostic oral glucose tolerance test (OGTT). Endogenous glucose-dependent insulinotropic polypeptide (GIP) is implicated in this paradoxical secretion. OBJECTIVE: We used the GIP receptor (GIPR) antagonist GIP(3-30)NH2 to test the hypothesis that GIP mediates this paradoxical response when GIPR is abundantly expressed in somatotropinomas. DESIGN, PATIENTS, SETTING, INTERVENTIONS: 25 treatment-naïve patients with acromegaly were enrolled. Each patient underwent one OGTT during simultaneous placebo infusion and one OGTT during a GIP(3-30)NH2 infusion. Blood samples were drawn at baseline and regularly after infusions to measure GH. We assessed pituitary adenoma size by magnetic resonance imaging and GIPR expression by immunohistochemistry on resected somatotropinomas. For mechanistic confirmation, we applied in vitro and ex vivo approaches. MAIN OUTCOME MEASURE: The effect of GIP(3-30)NH2 on paradoxical GH secretion during OGTT as a measure of GIP involvement. RESULTS: In four of seven patients with paradoxical GH secretion, GIP(3-30)NH2 infusion completely abolished the paradoxical response (P = 0.0003). Somatotrophs were available from three of four of these patients, all showing abundant GIPR expression. Adenoma size did not differ between patients with and without paradoxical GH secretion. CONCLUSIONS: Of 25 patients with acromegaly, seven had paradoxical GH secretion during OGTT, and pharmaceutical GIPR blockade abolished this secretion in four. Corresponding somatotroph adenomas abundantly expressed GIPR, suggesting a therapeutic target in this subpopulation of patients. In vitro and ex vivo analyses confirmed the role of GIP and the effects of the antagonist.

13.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125866

RESUMEN

Glycoside hydrolases (GHs, also called glycosidases) catalyze the hydrolysis of glycosidic bonds in polysaccharides. Numerous GH genes have been identified from various organisms and are classified into 188 families, abbreviated GH1 to GH188. Enzymes in the GH32 family hydrolyze fructans, which are present in approximately 15% of flowering plants and are widespread across microorganisms. GH32 genes are rarely found in animals, as fructans are not a typical carbohydrate source utilized in animals. Here, we report the discovery of 242 GH32 genes identified in 84 animal species, ranging from nematodes to crabs. Genetic analyses of these genes indicated that the GH32 genes in various animals were derived from different bacteria via multiple, independent horizontal gene transfer events. The GH32 genes in animals appear functional based on the highly conserved catalytic blades and triads in the active center despite the overall low (35-60%) sequence similarities among the predicted proteins. The acquisition of GH32 genes by animals may have a profound impact on sugar metabolism for the recipient organisms. Our results together with previous reports suggest that the acquired GH32 enzymes may not only serve as digestive enzymes, but also may serve as effectors for manipulating host plants, and as metabolic enzymes in the non-digestive tissues of certain animals. Our results provide a foundation for future studies on the significance of horizontally transferred GH32 genes in animals. The information reported here enriches our knowledge of horizontal gene transfer, GH32 functions, and animal-plant interactions, which may result in practical applications. For example, developing crops via targeted engineering that inhibits GH32 enzymes could aid in the plant's resistance to animal pests.


Asunto(s)
Bacterias , Transferencia de Gen Horizontal , Glicósido Hidrolasas , Filogenia , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Animales , Bacterias/genética , Bacterias/enzimología , Invertebrados/genética , Adaptación Fisiológica/genética , Ecosistema , Evolución Molecular
14.
Fish Physiol Biochem ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096447

RESUMEN

Mandarin fish (Siniperca chuatsi) is an important cultured fish in East Asia that shows sexual size dimorphism (SSD), with females growing faster than males when reaching marketable size. However, the regulatory mechanism of SSD is not clear. To characterize SSD of mandarin fish and its association with gh/igf1/igfbp-5 expression, gonadal developmental atlas of the females and the males were described, and growth parameters and serum levels of E2 and T, as well as the relative expression levels of gh, igf1, and igfbp-5a/b mRNAs, were determined. The results showed that the logistic growth equation of body mass and total length of female and male were W(♀) = 667.57/(1 + e^(4.19 - 1.24*t)), W(♂) = 582.71/(1 + e^(4.07 - 1.27*t)), L(♀) = 31.47/(1 + e^1.95 - 1.08*t)), L(♂) = 26.20/(1 + e^(2.56 - 1.5*t)). The month of inflection points for body mass for females and males were 3.37 mph and 3.20 mph, respectively, when the body mass were 333.79 g and 291.36 g. The month of inflection points for total length growth were 1.80 mph and 1.70 mph, respectively, when the total length were 18.52 cm and 16.28 cm. At 1.5-2.0 mph, SSD was not clearly demonstrated. At 3.0 mph, the body mass of the females was significantly higher than that of the males (P < 0.05), Serum E2, brain gh, and liver igf1 expression of the females was significantly higher than that of the males (P < 0.05); T content of the males was significantly higher than that of the females (P < 0.05). At 4.0 months of age, the body mass of the females was highly significantly higher than that of the males (P < 0.01), Serum E2, brain gh, and liver igf1 expression of the females was highly significantly higher than that of the males (P < 0.05); T content of the males was significantly higher than that of the females (P < 0.05). With the continuous development of gonads, muscle and liver igfbp-5a and -5b expression generally tend to increase in females and males, while igfbp-5a showed a gradual increasing trend, and igfbp-5b expression showed a trend of decreasing and then increasing. Male igfbp-5a/b expression was significantly higher than female at the age of 3.0-4.0 months (P < 0.05). This work verified that the females had faster growth rate since 3.0 mph compared to the males, which may be related to higher E2 levels in females leading to higher igf1 level, through inhibition of igfbp-5a/b expression.

15.
Physiol Rep ; 12(15): e16154, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39095334

RESUMEN

Blood flow restriction (BFR) has been incorporated in resistance training for over 20 years. We aimed to investigate the impact of low-intensity suspension training with BFR (LIST+BFR) on GH, IGF-1, and their association with physical fitness in young women. Thirty-six active women participated and were randomly assigned to either the high-intensity suspension training (HIST), LIST+BFR, or control (CON) groups. Training groups exercised three sessions weekly for 8 weeks. The CON only engaged in regular physical activity. Fasting serum hormones and physical fitness were assessed 48 h before and after the training intervention. GH and IGF-1 levels significantly higher in the LIST+BFR compared to the HIST and CON. These hormones were significantly higher by HIST, compared to CON. LIST+BFR led to significant enhancements in muscular strength and endurance compared to HIST and CON. Additionally, HIST significantly higher than compared to CON. Sprinting and agility time lower in both suspension training groups rather than the CON. No significant between-groups differences were found in weight. There was a large or moderate correlation between GH and IGF-1 and muscular strength, endurance, sprint, and agility performance. LIST+BFR could more enhanced GH, IGF-1, and muscular strength and endurance in females than HIST.


Asunto(s)
Hormona de Crecimiento Humana , Factor I del Crecimiento Similar a la Insulina , Fuerza Muscular , Aptitud Física , Entrenamiento de Fuerza , Humanos , Femenino , Factor I del Crecimiento Similar a la Insulina/metabolismo , Entrenamiento de Fuerza/métodos , Aptitud Física/fisiología , Hormona de Crecimiento Humana/sangre , Fuerza Muscular/fisiología , Adulto Joven , Adulto
16.
BMC Vet Res ; 20(1): 341, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095829

RESUMEN

BACKGROUND: The insulin-like growth factor (IGF-I) and growth hormone (GH) genes have been identified as major regulators of milk yield and composition, and reproductive performance in cattle. Genetic variations/polymorphism in these genes have been found to influence milk production, yield and quality. This investigation aimed to explore the association between IGF-I and GH polymorphisms and milk yield and composition, and reproductive performance in a herd consisting of 1000 Holstein-Friesian (HF) dairy cattle from El-Alamia farm. The experimental animals were 76 ± 7.25 months in age, with an average live weight of 750 ± 50.49 kg, and raised under the same conditions of feeding and weather. The studied animals were divided into three categories; high producers (n = 280), medium producers (n = 318) and low producers (n = 402). RESULTS: The digestion of 249 bp for IGF-I-SnaBI using the Restriction-fragment-length-polymorphism (RFLP) technique yielded two alleles; T (0.59) and C (0.41) and three genotypes; TT (0.52), TC (0.39) and CC (0.09) and this agrees with the results of DNA/gene sequencing technique. The sequencing analysis of the IGF-I gene revealed polymorphism in position 472 (C > T). Nucleotide sequencing of the amplified fragment of the IGF-I gene of different genotypes was done and submitted to the NCBI GenBank with Accession no. MH156812.1 and MH156811.1. While the digestion of 432 bp for GH-AluI using the RFLP technique yielded two alleles; A (0.81) and G (0.19) and two genotypes; AA (0.77) and AG (0.23) and this agrees with the results of DNA/gene sequencing technique. The sequencing analysis of the GH gene revealed polymorphism in the position 1758 C > G and in turn led to changes in amino acid sequence as Alanine for (A) compared to Glycine for (G). Nucleotide sequencing of the amplified fragment of the GH gene was done and submitted to the NCBI GenBank with Accession no. MH156810.1. The results of this study demonstrate the effects of variants of the GH-IGF-I somatotrophic axis on milk production and composition traits in commercial HF cattle. The greatest values of milk yield and reproductive performance were observed on IGF-I-SnaBI-TC and GH-AluI-AG genotypes. While the greatest % fat and % protein values were observed on IGF-I-SnaBI-CC and GH-AluI-AA genotyped individuals. CONCLUSION: The genetic variation of the studied genes can be utilized in selecting animals with superior milk yield, composition and reproductive performance in Holstein-Friesian Dairy Cattle under subtropical conditions.


Asunto(s)
Hormona del Crecimiento , Factor I del Crecimiento Similar a la Insulina , Lactancia , Leche , Reproducción , Animales , Bovinos/genética , Bovinos/fisiología , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Leche/química , Leche/metabolismo , Hormona del Crecimiento/genética , Femenino , Reproducción/genética , Lactancia/genética , Polimorfismo Genético , Genotipo , Polimorfismo de Longitud del Fragmento de Restricción
17.
Cell Mol Life Sci ; 81(1): 357, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158587

RESUMEN

SLC30A9 (ZnT9) is a mitochondria-resident zinc transporter. Mutations in SLC30A9 have been reported in human patients with a novel cerebro-renal syndrome. Here, we show that ZnT9 is an evolutionarily highly conserved protein, with many regions extremely preserved among evolutionarily distant organisms. In Drosophila melanogaster (the fly), ZnT9 (ZnT49B) knockdown results in acutely impaired movement and drastic mitochondrial deformation. Severe Drosophila ZnT9 (dZnT9) reduction and ZnT9-null mutant flies are pupal lethal. The phenotype of dZnT9 knockdown can be partially rescued by mouse ZnT9 expression or zinc chelator TPEN, indicating the defect of dZnT9 loss is indeed a result of zinc dyshomeostasis. Interestingly, in the mouse, germline loss of Znt9 produces even more extreme phenotypes: the mutant embryos exhibit midgestational lethality with severe development abnormalities. Targeted mutagenesis of Znt9 in the mouse brain leads to serious dwarfism and physical incapacitation, followed by death shortly. Strikingly, the GH/IGF-1 signals are almost non-existent in these tissue-specific knockout mice, consistent with the medical finding in some human patients with severe mitochondrial deficiecny. ZnT9 mutations cause mitochondrial zinc dyshomeostasis, and we demonstrate mechanistically that mitochondrial zinc elevation quickly and potently inhibits the activities of respiration complexes. These results reveal the critical role of ZnT9 and mitochondrial zinc homeostasis in mammalian development. Based on our functional analyses, we finally discussed the possible nature of the so far identified human SLC30A9 mutations.


Asunto(s)
Proteínas de Transporte de Catión , Desarrollo Embrionario , Mitocondrias , Zinc , Animales , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Humanos , Zinc/metabolismo , Ratones , Mitocondrias/metabolismo , Desarrollo Embrionario/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/embriología , Evolución Molecular , Ratones Noqueados , Secuencia de Aminoácidos , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Factores de Transcripción , Proteínas de Ciclo Celular
18.
Front Microbiol ; 15: 1393588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188312

RESUMEN

Laminarin is a cytosolic storage polysaccharide of phytoplankton and macroalgae and accounts for over 10% of the world's annually fixed carbon dioxide. Algal disruption, for example, by viral lysis releases laminarin. The soluble sugar is rapidly utilized by free-living planktonic bacteria, in which sugar transporters and the degrading enzymes are frequently encoded in polysaccharide utilization loci. The annotation of flavobacterial genomes failed to identify canonical laminarin utilization loci in several particle-associated bacteria, in particular in strains of Maribacter. In this study, we report in vivo utilization of laminarin by Maribacter forsetii accompanied by additional cell growth and proliferation. Laminarin utilization coincided with the induction of an extracellular endo-laminarinase, SusC/D outer membrane oligosaccharide transporters, and a periplasmic glycosyl hydrolase family 3 protein. An ABC transport system and sugar kinases were expressed. Endo-laminarinase activity was also observed in Maribacter sp. MAR_2009_72, Maribacter sp. Hel_I_7, and Maribacter dokdonensis MAR_2009_60. Maribacter dokdonensis MAR_2009_71 lacked the large endo-laminarinase gene in the genome and had no endo-laminarinase activity. In all genomes, genes of induced proteins were scattered across the genome rather than clustered in a laminarin utilization locus. These observations revealed that the Maribacter strains investigated in this study participate in laminarin utilization, but in contrast to many free-living bacteria, there is no co-localization of genes encoding the enzymatic machinery for laminarin utilization.

19.
World Neurosurg ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39116943

RESUMEN

BACKGROUND: In surgical practice during endoscopic endonasal approach, growth hormone-secreting pituitary neuroendocrine tumor (GH-secreting PitNET) patients show morphologic differences in the nasal cavities and sinuses, leading to a narrower surgical field and a carotid prominence and potentially increasing the complexity of the surgical and the risk of complications. The aim of the study is to evaluate the anatomical differences of the sphenoid sinus between patients with GH-secreting PitNETs and patients with nonfunctioning pituitary neuroendocrine tumor (NF-PitNET) who underwent endoscopic endonasal approach. METHODS: This is a monocentric retrospective study conducted at the author's institution. The minimum intercarotid distance, the largest diameter of the sphenoid sinus (DSS), and the distance between vomer and clivus (VCD) were collected and compared. Presence, localization, and course of intersphenoid sinus septum were also evaluated. RESULTS: One hundred consecutive patients were identified: 57 males (57%) and 43 females (43%), with a mean age of 55 years. Sixty patients had NF-PitNET (60%) and 40 had GH-secreting PitNET (40%). GH-secreting PitNET group presented inferior values of intercarotid distance (16.8 ± 3.94 mm vs. 20.4 ± 3.94 mm, P < 0.001), DSS (32.5 ± 9.81 mm vs. 38.6 ± 11.03 mm, P = 0.006), and VCD (25.5 ± 6.96 mm vs. 29.6 ± 8.47 mm, P = 0.012) compared to NF-PitNET group. Intersphenoid sinus septum showed no differences between the 2 groups. CONCLUSIONS: Intercarotid distance, DSS, and VCD resulted smaller in acromegalic patients, confirming that patients with GH-secreting PitNETs have a narrower surgical field. A meticulous anatomical preoperative planning and neuronavigation are important to recognize the sphenoid anatomical landmarks in order to reduce the risk of complications, especially in acromegalic patients.

20.
Front Pediatr ; 12: 1388437, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175805

RESUMEN

Thyroid nodules in children are less common than in adults but they are approximately two- to three-fold more likely to be malignant in children. Among thyroid nodular diseases, Plummer's adenoma occurs very rarely in pediatrics, and currently, there is no literature providing evidence of this diagnosis in patients with Prader-Willi syndrome (PWS). We report the case of a 9-year-old Caucasian boy affected by PWS presenting with a rapidly growing palpable mass in the thyroid lodge associated with subclinical hyperthyroidism. Laboratory and other examinations (thyroid ultrasound, fine-needle aspiration of the nodule, and scintigraphy) were strongly suggestive for Plummer's adenoma; therefore, the patient underwent left hemithyroidectomy surgery, and anatomo-pathological examination confirmed the diagnosis. Our case describes the first evidence of an isolated follicular adenoma in children with PWS. Surgery is the only therapeutic option in younger children. Further evidence is needed to assess the possible correlation between these two conditions and the existence of potential risk factors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA